]> git.saurik.com Git - wxWidgets.git/blob - src/tiff/tif_luv.c
make it possible to change the text of the item being edited from OnBeginLabelEdit()
[wxWidgets.git] / src / tiff / tif_luv.c
1 /*
2 * Copyright (c) 1997 Greg Ward Larson
3 * Copyright (c) 1997 Silicon Graphics, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and
6 * its documentation for any purpose is hereby granted without fee, provided
7 * that (i) the above copyright notices and this permission notice appear in
8 * all copies of the software and related documentation, and (ii) the names of
9 * Sam Leffler, Greg Larson and Silicon Graphics may not be used in any
10 * advertising or publicity relating to the software without the specific,
11 * prior written permission of Sam Leffler, Greg Larson and Silicon Graphics.
12 *
13 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 *
17 * IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE
18 * FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 #include "tiffiop.h"
26 #ifdef LOGLUV_SUPPORT
27
28 /*
29 * TIFF Library.
30 * LogLuv compression support for high dynamic range images.
31 *
32 * Contributed by Greg Larson.
33 *
34 * LogLuv image support uses the TIFF library to store 16 or 10-bit
35 * log luminance values with 8 bits each of u and v or a 14-bit index.
36 *
37 * The codec can take as input and produce as output 32-bit IEEE float values
38 * as well as 16-bit integer values. A 16-bit luminance is interpreted
39 * as a sign bit followed by a 15-bit integer that is converted
40 * to and from a linear magnitude using the transformation:
41 *
42 * L = 2^( (Le+.5)/256 - 64 ) # real from 15-bit
43 *
44 * Le = floor( 256*(log2(L) + 64) ) # 15-bit from real
45 *
46 * The actual conversion to world luminance units in candelas per sq. meter
47 * requires an additional multiplier, which is stored in the TIFFTAG_STONITS.
48 * This value is usually set such that a reasonable exposure comes from
49 * clamping decoded luminances above 1 to 1 in the displayed image.
50 *
51 * The 16-bit values for u and v may be converted to real values by dividing
52 * each by 32768. (This allows for negative values, which aren't useful as
53 * far as we know, but are left in case of future improvements in human
54 * color vision.)
55 *
56 * Conversion from (u,v), which is actually the CIE (u',v') system for
57 * you color scientists, is accomplished by the following transformation:
58 *
59 * u = 4*x / (-2*x + 12*y + 3)
60 * v = 9*y / (-2*x + 12*y + 3)
61 *
62 * x = 9*u / (6*u - 16*v + 12)
63 * y = 4*v / (6*u - 16*v + 12)
64 *
65 * This process is greatly simplified by passing 32-bit IEEE floats
66 * for each of three CIE XYZ coordinates. The codec then takes care
67 * of conversion to and from LogLuv, though the application is still
68 * responsible for interpreting the TIFFTAG_STONITS calibration factor.
69 *
70 * By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white
71 * point of (x,y)=(1/3,1/3). However, most color systems assume some other
72 * white point, such as D65, and an absolute color conversion to XYZ then
73 * to another color space with a different white point may introduce an
74 * unwanted color cast to the image. It is often desirable, therefore, to
75 * perform a white point conversion that maps the input white to [1 1 1]
76 * in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT
77 * tag value. A decoder that demands absolute color calibration may use
78 * this white point tag to get back the original colors, but usually it
79 * will be ignored and the new white point will be used instead that
80 * matches the output color space.
81 *
82 * Pixel information is compressed into one of two basic encodings, depending
83 * on the setting of the compression tag, which is one of COMPRESSION_SGILOG
84 * or COMPRESSION_SGILOG24. For COMPRESSION_SGILOG, greyscale data is
85 * stored as:
86 *
87 * 1 15
88 * |-+---------------|
89 *
90 * COMPRESSION_SGILOG color data is stored as:
91 *
92 * 1 15 8 8
93 * |-+---------------|--------+--------|
94 * S Le ue ve
95 *
96 * For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as:
97 *
98 * 10 14
99 * |----------|--------------|
100 * Le' Ce
101 *
102 * There is no sign bit in the 24-bit case, and the (u,v) chromaticity is
103 * encoded as an index for optimal color resolution. The 10 log bits are
104 * defined by the following conversions:
105 *
106 * L = 2^((Le'+.5)/64 - 12) # real from 10-bit
107 *
108 * Le' = floor( 64*(log2(L) + 12) ) # 10-bit from real
109 *
110 * The 10 bits of the smaller format may be converted into the 15 bits of
111 * the larger format by multiplying by 4 and adding 13314. Obviously,
112 * a smaller range of magnitudes is covered (about 5 orders of magnitude
113 * instead of 38), and the lack of a sign bit means that negative luminances
114 * are not allowed. (Well, they aren't allowed in the real world, either,
115 * but they are useful for certain types of image processing.)
116 *
117 * The desired user format is controlled by the setting the internal
118 * pseudo tag TIFFTAG_SGILOGDATAFMT to one of:
119 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float XYZ values
120 * SGILOGDATAFMT_16BIT = 16-bit integer encodings of logL, u and v
121 * Raw data i/o is also possible using:
122 * SGILOGDATAFMT_RAW = 32-bit unsigned integer with encoded pixel
123 * In addition, the following decoding is provided for ease of display:
124 * SGILOGDATAFMT_8BIT = 8-bit default RGB gamma-corrected values
125 *
126 * For grayscale images, we provide the following data formats:
127 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float Y values
128 * SGILOGDATAFMT_16BIT = 16-bit integer w/ encoded luminance
129 * SGILOGDATAFMT_8BIT = 8-bit gray monitor values
130 *
131 * Note that the COMPRESSION_SGILOG applies a simple run-length encoding
132 * scheme by separating the logL, u and v bytes for each row and applying
133 * a PackBits type of compression. Since the 24-bit encoding is not
134 * adaptive, the 32-bit color format takes less space in many cases.
135 *
136 * Further control is provided over the conversion from higher-resolution
137 * formats to final encoded values through the pseudo tag
138 * TIFFTAG_SGILOGENCODE:
139 * SGILOGENCODE_NODITHER = do not dither encoded values
140 * SGILOGENCODE_RANDITHER = apply random dithering during encoding
141 *
142 * The default value of this tag is SGILOGENCODE_NODITHER for
143 * COMPRESSION_SGILOG to maximize run-length encoding and
144 * SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn
145 * quantization errors into noise.
146 */
147
148 #include <stdio.h>
149 #include <assert.h>
150 #include <stdlib.h>
151 #include <math.h>
152
153 /*
154 * State block for each open TIFF
155 * file using LogLuv compression/decompression.
