]> git.saurik.com Git - wxWidgets.git/blob - src/common/longlong.cpp
1. wxDateTimeHolidayAuthority class for calculating the holidays added
[wxWidgets.git] / src / common / longlong.cpp
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: wx/longlong.cpp
3 // Purpose: implementation of wxLongLongNative
4 // Author: Jeffrey C. Ollie <jeff@ollie.clive.ia.us>, Vadim Zeitlin
5 // Remarks: this class is not public in wxWindows 2.0! It is intentionally
6 // not documented and is for private use only.
7 // Modified by:
8 // Created: 10.02.99
9 // RCS-ID: $Id$
10 // Copyright: (c) 1998 Vadim Zeitlin <zeitlin@dptmaths.ens-cachan.fr>
11 // Licence: wxWindows license
12 /////////////////////////////////////////////////////////////////////////////
13
14 // ============================================================================
15 // headers
16 // ============================================================================
17
18 #ifdef __GNUG__
19 #pragma implementation "longlong.h"
20 #endif
21
22 #include "wx/wxprec.h"
23
24 #ifdef __BORLANDC__
25 #pragma hdrstop
26 #endif
27
28 #if wxUSE_LONGLONG
29 #include "wx/longlong.h"
30
31 #include <memory.h> // for memset()
32 #include <math.h> // for fabs()
33
34 // ============================================================================
35 // implementation
36 // ============================================================================
37
38 #if wxUSE_LONGLONG_NATIVE
39
40 // ----------------------------------------------------------------------------
41 // misc
42 // ----------------------------------------------------------------------------
43
44 void *wxLongLongNative::asArray(void) const
45 {
46 static unsigned char temp[8];
47
48 temp[0] = (m_ll >> 56) & 0xFF;
49 temp[1] = (m_ll >> 48) & 0xFF;
50 temp[2] = (m_ll >> 40) & 0xFF;
51 temp[3] = (m_ll >> 32) & 0xFF;
52 temp[4] = (m_ll >> 24) & 0xFF;
53 temp[5] = (m_ll >> 16) & 0xFF;
54 temp[6] = (m_ll >> 8) & 0xFF;
55 temp[7] = (m_ll >> 0) & 0xFF;
56
57 return temp;
58 }
59
60 #if wxUSE_STD_IOSTREAM
61
62 // input/output
63 ostream& operator<< (ostream& o, const wxLongLongNative& ll)
64 {
65 char result[65];
66
67 memset(result, 'A', 64);
68
69 result[64] = '\0';
70
71 for (int i = 0; i < 64; i++)
72 {
73 result[63 - i] = '0' + (char) ((ll.m_ll >> i) & 1);
74 }
75
76 return o << result;
77 }
78
79 #endif // wxUSE_STD_IOSTREAM
80
81 #endif // wxUSE_LONGLONG_NATIVE
82
83 // ============================================================================
84 // wxLongLongWx: emulation of 'long long' using 2 longs
85 // ============================================================================
86
87 #if wxUSE_LONGLONG_WX
88
89 // assignment
90 wxLongLongWx& wxLongLongWx::Assign(double d)
91 {
92 if ( fabs(d) <= LONG_MAX )
93 {
94 m_hi = d < 0 ? 1 << (8*sizeof(long) - 1) : 0l;
95 m_lo = (long)d;
96 }
97 else
98 {
99 wxFAIL_MSG(_T("TODO"));
100 }
101
102 return *this;
103 }
104
105 wxLongLongWx wxLongLongWx::operator<<(int shift) const
106 {
107 if (shift == 0)
108 return *this;
109
110 if (shift < 32)
111 return wxLongLongWx((m_hi << shift) | (m_lo >> (32 - shift)),
112 m_lo << shift);
113 else
114 return wxLongLongWx(m_lo << (shift - 32),
115 0);
116 }
117