156 */
157 typedef struct logLuvState LogLuvState;
158
159 struct logLuvState {
160 int user_datafmt; /* user data format */
161 int encode_meth; /* encoding method */
162 int pixel_size; /* bytes per pixel */
163
164 tidata_t* tbuf; /* translation buffer */
165 int tbuflen; /* buffer length */
166 void (*tfunc)(LogLuvState*, tidata_t, int);
167
168 TIFFVSetMethod vgetparent; /* super-class method */
169 TIFFVSetMethod vsetparent; /* super-class method */
170 };
171
172 #define DecoderState(tif) ((LogLuvState*) (tif)->tif_data)
173 #define EncoderState(tif) ((LogLuvState*) (tif)->tif_data)
174
175 #define N(a) (sizeof(a)/sizeof(a[0]))
176 #define SGILOGDATAFMT_UNKNOWN -1
177
178 #define MINRUN 4 /* minimum run length */
179
180 /*
181 * Decode a string of 16-bit gray pixels.
182 */
183 static int
184 LogL16Decode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
185 {
186 LogLuvState* sp = DecoderState(tif);
187 int shft, i, npixels;
188 u_char* bp;
189 int16* tp;
190 int16 b;
191 int cc, rc;
192
193 assert(s == 0);
194 assert(sp != NULL);
195
196 npixels = occ / sp->pixel_size;
197
198 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
199 tp = (int16*) op;
200 else {
201 assert(sp->tbuflen >= npixels);
202 tp = (int16*) sp->tbuf;
203 }
204 _TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
205
206 bp = (u_char*) tif->tif_rawcp;
207 cc = tif->tif_rawcc;
208 /* get each byte string */
209 for (shft = 2*8; (shft -= 8) >= 0; ) {
210 for (i = 0; i < npixels && cc > 0; )
211 if (*bp >= 128) { /* run */
212 rc = *bp++ + (2-128);
213 b = (int16)(*bp++ << shft);
214 cc -= 2;
215 while (rc-- && i < npixels)
216 tp[i++] |= b;
217 } else { /* non-run */
218 rc = *bp++; /* nul is noop */
219 while (--cc && rc-- && i < npixels)
220 tp[i++] |= (int16)*bp++ << shft;
221 }
222 if (i != npixels) {
223 TIFFError(tif->tif_name,
224 "LogL16Decode: Not enough data at row %d (short %d pixels)",
225 tif->tif_row, npixels - i);
226 tif->tif_rawcp = (tidata_t) bp;
227 tif->tif_rawcc = cc;
228 return (0);
229 }
230 }
231 (*sp->tfunc)(sp, op, npixels);
232 tif->tif_rawcp = (tidata_t) bp;
233 tif->tif_rawcc = cc;
234 return (1);
235 }
236
237 /*
238 * Decode a string of 24-bit pixels.
239 */
240 static int
241 LogLuvDecode24(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
242 {
243 LogLuvState* sp = DecoderState(tif);
244 int cc, i, npixels;
245 u_char* bp;
246 uint32* tp;
247
248 assert(s == 0);
249 assert(sp != NULL);
250
251 npixels = occ / sp->pixel_size;
252
253 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
254 tp = (uint32 *)op;
255 else {
256 assert(sp->tbuflen >= npixels);
257 tp = (uint32 *) sp->tbuf;
258 }
259 /* copy to array of uint32 */
260 bp = (u_char*) tif->tif_rawcp;
261 cc = tif->tif_rawcc;
262 for (i = 0; i < npixels && cc > 0; i++) {
263 tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2];
264 bp += 3;
265 cc -= 3;
266 }
267 tif->tif_rawcp = (tidata_t) bp;
268 tif->tif_rawcc = cc;
269 if (i != npixels) {
270 TIFFError(tif->tif_name,
271 "LogLuvDecode24: Not enough data at row %d (short %d pixels)",
272 tif->tif_row, npixels - i);
273 return (0);
274 }
275 (*sp->tfunc)(sp, op, npixels);
276 return (1);
277 }
278
279 /*
280 * Decode a string of 32-bit pixels.
281 */
282 static int
283 LogLuvDecode32(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
284 {
285 LogLuvState* sp;
286 int shft, i, npixels;
287 u_char* bp;
288 uint32* tp;
289 uint32 b;
290 int cc, rc;
291
292 assert(s == 0);
293 sp = DecoderState(tif);
294 assert(sp != NULL);
295
296 npixels = occ / sp->pixel_size;
297
298 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
299 tp = (uint32*) op;
300 else {
301 assert(sp->tbuflen >= npixels);
302 tp = (uint32*) sp->tbuf;
303 }
304 _TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0]));
305
306 bp = (u_char*) tif->tif_rawcp;
307 cc = tif->tif_rawcc;
308 /* get each byte string */
309 for (shft = 4*8; (shft -= 8) >= 0; ) {
310 for (i = 0; i < npixels && cc > 0; )
311 if (*bp >= 128) { /* run */
312 rc = *bp++ + (2-128);
313 b = (uint32)*bp++ << shft;
314 cc -= 2;
315 while (rc-- && i < npixels)
316 tp[i++] |= b;
317 } else { /* non-run */
318 rc = *bp++; /* nul is noop */
319 while (--cc && rc-- && i < npixels)
320 tp[i++] |= (uint32)*bp++ << shft;
321 }
322 if (i != npixels) {
323 TIFFError(tif->tif_name,
324 "LogLuvDecode32: Not enough data at row %d (short %d pixels)",
325 tif->tif_row, npixels - i);
326 tif->tif_rawcp = (tidata_t) bp;
327 tif->tif_rawcc = cc;
328 return (0);
329 }
330 }
331 (*sp->tfunc)(sp, op, npixels);
332 tif->tif_rawcp = (tidata_t) bp;
333 tif->tif_rawcc = cc;
334 return (1);
335 }
336
337 /*
338 * Decode a strip of pixels. We break it into rows to
339 * maintain synchrony with the encode algorithm, which
340 * is row by row.
341 */
342 static int
343 LogLuvDecodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
344 {
345 tsize_t rowlen = TIFFScanlineSize(tif);
346
347 assert(cc%rowlen == 0);
348 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
349 bp += rowlen, cc -= rowlen;
350 return (cc == 0);
351 }
352
353 /*
354 * Decode a tile of pixels. We break it into rows to
355 * maintain synchrony with the encode algorithm, which
356 * is row by row.
357 */
358 static int
359 LogLuvDecodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
360 {
361 tsize_t rowlen = TIFFTileRowSize(tif);
362
363 assert(cc%rowlen == 0);
364 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
365 bp += rowlen, cc -= rowlen;
366 return (cc == 0);
367 }
368
369 /*
370 * Encode a row of 16-bit pixels.
371 */
372 static int
373 LogL16Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
374 {
375 LogLuvState* sp = EncoderState(tif);
376 int shft, i, j, npixels;
377 tidata_t op;
378 int16* tp;
379 int16 b;
380 int occ, rc=0, mask, beg;
381
382 assert(s == 0);
383 assert(sp != NULL);
384 npixels = cc / sp->pixel_size;
385
386 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
387 tp = (int16*) bp;
388 else {
389 tp = (int16*) sp->tbuf;
390 assert(sp->tbuflen >= npixels);
391 (*sp->tfunc)(sp, bp, npixels);
392 }
393 /* compress each byte string */
394 op = tif->tif_rawcp;
395 occ = tif->tif_rawdatasize - tif->tif_rawcc;
396 for (shft = 2*8; (shft -= 8) >= 0; )
397 for (i = 0; i < npixels; i += rc) {
398 if (occ < 4) {
399 tif->tif_rawcp = op;
400 tif->tif_rawcc = tif->tif_rawdatasize - occ;
401 if (!TIFFFlushData1(tif))
402 return (-1);
403 op = tif->tif_rawcp;
404 occ = tif->tif_rawdatasize - tif->tif_rawcc;
405 }
406 mask = 0xff << shft; /* find next run */
407 for (beg = i; beg < npixels; beg += rc) {
408 b = (int16) (tp[beg] & mask);
409 rc = 1;
410 while (rc < 127+2 && beg+rc < npixels &&
411 (tp[beg+rc] & mask) == b)
412 rc++;
413 if (rc >= MINRUN)
414 break; /* long enough */
415 }
416 if (beg-i > 1 && beg-i < MINRUN) {
417 b = (int16) (tp[i] & mask);/*check short run */
418 j = i+1;
419 while ((tp[j++] & mask) == b)
420 if (j == beg) {
421 *op++ = (tidataval_t)(128-2+j-i);
422 *op++ = (tidataval_t) (b >> shft);
423 occ -= 2;
424 i = beg;
425 break;
426 }
427 }
428 while (i < beg) { /* write out non-run */
429 if ((j = beg-i) > 127) j = 127;
430 if (occ < j+3) {
431 tif->tif_rawcp = op;
432 tif->tif_rawcc = tif->tif_rawdatasize - occ;
433 if (!TIFFFlushData1(tif))
434 return (-1);
435 op = tif->tif_rawcp;
436 occ = tif->tif_rawdatasize - tif->tif_rawcc;
437 }
438 *op++ = (tidataval_t) j; occ--;
439 while (j--) {
440 *op++ = (tidataval_t) (tp[i++] >> shft & 0xff);
441 occ--;
442 }
443 }
444 if (rc >= MINRUN) { /* write out run */
445 *op++ = (tidataval_t) (128-2+rc);
446 *op++ = (tidataval_t) (tp[beg] >> shft & 0xff);
447 occ -= 2;
448 } else
449 rc = 0;
450 }
451 tif->tif_rawcp = op;
452 tif->tif_rawcc = tif->tif_rawdatasize - occ;
453
454 return (0);
455 }
456
457 /*
458 * Encode a row of 24-bit pixels.
459 */
460 static int
461 LogLuvEncode24(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
462 {
463 LogLuvState* sp = EncoderState(tif);
464 int i, npixels, occ;
465 tidata_t op;
466 uint32* tp;
467
468 assert(s == 0);
469 assert(sp != NULL);
470 npixels = cc / sp->pixel_size;
471
472 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
473 tp = (uint32*) bp;
474 else {
475 tp = (uint32*) sp->tbuf;
476 assert(sp->tbuflen >= npixels);
477 (*sp->tfunc)(sp, bp, npixels);
478 }
479 /* write out encoded pixels */
480 op = tif->tif_rawcp;
481 occ = tif->tif_rawdatasize - tif->tif_rawcc;
482 for (i = npixels; i--; ) {
483 if (occ < 3) {
484 tif->tif_rawcp = op;
485 tif->tif_rawcc = tif->tif_rawdatasize - occ;
486 if (!TIFFFlushData1(tif))
487 return (-1);
488 op = tif->tif_rawcp;
489 occ = tif->tif_rawdatasize - tif->tif_rawcc;
490 }
491 *op++ = (tidataval_t)(*tp >> 16);
492 *op++ = (tidataval_t)(*tp >> 8 & 0xff);
493 *op++ = (tidataval_t)(*tp++ & 0xff);
494 occ -= 3;
495 }
496 tif->tif_rawcp = op;
497 tif->tif_rawcc = tif->tif_rawdatasize - occ;
498
499 return (0);
500 }
501
502 /*
503 * Encode a row of 32-bit pixels.
504 */
505 static int
506 LogLuvEncode32(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
507 {
508 LogLuvState* sp = EncoderState(tif);
509 int shft, i, j, npixels;
510 tidata_t op;
511 uint32* tp;
512 uint32 b;
513 int occ, rc=0, mask, beg;
514
515 assert(s == 0);
516 assert(sp != NULL);
517
518 npixels = cc / sp->pixel_size;
519
520 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
521 tp = (uint32*) bp;
522 else {
523 tp = (uint32*) sp->tbuf;
524 assert(sp->tbuflen >= npixels);
525 (*sp->tfunc)(sp, bp, npixels);
526 }
527 /* compress each byte string */
528 op = tif->tif_rawcp;
529 occ = tif->tif_rawdatasize - tif->tif_rawcc;
530 for (shft = 4*8; (shft -= 8) >= 0; )
531 for (i = 0; i < npixels; i += rc) {
532 if (occ < 4) {
533 tif->tif_rawcp = op;
534 tif->tif_rawcc = tif->tif_rawdatasize - occ;
535 if (!TIFFFlushData1(tif))
536 return (-1);
537 op = tif->tif_rawcp;
538 occ = tif->tif_rawdatasize - tif->tif_rawcc;
539 }
540 mask = 0xff << shft; /* find next run */
541 for (beg = i; beg < npixels; beg += rc) {
542 b = tp[beg] & mask;
543 rc = 1;
544 while (rc < 127+2 && beg+rc < npixels &&
545 (tp[beg+rc] & mask) == b)
546 rc++;
547 if (rc >= MINRUN)
548 break; /* long enough */
549 }
550 if (beg-i > 1 && beg-i < MINRUN) {
551 b = tp[i] & mask; /* check short run */
552 j = i+1;
553 while ((tp[j++] & mask) == b)
554 if (j == beg) {
555 *op++ = (tidataval_t)(128-2+j-i);
556 *op++ = (tidataval_t)(b >> shft);
557 occ -= 2;
558 i = beg;
559 break;
560 }
561 }
562 while (i < beg) { /* write out non-run */
563 if ((j = beg-i) > 127) j = 127;
564 if (occ < j+3) {
565 tif->tif_rawcp = op;
566 tif->tif_rawcc = tif->tif_rawdatasize - occ;
567 if (!TIFFFlushData1(tif))
568 return (-1);
569 op = tif->tif_rawcp;
570 occ = tif->tif_rawdatasize - tif->tif_rawcc;
571 }
572 *op++ = (tidataval_t) j; occ--;
573 while (j--) {
574 *op++ = (tidataval_t)(tp[i++] >> shft & 0xff);
575 occ--;
576 }
577 }
578 if (rc >= MINRUN) { /* write out run */
579 *op++ = (tidataval_t) (128-2+rc);
580 *op++ = (tidataval_t)(tp[beg] >> shft & 0xff);
581 occ -= 2;
582 } else
583 rc = 0;
584 }
585 tif->tif_rawcp = op;
586 tif->tif_rawcc = tif->tif_rawdatasize - occ;
587
588 return (0);
589 }
590
591 /*
592 * Encode a strip of pixels. We break it into rows to
593 * avoid encoding runs across row boundaries.