118 wxLongLongWx& wxLongLongWx::operator<<=(int shift)
119 {
120 if (shift == 0)
121 return *this;
122
123 if (shift < 32)
124 {
125 m_hi <<= shift;
126 m_hi |= m_lo >> (32 - shift);
127 m_lo <<= shift;
128 }
129 else
130 {
131 m_hi = m_lo << (shift - 32);
132 m_lo = 0;
133 }
134
135 return *this;
136 }
137
138 wxLongLongWx wxLongLongWx::operator>>(int shift) const
139 {
140 if (shift == 0)
141 return *this;
142
143 if (shift < 32)
144 return wxLongLongWx(m_hi >> shift,
145 (m_lo >> shift) | (m_hi << (32 - shift)));
146 else
147 return wxLongLongWx((m_hi < 0 ? -1l : 0),
148 m_hi >> (shift - 32));
149 }
150
151 wxLongLongWx& wxLongLongWx::operator>>=(int shift)
152 {
153 if (shift == 0)
154 return *this;
155
156 if (shift < 32)
157 {
158 m_lo >>= shift;
159 m_lo |= m_hi << (32 - shift);
160 m_hi >>= shift;
161 }
162 else
163 {
164 m_lo = m_hi >> (shift - 32);
165 m_hi = (m_hi < 0 ? -1L : 0);
166 }
167
168 return *this;
169 }
170
171 wxLongLongWx wxLongLongWx::operator+(const wxLongLongWx& ll) const
172 {
173 wxLongLongWx temp;
174
175 temp.m_lo = m_lo + ll.m_lo;
176 temp.m_hi = m_hi + ll.m_hi;
177 if ((temp.m_lo < m_lo) || (temp.m_lo < ll.m_lo))
178 temp.m_hi++;
179
180 return temp;
181 }
182
183 wxLongLongWx wxLongLongWx::operator+(long l) const
184 {
185 wxLongLongWx temp;
186
187 temp.m_lo = m_lo + l;
188
189 if (l < 0)
190 temp.m_hi += -1l;
191
192 if ((temp.m_lo < m_lo) || (temp.m_lo < (unsigned long)l))
193 temp.m_hi++;
194
195 return temp;
196 }
197
198 wxLongLongWx& wxLongLongWx::operator+=(const wxLongLongWx& ll)
199 {
200 unsigned long previous = m_lo;
201
202 m_lo += ll.m_lo;
203 m_hi += ll.m_hi;
204
205 if ((m_lo < previous) || (m_lo < ll.m_lo))
206 m_hi++;
207
208 return *this;
209 }
210
211 wxLongLongWx& wxLongLongWx::operator+=(long l)
212 {
213 unsigned long previous = m_lo;
214
215 m_lo += l;
216 if (l < 0)
217 m_hi += -1l;
218
219 if ((m_lo < previous) || (m_lo < (unsigned long)l))
220 m_hi++;
221
222 return *this;
223 }
224
225 // pre increment
226 wxLongLongWx& wxLongLongWx::operator++()
227 {
228 m_lo++;
229 if (m_lo == 0)
230 m_hi++;
231
232 return *this;
233 }
234
235 // post increment
236 wxLongLongWx& wxLongLongWx::operator++(int)
237 {
238 m_lo++;
239 if (m_lo == 0)
240 m_hi++;
241
242 return *this;
243 }
244
245 // negation
246 wxLongLongWx wxLongLongWx::operator-() const
247 {
248 wxLongLongWx temp(~m_hi, ~m_lo);
249
250 temp.m_lo++;
251 if (temp.m_lo == 0)
252 temp.m_hi++;
253
254 return temp;
255 }
256
257 // subtraction
258
259 wxLongLongWx wxLongLongWx::operator-(const wxLongLongWx& ll) const
260 {
261 wxLongLongWx temp;
262
263 temp.m_lo = m_lo - ll.m_lo;
264 temp.m_hi = m_hi - ll.m_hi;
265
266 if (m_lo < ll.m_lo)
267 temp.m_hi--;
268
269 return temp;
270 }
271
272 wxLongLongWx& wxLongLongWx::operator-=(const wxLongLongWx& ll)
273 {
274 unsigned long previous = m_lo;
275
276 m_lo -= ll.m_lo;
277 m_hi -= ll.m_hi;
278
279 if (previous < ll.m_lo)
280 m_hi--;
281
282 return *this;
283 }
284
285 // pre decrement
286 wxLongLongWx& wxLongLongWx::operator--()
287 {
288 m_lo--;
289 if (m_lo == 0xFFFFFFFF)
290 m_hi--;
291
292 return *this;
293 }
294
295 // post decrement
296 wxLongLongWx& wxLongLongWx::operator--(int)
297 {
298 m_lo--;
299 if (m_lo == 0xFFFFFFFF)