594 */
595 static int
596 LogLuvEncodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
597 {
598 tsize_t rowlen = TIFFScanlineSize(tif);
599
600 assert(cc%rowlen == 0);
601 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
602 bp += rowlen, cc -= rowlen;
603 return (cc == 0);
604 }
605
606 /*
607 * Encode a tile of pixels. We break it into rows to
608 * avoid encoding runs across row boundaries.
609 */
610 static int
611 LogLuvEncodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
612 {
613 tsize_t rowlen = TIFFTileRowSize(tif);
614
615 assert(cc%rowlen == 0);
616 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0)
617 bp += rowlen, cc -= rowlen;
618 return (cc == 0);
619 }
620
621 /*
622 * Encode/Decode functions for converting to and from user formats.
623 */
624
625 #include "uvcode.h"
626
627 #ifndef UVSCALE
628 #define U_NEU 0.210526316
629 #define V_NEU 0.473684211
630 #define UVSCALE 410.
631 #endif
632
633 #ifndef M_LN2
634 #define M_LN2 0.69314718055994530942
635 #endif
636 #ifndef M_PI
637 #define M_PI 3.14159265358979323846
638 #endif
639 #define log2(x) ((1./M_LN2)*log(x))
640 #define exp2(x) exp(M_LN2*(x))
641
642 #define itrunc(x,m) ((m)==SGILOGENCODE_NODITHER ? \
643 (int)(x) : \
644 (int)((x) + rand()*(1./RAND_MAX) - .5))
645
646 #if !LOGLUV_PUBLIC
647 static
648 #endif
649 double
650 LogL16toY(int p16) /* compute luminance from 16-bit LogL */
651 {
652 int Le = p16 & 0x7fff;
653 double Y;
654
655 if (!Le)
656 return (0.);
657 Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.);
658 return (!(p16 & 0x8000) ? Y : -Y);
659 }
660
661 #if !LOGLUV_PUBLIC
662 static
663 #endif
664 int
665 LogL16fromY(double Y, int em) /* get 16-bit LogL from Y */
666 {
667 if (Y >= 1.8371976e19)
668 return (0x7fff);
669 if (Y <= -1.8371976e19)
670 return (0xffff);
671 if (Y > 5.4136769e-20)
672 return itrunc(256.*(log2(Y) + 64.), em);
673 if (Y < -5.4136769e-20)
674 return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em));
675 return (0);
676 }
677
678 static void
679 L16toY(LogLuvState* sp, tidata_t op, int n)
680 {
681 int16* l16 = (int16*) sp->tbuf;
682 float* yp = (float*) op;
683
684 while (n-- > 0)
685 *yp++ = (float)LogL16toY(*l16++);
686 }
687
688 static void
689 L16toGry(LogLuvState* sp, tidata_t op, int n)
690 {
691 int16* l16 = (int16*) sp->tbuf;
692 uint8* gp = (uint8*) op;
693
694 while (n-- > 0) {
695 double Y = LogL16toY(*l16++);
696 *gp++ = (uint8) ((Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y)));
697 }
698 }
699
700 static void
701 L16fromY(LogLuvState* sp, tidata_t op, int n)
702 {
703 int16* l16 = (int16*) sp->tbuf;
704 float* yp = (float*) op;
705
706 while (n-- > 0)
707 *l16++ = (int16) (LogL16fromY(*yp++, sp->encode_meth));
708 }
709
710 #if !LOGLUV_PUBLIC
711 static
712 #endif
713 void
714 XYZtoRGB24(float xyz[3], uint8 rgb[3])
715 {
716 double r, g, b;
717 /* assume CCIR-709 primaries */
718 r = 2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2];
719 g = -1.022*xyz[0] + 1.978*xyz[1] + 0.044*xyz[2];
720 b = 0.061*xyz[0] + -0.224*xyz[1] + 1.163*xyz[2];
721 /* assume 2.0 gamma for speed */
722 /* could use integer sqrt approx., but this is probably faster */
723 rgb[0] = (uint8)((r<=0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r)));
724 rgb[1] = (uint8)((g<=0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g)));
725 rgb[2] = (uint8)((b<=0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b)));
726 }
727
728 #if !LOGLUV_PUBLIC
729 static
730 #endif
731 double
732 LogL10toY(int p10) /* compute luminance from 10-bit LogL */
733 {
734 if (p10 == 0)
735 return (0.);
736 return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.));
737 }
738
739 #if !LOGLUV_PUBLIC
740 static
741 #endif
742 int
743 LogL10fromY(double Y, int em) /* get 10-bit LogL from Y */
744 {
745 if (Y >= 15.742)
746 return (0x3ff);
747 else if (Y <= .00024283)
748 return (0);
749 else
750 return itrunc(64.*(log2(Y) + 12.), em);
751 }
752
753 #define NANGLES 100
754 #define uv2ang(u, v) ( (NANGLES*.499999999/M_PI) \
755 * atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES )
756
757 static int
758 oog_encode(double u, double v) /* encode out-of-gamut chroma */
759 {
760 static int oog_table[NANGLES];
761 static int initialized = 0;
762 register int i;
763
764 if (!initialized) { /* set up perimeter table */
765 double eps[NANGLES], ua, va, ang, epsa;
766 int ui, vi, ustep;
767 for (i = NANGLES; i--; )
768 eps[i] = 2.;
769 for (vi = UV_NVS; vi--; ) {
770 va = UV_VSTART + (vi+.5)*UV_SQSIZ;
771 ustep = uv_row[vi].nus-1;
772 if (vi == UV_NVS-1 || vi == 0 || ustep <= 0)
773 ustep = 1;
774 for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) {
775 ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
776 ang = uv2ang(ua, va);
777 i = (int) ang;
778 epsa = fabs(ang - (i+.5));
779 if (epsa < eps[i]) {
780 oog_table[i] = uv_row[vi].ncum + ui;
781 eps[i] = epsa;
782 }
783 }
784 }
785 for (i = NANGLES; i--; ) /* fill any holes */
786 if (eps[i] > 1.5) {
787 int i1, i2;
788 for (i1 = 1; i1 < NANGLES/2; i1++)
789 if (eps[(i+i1)%NANGLES] < 1.5)
790 break;
791 for (i2 = 1; i2 < NANGLES/2; i2++)
792 if (eps[(i+NANGLES-i2)%NANGLES] < 1.5)
793 break;
794 if (i1 < i2)
795 oog_table[i] =
796 oog_table[(i+i1)%NANGLES];
797 else
798 oog_table[i] =
799 oog_table[(i+NANGLES-i2)%NANGLES];
800 }
801 initialized = 1;
802 }
803 i = (int) uv2ang(u, v); /* look up hue angle */
804 return (oog_table[i]);
805 }
806
807 #undef uv2ang
808 #undef NANGLES
809
810 #if !LOGLUV_PUBLIC
811 static
812 #endif
813 int
814 uv_encode(double u, double v, int em) /* encode (u',v') coordinates */
815 {
816 register int vi, ui;
817
818 if (v < UV_VSTART)
819 return oog_encode(u, v);
820 vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em);
821 if (vi >= UV_NVS)
822 return oog_encode(u, v);
823 if (u < uv_row[vi].ustart)
824 return oog_encode(u, v);
825 ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em);
826 if (ui >= uv_row[vi].nus)
827 return oog_encode(u, v);
828
829 return (uv_row[vi].ncum + ui);
830 }
831
832 #if !LOGLUV_PUBLIC
833 static
834 #endif
835 int
836 uv_decode(double *up, double *vp, int c) /* decode (u',v') index */
837 {
838 int upper, lower;
839 register int ui, vi;
840
841 if (c < 0 || c >= UV_NDIVS)
842 return (-1);
843 lower = 0; /* binary search */
844 upper = UV_NVS;
845 while (upper - lower > 1) {
846 vi = (lower + upper) >> 1;
847 ui = c - uv_row[vi].ncum;
848 if (ui > 0)
849 lower = vi;
850 else if (ui < 0)
851 upper = vi;
852 else {
853 lower = vi;
854 break;
855 }
856 }
857 vi = lower;
858 ui = c - uv_row[vi].ncum;
859 *up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
860 *vp = UV_VSTART + (vi+.5)*UV_SQSIZ;
861 return (0);
862 }
863
864 #if !LOGLUV_PUBLIC
865 static
866 #endif
867 void
868 LogLuv24toXYZ(uint32 p, float XYZ[3])
869 {
870 int Ce;
871 double L, u, v, s, x, y;
872 /* decode luminance */
873 L = LogL10toY(p>>14 & 0x3ff);
874 if (L <= 0.) {
875 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
876 return;
877 }
878 /* decode color */
879 Ce = p & 0x3fff;
880 if (uv_decode(&u, &v, Ce) < 0) {
881 u = U_NEU; v = V_NEU;
882 }
883 s = 1./(6.*u - 16.*v + 12.);
884 x = 9.*u * s;
885 y = 4.*v * s;
886 /* convert to XYZ */
887 XYZ[0] = (float)(x/y * L);
888 XYZ[1] = (float)L;
889 XYZ[2] = (float)((1.-x-y)/y * L);
890 }
891
892 #if !LOGLUV_PUBLIC
893 static
894 #endif
895 uint32
896 LogLuv24fromXYZ(float XYZ[3], int em)
897 {
898 int Le, Ce;
899 double u, v, s;
900 /* encode luminance */
901 Le = LogL10fromY(XYZ[1], em);
902 /* encode color */
903 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
904 if (!Le || s <= 0.) {
905 u = U_NEU;
906 v = V_NEU;
907 } else {
908 u = 4.*XYZ[0] / s;
909 v = 9.*XYZ[1] / s;
910 }
911 Ce = uv_encode(u, v, em);
912 if (Ce < 0) /* never happens */
913 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
914 /* combine encodings */
915 return (Le << 14 | Ce);
916 }
917
918 static void
919 Luv24toXYZ(LogLuvState* sp, tidata_t op, int n)
920 {
921 uint32* luv = (uint32*) sp->tbuf;
922 float* xyz = (float*) op;
923
924 while (n-- > 0) {
925 LogLuv24toXYZ(*luv, xyz);
926 xyz += 3;
927 luv++;
928 }
929 }
930
931 static void
932 Luv24toLuv48(LogLuvState* sp, tidata_t op, int n)
933 {
934 uint32* luv = (uint32*) sp->tbuf;
935 int16* luv3 = (int16*) op;
936
937 while (n-- > 0) {
938 double u, v;
939
940 *luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314);
941 if (uv_decode(&u, &v, *luv&0x3fff) < 0) {
942 u = U_NEU;
943 v = V_NEU;
944 }
945 *luv3++ = (int16)(u * (1L<<15));
946 *luv3++ = (int16)(v * (1L<<15));
947 luv++;
948 }
949 }
950
951 static void
952 Luv24toRGB(LogLuvState* sp, tidata_t op, int n)
953 {
954 uint32* luv = (uint32*) sp->tbuf;
955 uint8* rgb = (uint8*) op;
956
957 while (n-- > 0) {
958 float xyz[3];
959
960 LogLuv24toXYZ(*luv++, xyz);
961 XYZtoRGB24(xyz, rgb);
962 rgb += 3;
963 }
964 }
965
966 static void
967 Luv24fromXYZ(LogLuvState* sp, tidata_t op, int n)
968 {
969 uint32* luv = (uint32*) sp->tbuf;
970 float* xyz = (float*) op;
971
972 while (n-- > 0) {
973 *luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth);
974 xyz += 3;
975 }
976 }
977
978 static void
979 Luv24fromLuv48(LogLuvState* sp, tidata_t op, int n)
980 {
981 uint32* luv = (uint32*) sp->tbuf;
982 int16* luv3 = (int16*) op;
983
984 while (n-- > 0) {
985 int Le, Ce;
986
987 if (luv3[0] <= 0)
988 Le = 0;
989 else if (luv3[0] >= (1<<12)+3314)
990 Le = (1<<10) - 1;
991 else if (sp->encode_meth == SGILOGENCODE_NODITHER)
992 Le = (luv3[0]-3314) >> 2;
993 else
994 Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth);
995
996 Ce = uv_encode((luv3[1]+.5)/(1<<15), (luv3[2]+.5)/(1<<15),
997 sp->encode_meth);
998 if (Ce < 0) /* never happens */
999 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
1000 *luv++ = (uint32)Le << 14 | Ce;
1001 luv3 += 3;
1002 }
1003 }
1004
1005 #if !LOGLUV_PUBLIC
1006 static
1007 #endif
1008 void
1009 LogLuv32toXYZ(uint32 p, float XYZ[3])
1010 {
1011 double L, u, v, s, x, y;
1012 /* decode luminance */
1013 L = LogL16toY((int)p >> 16);
1014 if (L <= 0.) {
1015 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
1016 return;
1017 }
1018 /* decode color */
1019 u = 1./UVSCALE * ((p>>8 & 0xff) + .5);
1020 v = 1./UVSCALE * ((p & 0xff) + .5);
1021 s = 1./(6.*u - 16.*v + 12.);