300 m_hi--;
301
302 return *this;
303 }
304
305 // comparison operators
306
307 bool wxLongLongWx::operator<(const wxLongLongWx& ll) const
308 {
309 if ( m_hi < ll.m_hi )
310 return TRUE;
311 else if ( m_hi == ll.m_hi )
312 return m_lo < ll.m_lo;
313 else
314 return FALSE;
315 }
316
317 bool wxLongLongWx::operator>(const wxLongLongWx& ll) const
318 {
319 if ( m_hi > ll.m_hi )
320 return TRUE;
321 else if ( m_hi == ll.m_hi )
322 return m_lo > ll.m_lo;
323 else
324 return FALSE;
325 }
326
327 // bitwise operators
328
329 wxLongLongWx wxLongLongWx::operator&(const wxLongLongWx& ll) const
330 {
331 return wxLongLongWx(m_hi & ll.m_hi, m_lo & ll.m_lo);
332 }
333
334 wxLongLongWx wxLongLongWx::operator|(const wxLongLongWx& ll) const
335 {
336 return wxLongLongWx(m_hi | ll.m_hi, m_lo | ll.m_lo);
337 }
338
339 wxLongLongWx wxLongLongWx::operator^(const wxLongLongWx& ll) const
340 {
341 return wxLongLongWx(m_hi ^ ll.m_hi, m_lo ^ ll.m_lo);
342 }
343
344 wxLongLongWx& wxLongLongWx::operator&=(const wxLongLongWx& ll)
345 {
346 m_lo &= ll.m_lo;
347 m_hi &= ll.m_hi;
348
349 return *this;
350 }
351
352 wxLongLongWx& wxLongLongWx::operator|=(const wxLongLongWx& ll)
353 {
354 m_lo |= ll.m_lo;
355 m_hi |= ll.m_hi;
356
357 return *this;
358 }
359
360 wxLongLongWx& wxLongLongWx::operator^=(const wxLongLongWx& ll)
361 {
362 m_lo ^= ll.m_lo;
363 m_hi ^= ll.m_hi;
364
365 return *this;
366 }
367
368 wxLongLongWx wxLongLongWx::operator~() const
369 {
370 return wxLongLongWx(~m_hi, ~m_lo);
371 }
372
373 // multiplication
374
375 wxLongLongWx wxLongLongWx::operator*(const wxLongLongWx& ll) const
376 {
377 wxLongLongWx t(m_hi, m_lo);
378 wxLongLongWx q(ll.m_hi, ll.m_lo);
379 wxLongLongWx p;
380 int counter = 0;
381
382 do
383 {
384 if ((q.m_lo & 1) != 0)
385 p += t;
386 q >>= 1;
387 t <<= 1;
388 counter++;
389 }
390 while ((counter < 64) && ((q.m_hi != 0) || (q.m_lo != 0)));
391 return p;
392 }
393
394 wxLongLongWx& wxLongLongWx::operator*=(const wxLongLongWx& ll)
395 {
396 wxLongLongWx t(m_hi, m_lo);
397 wxLongLongWx q(ll.m_hi, ll.m_lo);
398 int counter = 0;
399
400 do
401 {
402 if ((q.m_lo & 1) != 0)
403 *this += t;
404 q >>= 1;
405 t <<= 1;
406 counter++;
407 }
408 while ((counter < 64) && ((q.m_hi != 0) || (q.m_lo != 0)));
409 return *this;
410 }
411
412 // division
413
414 void wxLongLongWx::Divide(const wxLongLongWx& divisorIn,
415 wxLongLongWx& quotient,
416 wxLongLongWx& remainder) const
417 {
418 if ((divisorIn.m_lo == 0) && (divisorIn.m_hi == 0))
419 {
420 // provoke division by zero error and silence the compilers warnings
421 // about an expression without effect and unused variable
422 long dummy = divisorIn.m_lo/divisorIn.m_hi;
423 dummy += 0;
424 }
425
426 // VZ: I'm writing this in a hurry and it's surely not the fastest way to
427 // do this - any improvements are more than welcome
428 //
429 // code inspired by the snippet at
430 // http://www.bearcave.com/software/divide.htm
431 //
432 // Copyright notice:
433 //
434 // Use of this program, for any purpose, is granted the author, Ian
435 // Kaplan, as long as this copyright notice is included in the source
436 // code or any source code derived from this program. The user assumes
437 // all responsibility for using this code.