1022 x = 9.*u * s;
1023 y = 4.*v * s;
1024 /* convert to XYZ */
1025 XYZ[0] = (float)(x/y * L);
1026 XYZ[1] = (float)L;
1027 XYZ[2] = (float)((1.-x-y)/y * L);
1028 }
1029
1030 #if !LOGLUV_PUBLIC
1031 static
1032 #endif
1033 uint32
1034 LogLuv32fromXYZ(float XYZ[3], int em)
1035 {
1036 unsigned int Le, ue, ve;
1037 double u, v, s;
1038 /* encode luminance */
1039 Le = (unsigned int)LogL16fromY(XYZ[1], em);
1040 /* encode color */
1041 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
1042 if (!Le || s <= 0.) {
1043 u = U_NEU;
1044 v = V_NEU;
1045 } else {
1046 u = 4.*XYZ[0] / s;
1047 v = 9.*XYZ[1] / s;
1048 }
1049 if (u <= 0.) ue = 0;
1050 else ue = itrunc(UVSCALE*u, em);
1051 if (ue > 255) ue = 255;
1052 if (v <= 0.) ve = 0;
1053 else ve = itrunc(UVSCALE*v, em);
1054 if (ve > 255) ve = 255;
1055 /* combine encodings */
1056 return (Le << 16 | ue << 8 | ve);
1057 }
1058
1059 static void
1060 Luv32toXYZ(LogLuvState* sp, tidata_t op, int n)
1061 {
1062 uint32* luv = (uint32*) sp->tbuf;
1063 float* xyz = (float*) op;
1064
1065 while (n-- > 0) {
1066 LogLuv32toXYZ(*luv++, xyz);
1067 xyz += 3;
1068 }
1069 }
1070
1071 static void
1072 Luv32toLuv48(LogLuvState* sp, tidata_t op, int n)
1073 {
1074 uint32* luv = (uint32*) sp->tbuf;
1075 int16* luv3 = (int16*) op;
1076
1077 while (n-- > 0) {
1078 double u, v;
1079
1080 *luv3++ = (int16)(*luv >> 16);
1081 u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5);
1082 v = 1./UVSCALE * ((*luv & 0xff) + .5);
1083 *luv3++ = (int16)(u * (1L<<15));
1084 *luv3++ = (int16)(v * (1L<<15));
1085 luv++;
1086 }
1087 }
1088
1089 static void
1090 Luv32toRGB(LogLuvState* sp, tidata_t op, int n)
1091 {
1092 uint32* luv = (uint32*) sp->tbuf;
1093 uint8* rgb = (uint8*) op;
1094
1095 while (n-- > 0) {
1096 float xyz[3];
1097
1098 LogLuv32toXYZ(*luv++, xyz);
1099 XYZtoRGB24(xyz, rgb);
1100 rgb += 3;
1101 }
1102 }
1103
1104 static void
1105 Luv32fromXYZ(LogLuvState* sp, tidata_t op, int n)
1106 {
1107 uint32* luv = (uint32*) sp->tbuf;
1108 float* xyz = (float*) op;
1109
1110 while (n-- > 0) {
1111 *luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth);
1112 xyz += 3;
1113 }
1114 }
1115
1116 static void
1117 Luv32fromLuv48(LogLuvState* sp, tidata_t op, int n)
1118 {
1119 uint32* luv = (uint32*) sp->tbuf;
1120 int16* luv3 = (int16*) op;
1121
1122 if (sp->encode_meth == SGILOGENCODE_NODITHER) {
1123 while (n-- > 0) {
1124 *luv++ = (uint32)luv3[0] << 16 |
1125 (luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) |
1126 (luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff);
1127 luv3 += 3;
1128 }
1129 return;
1130 }
1131 while (n-- > 0) {
1132 *luv++ = (uint32)luv3[0] << 16 |
1133 (itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) |
1134 (itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff);
1135 luv3 += 3;
1136 }
1137 }
1138
1139 static void
1140 _logLuvNop(LogLuvState* sp, tidata_t op, int n)
1141 {
1142 (void) sp; (void) op; (void) n;
1143 }
1144
1145 static int
1146 LogL16GuessDataFmt(TIFFDirectory *td)
1147 {
1148 #define PACK(s,b,f) (((b)<<6)|((s)<<3)|(f))
1149 switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) {
1150 case PACK(1, 32, SAMPLEFORMAT_IEEEFP):
1151 return (SGILOGDATAFMT_FLOAT);
1152 case PACK(1, 16, SAMPLEFORMAT_VOID):
1153 case PACK(1, 16, SAMPLEFORMAT_INT):
1154 case PACK(1, 16, SAMPLEFORMAT_UINT):
1155 return (SGILOGDATAFMT_16BIT);
1156 case PACK(1, 8, SAMPLEFORMAT_VOID):
1157 case PACK(1, 8, SAMPLEFORMAT_UINT):
1158 return (SGILOGDATAFMT_8BIT);
1159 }
1160 #undef PACK
1161 return (SGILOGDATAFMT_UNKNOWN);
1162 }
1163
1164 static uint32
1165 multiply(size_t m1, size_t m2)
1166 {
1167 uint32 bytes = m1 * m2;
1168
1169 if (m1 && bytes / m1 != m2)
1170 bytes = 0;
1171
1172 return bytes;
1173 }
1174
1175 static int
1176 LogL16InitState(TIFF* tif)
1177 {
1178 TIFFDirectory *td = &tif->tif_dir;
1179 LogLuvState* sp = DecoderState(tif);
1180 static const char module[] = "LogL16InitState";
1181
1182 assert(sp != NULL);
1183 assert(td->td_photometric == PHOTOMETRIC_LOGL);
1184
1185 /* for some reason, we can't do this in TIFFInitLogL16 */
1186 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1187 sp->user_datafmt = LogL16GuessDataFmt(td);
1188 switch (sp->user_datafmt) {
1189 case SGILOGDATAFMT_FLOAT:
1190 sp->pixel_size = sizeof (float);
1191 break;
1192 case SGILOGDATAFMT_16BIT:
1193 sp->pixel_size = sizeof (int16);
1194 break;
1195 case SGILOGDATAFMT_8BIT:
1196 sp->pixel_size = sizeof (uint8);
1197 break;
1198 default:
1199 TIFFError(tif->tif_name,
1200 "No support for converting user data format to LogL");
1201 return (0);
1202 }
1203 sp->tbuflen = multiply(td->td_imagewidth, td->td_rowsperstrip);
1204 if (multiply(sp->tbuflen, sizeof (int16)) == 0 ||
1205 (sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (int16))) == NULL) {
1206 TIFFError(module, "%s: No space for SGILog translation buffer",
1207 tif->tif_name);
1208 return (0);
1209 }
1210 return (1);
1211 }
1212
1213 static int
1214 LogLuvGuessDataFmt(TIFFDirectory *td)
1215 {
1216 int guess;
1217
1218 /*
1219 * If the user didn't tell us their datafmt,
1220 * take our best guess from the bitspersample.
1221 */
1222 #define PACK(a,b) (((a)<<3)|(b))
1223 switch (PACK(td->td_bitspersample, td->td_sampleformat)) {
1224 case PACK(32, SAMPLEFORMAT_IEEEFP):
1225 guess = SGILOGDATAFMT_FLOAT;
1226 break;
1227 case PACK(32, SAMPLEFORMAT_VOID):
1228 case PACK(32, SAMPLEFORMAT_UINT):
1229 case PACK(32, SAMPLEFORMAT_INT):
1230 guess = SGILOGDATAFMT_RAW;
1231 break;
1232 case PACK(16, SAMPLEFORMAT_VOID):
1233 case PACK(16, SAMPLEFORMAT_INT):
1234 case PACK(16, SAMPLEFORMAT_UINT):
1235 guess = SGILOGDATAFMT_16BIT;
1236 break;
1237 case PACK( 8, SAMPLEFORMAT_VOID):
1238 case PACK( 8, SAMPLEFORMAT_UINT):
1239 guess = SGILOGDATAFMT_8BIT;
1240 break;
1241 default:
1242 guess = SGILOGDATAFMT_UNKNOWN;
1243 break;
1244 #undef PACK
1245 }
1246 /*
1247 * Double-check samples per pixel.
1248 */
1249 switch (td->td_samplesperpixel) {
1250 case 1:
1251 if (guess != SGILOGDATAFMT_RAW)
1252 guess = SGILOGDATAFMT_UNKNOWN;
1253 break;
1254 case 3:
1255 if (guess == SGILOGDATAFMT_RAW)
1256 guess = SGILOGDATAFMT_UNKNOWN;
1257 break;
1258 default:
1259 guess = SGILOGDATAFMT_UNKNOWN;
1260 break;
1261 }
1262 return (guess);
1263 }
1264
1265 static int
1266 LogLuvInitState(TIFF* tif)
1267 {
1268 TIFFDirectory* td = &tif->tif_dir;
1269 LogLuvState* sp = DecoderState(tif);
1270 static const char module[] = "LogLuvInitState";
1271
1272 assert(sp != NULL);
1273 assert(td->td_photometric == PHOTOMETRIC_LOGLUV);
1274
1275 /* for some reason, we can't do this in TIFFInitLogLuv */
1276 if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
1277 TIFFError(module,
1278 "SGILog compression cannot handle non-contiguous data");
1279 return (0);
1280 }
1281 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1282 sp->user_datafmt = LogLuvGuessDataFmt(td);
1283 switch (sp->user_datafmt) {
1284 case SGILOGDATAFMT_FLOAT:
1285 sp->pixel_size = 3*sizeof (float);
1286 break;
1287 case SGILOGDATAFMT_16BIT:
1288 sp->pixel_size = 3*sizeof (int16);
1289 break;
1290 case SGILOGDATAFMT_RAW:
1291 sp->pixel_size = sizeof (uint32);
1292 break;
1293 case SGILOGDATAFMT_8BIT:
1294 sp->pixel_size = 3*sizeof (uint8);
1295 break;
1296 default:
1297 TIFFError(tif->tif_name,
1298 "No support for converting user data format to LogLuv");
1299 return (0);
1300 }
1301 sp->tbuflen = multiply(td->td_imagewidth, td->td_rowsperstrip);
1302 if (multiply(sp->tbuflen, sizeof (uint32)) == 0 ||
1303 (sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (uint32))) == NULL) {
1304 TIFFError(module, "%s: No space for SGILog translation buffer",
1305 tif->tif_name);
1306 return (0);
1307 }
1308 return (1);
1309 }
1310
1311 static int
1312 LogLuvSetupDecode(TIFF* tif)
1313 {
1314 LogLuvState* sp = DecoderState(tif);
1315 TIFFDirectory* td = &tif->tif_dir;
1316
1317 tif->tif_postdecode = _TIFFNoPostDecode;
1318 switch (td->td_photometric) {
1319 case PHOTOMETRIC_LOGLUV:
1320 if (!LogLuvInitState(tif))
1321 break;
1322 if (td->td_compression == COMPRESSION_SGILOG24) {
1323 tif->tif_decoderow = LogLuvDecode24;
1324 switch (sp->user_datafmt) {
1325 case SGILOGDATAFMT_FLOAT:
1326 sp->tfunc = Luv24toXYZ;
1327 break;
1328 case SGILOGDATAFMT_16BIT:
1329 sp->tfunc = Luv24toLuv48;
1330 break;
1331 case SGILOGDATAFMT_8BIT:
1332 sp->tfunc = Luv24toRGB;
1333 break;
1334 }
1335 } else {
1336 tif->tif_decoderow = LogLuvDecode32;
1337 switch (sp->user_datafmt) {
1338 case SGILOGDATAFMT_FLOAT:
1339 sp->tfunc = Luv32toXYZ;
1340 break;
1341 case SGILOGDATAFMT_16BIT:
1342 sp->tfunc = Luv32toLuv48;
1343 break;
1344 case SGILOGDATAFMT_8BIT:
1345 sp->tfunc = Luv32toRGB;
1346 break;
1347 }
1348 }
1349 return (1);
1350 case PHOTOMETRIC_LOGL:
1351 if (!LogL16InitState(tif))
1352 break;
1353 tif->tif_decoderow = LogL16Decode;
1354 switch (sp->user_datafmt) {
1355 case SGILOGDATAFMT_FLOAT:
1356 sp->tfunc = L16toY;
1357 break;
1358 case SGILOGDATAFMT_8BIT:
1359 sp->tfunc = L16toGry;
1360 break;
1361 }
1362 return (1);
1363 default:
1364 TIFFError(tif->tif_name,
1365 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1366 td->td_photometric, "must be either LogLUV or LogL");
1367 break;
1368 }
1369 return (0);
1370 }
1371
1372 static int
1373 LogLuvSetupEncode(TIFF* tif)
1374 {
1375 LogLuvState* sp = EncoderState(tif);
1376 TIFFDirectory* td = &tif->tif_dir;
1377
1378 switch (td->td_photometric) {
1379 case PHOTOMETRIC_LOGLUV:
1380 if (!LogLuvInitState(tif))
1381 break;
1382 if (td->td_compression == COMPRESSION_SGILOG24) {
1383 tif->tif_encoderow = LogLuvEncode24;
1384 switch (sp->user_datafmt) {
1385 case SGILOGDATAFMT_FLOAT:
1386 sp->tfunc = Luv24fromXYZ;
1387 break;
1388 case SGILOGDATAFMT_16BIT:
1389 sp->tfunc = Luv24fromLuv48;
1390 break;
1391 case SGILOGDATAFMT_RAW:
1392 break;
1393 default:
1394 goto notsupported;
1395 }
1396 } else {
1397 tif->tif_encoderow = LogLuvEncode32;
1398 switch (sp->user_datafmt) {
1399 case SGILOGDATAFMT_FLOAT:
1400 sp->tfunc = Luv32fromXYZ;
1401 break;
1402 case SGILOGDATAFMT_16BIT:
1403 sp->tfunc = Luv32fromLuv48;
1404 break;
1405 case SGILOGDATAFMT_RAW:
1406 break;
1407 default:
1408 goto notsupported;
1409 }
1410 }
1411 break;
1412 case PHOTOMETRIC_LOGL:
1413 if (!LogL16InitState(tif))
1414 break;
1415 tif->tif_encoderow = LogL16Encode;
1416 switch (sp->user_datafmt) {
1417 case SGILOGDATAFMT_FLOAT:
1418 sp->tfunc = L16fromY;
1419 break;
1420 case SGILOGDATAFMT_16BIT:
1421 break;
1422 default:
1423 goto notsupported;
1424 }
1425 break;
1426 default:
1427 TIFFError(tif->tif_name,
1428 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1429 td->td_photometric, "must be either LogLUV or LogL");
1430 break;
1431 }
1432 return (1);
1433 notsupported:
1434 TIFFError(tif->tif_name,
1435 "SGILog compression supported only for %s, or raw data",
1436 td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv");
1437 return (0);
1438 }
1439
1440 static void
1441 LogLuvClose(TIFF* tif)
1442 {
1443 TIFFDirectory *td = &tif->tif_dir;
1444
1445 /*
1446 * For consistency, we always want to write out the same
1447 * bitspersample and sampleformat for our TIFF file,
1448 * regardless of the data format being used by the application.
1449 * Since this routine is called after tags have been set but
1450 * before they have been recorded in the file, we reset them here.
1451 */
1452 td->td_samplesperpixel =
1453 (td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3;
1454 td->td_bitspersample = 16;
1455 td->td_sampleformat = SAMPLEFORMAT_INT;
1456 }
1457
1458 static void
1459 LogLuvCleanup(TIFF* tif)
1460 {
1461 LogLuvState* sp = (LogLuvState *)tif->tif_data;
1462
1463 if (sp) {
1464 if (sp->tbuf)
1465 _TIFFfree(sp->tbuf);
1466 _TIFFfree(sp);
1467 tif->tif_data = NULL;
1468 }
1469 }
1470
1471 static int
1472 LogLuvVSetField(TIFF* tif, ttag_t tag, va_list ap)
1473 {
1474 LogLuvState* sp = DecoderState(tif);
1475 int bps, fmt;
1476
1477 switch (tag) {
1478 case TIFFTAG_SGILOGDATAFMT:
1479 sp->user_datafmt = va_arg(ap, int);
1480 /*
1481 * Tweak the TIFF header so that the rest of libtiff knows what
1482 * size of data will be passed between app and library, and
1483 * assume that the app knows what it is doing and is not
1484 * confused by these header manipulations...
1485 */
1486 switch (sp->user_datafmt) {
1487 case SGILOGDATAFMT_FLOAT:
1488 bps = 32, fmt = SAMPLEFORMAT_IEEEFP;
1489 break;
1490 case SGILOGDATAFMT_16BIT:
1491 bps = 16, fmt = SAMPLEFORMAT_INT;
1492 break;
1493 case SGILOGDATAFMT_RAW:
1494 bps = 32, fmt = SAMPLEFORMAT_UINT;
1495 TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
1496 break;
1497 case SGILOGDATAFMT_8BIT:
1498 bps = 8, fmt = SAMPLEFORMAT_UINT;
1499 break;
1500 default:
1501 TIFFError(tif->tif_name,
1502 "Unknown data format %d for LogLuv compression",
1503 sp->user_datafmt);
1504 return (0);
1505 }
1506 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
1507 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt);
1508 /*
1509 * Must recalculate sizes should bits/sample change.
1510 */
1511 tif->tif_tilesize = TIFFTileSize(tif);
1512 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1513 return (1);
1514 case TIFFTAG_SGILOGENCODE:
1515 sp->encode_meth = va_arg(ap, int);
1516 if (sp->encode_meth != SGILOGENCODE_NODITHER &&
1517 sp->encode_meth != SGILOGENCODE_RANDITHER) {
1518 TIFFError(tif->tif_name,
1519 "Unknown encoding %d for LogLuv compression",
1520 sp->encode_meth);
1521 return (0);
1522 }
1523 return (1);
1524 default:
1525 return (*sp->vsetparent)(tif, tag, ap);
1526 }
1527 }
1528
1529 static int
1530 LogLuvVGetField(TIFF* tif, ttag_t tag, va_list ap)
1531 {
1532 LogLuvState *sp = (LogLuvState *)tif->tif_data;
1533
1534 switch (tag) {
1535 case TIFFTAG_SGILOGDATAFMT:
1536 *va_arg(ap, int*) = sp->user_datafmt;
1537 return (1);
1538 default:
1539 return (*sp->vgetparent)(tif, tag, ap);
1540 }
1541 }
1542
1543 static const TIFFFieldInfo LogLuvFieldInfo[] = {
1544 { TIFFTAG_SGILOGDATAFMT, 0, 0, TIFF_SHORT, FIELD_PSEUDO,
1545 TRUE, FALSE, "SGILogDataFmt"},
1546 { TIFFTAG_SGILOGENCODE, 0, 0, TIFF_SHORT, FIELD_PSEUDO,
1547 TRUE, FALSE, "SGILogEncode"}
1548 };
1549
1550 int
1551 TIFFInitSGILog(TIFF* tif, int scheme)
1552 {
1553 static const char module[] = "TIFFInitSGILog";
1554 LogLuvState* sp;
1555
1556 assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG);
1557
1558 /*
1559 * Allocate state block so tag methods have storage to record values.
1560 */
1561 tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LogLuvState));
1562 if (tif->tif_data == NULL)
1563 goto bad;
1564 sp = (LogLuvState*) tif->tif_data;
1565 _TIFFmemset((tdata_t)sp, 0, sizeof (*sp));
1566 sp->user_datafmt = SGILOGDATAFMT_UNKNOWN;
1567 sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ?
1568 SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER;
1569 sp->tfunc = _logLuvNop;
1570
1571 /*
1572 * Install codec methods.
1573 * NB: tif_decoderow & tif_encoderow are filled
1574 * in at setup time.
1575 */
1576 tif->tif_setupdecode = LogLuvSetupDecode;
1577 tif->tif_decodestrip = LogLuvDecodeStrip;
1578 tif->tif_decodetile = LogLuvDecodeTile;
1579 tif->tif_setupencode = LogLuvSetupEncode;
1580 tif->tif_encodestrip = LogLuvEncodeStrip;
1581 tif->tif_encodetile = LogLuvEncodeTile;
1582 tif->tif_close = LogLuvClose;
1583 tif->tif_cleanup = LogLuvCleanup;
1584
1585 /* override SetField so we can handle our private pseudo-tag */
1586 _TIFFMergeFieldInfo(tif, LogLuvFieldInfo, N(LogLuvFieldInfo));
1587 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1588 tif->tif_tagmethods.vgetfield = LogLuvVGetField; /* hook for codec tags */
1589 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1590 tif->tif_tagmethods.vsetfield = LogLuvVSetField; /* hook for codec tags */
1591
1592 return (1);
1593 bad:
1594 TIFFError(module, "%s: No space for LogLuv state block", tif->tif_name);
1595 return (0);
1596 }
1597 #endif /* LOGLUV_SUPPORT */