438
439 // init everything
440 wxLongLongWx dividend = *this,
441 divisor = divisorIn;
442
443 quotient = 0l;
444 remainder = 0l;
445
446 // check for some particular cases
447 if ( divisor > dividend )
448 {
449 remainder = dividend;
450
451 return;
452 }
453
454 if ( divisor == dividend )
455 {
456 quotient = 1l;
457
458 return;
459 }
460
461 // always do unsigned division and adjust the signs later: in C integer
462 // division, the sign of the remainder is the same as the sign of the
463 // dividend, while the sign of the quotient is the product of the signs of
464 // the dividend and divisor. Of course, we also always have
465 //
466 // dividend = quotient*divisor + remainder
467 //
468 // with 0 <= abs(remainder) < abs(divisor)
469 bool negRemainder = dividend.m_hi < 0;
470 bool negQuotient = FALSE; // assume positive
471 if ( dividend.m_hi < 0 )
472 {
473 negQuotient = !negQuotient;
474 dividend = -dividend;
475 }
476 if ( divisor.m_hi < 0 )
477 {
478 negQuotient = !negQuotient;
479 divisor = -divisor;
480 }
481
482 // here: dividend > divisor and both are positibe: do unsigned division
483 size_t nBits = 64u;
484 wxLongLongWx d;
485
486 #define IS_MSB_SET(ll) ((ll.m_hi) & (1 << (8*sizeof(long) - 1)))
487
488 while ( remainder < divisor )
489 {
490 remainder <<= 1;
491 if ( IS_MSB_SET(dividend) )
492 {
493 remainder |= 1;
494 }
495
496 d = dividend;
497 dividend <<= 1;
498
499 nBits--;
500 }
501
502 // undo the last loop iteration
503 dividend = d;
504 remainder >>= 1;
505 nBits++;
506
507 for ( size_t i = 0; i < nBits; i++ )
508 {
509 remainder <<= 1;
510 if ( IS_MSB_SET(dividend) )
511 {
512 remainder |= 1;
513 }
514
515 wxLongLongWx t = remainder - divisor;
516 dividend <<= 1;
517 quotient <<= 1;
518 if ( !IS_MSB_SET(t) )
519 {
520 quotient |= 1;
521
522 remainder = t;
523 }
524 }
525
526 // adjust signs
527 if ( negRemainder )
528 {
529 remainder = -remainder;
530 }
531
532 if ( negQuotient )
533 {
534 quotient = -quotient;
535 }
536 }
537
538 wxLongLongWx wxLongLongWx::operator/(const wxLongLongWx& ll) const
539 {
540 wxLongLongWx quotient, remainder;
541
542 Divide(ll, quotient, remainder);
543
544 return quotient;
545 }
546
547 wxLongLongWx& wxLongLongWx::operator/=(const wxLongLongWx& ll)
548 {
549 wxLongLongWx quotient, remainder;
550
551 Divide(ll, quotient, remainder);
552
553 return *this = quotient;
554 }
555
556 wxLongLongWx wxLongLongWx::operator%(const wxLongLongWx& ll) const
557 {
558 wxLongLongWx quotient, remainder;
559
560 Divide(ll, quotient, remainder);
561
562 return remainder;
563 }
564
565 // ----------------------------------------------------------------------------
566 // misc
567 // ----------------------------------------------------------------------------
568
569 // temporary - just for testing
570 void *wxLongLongWx::asArray(void) const
571 {
572 static unsigned char temp[8];
573
574 temp[0] = (char)((m_hi >> 24) & 0xFF);
575 temp[1] = (char)((m_hi >> 16) & 0xFF);
576 temp[2] = (char)((m_hi >> 8) & 0xFF);
577 temp[3] = (char)((m_hi >> 0) & 0xFF);
578 temp[4] = (char)((m_lo >> 24) & 0xFF);
579 temp[5] = (char)((m_lo >> 16) & 0xFF);
580 temp[6] = (char)((m_lo >> 8) & 0xFF);
581 temp[7] = (char)((m_lo >> 0) & 0xFF);
582
583 return temp;
584 }
585
586 #if wxUSE_STD_IOSTREAM
587
588 // input/output
589 ostream& operator<< (ostream& o, const wxLongLongWx& ll)
590 {
591 char result[65];
592
593 memset(result, 'A', 64);
594
595 result[64] = '\0';
596
597 for (int i = 0; i < 32; i++)
598 {
599 result[31 - i] = (char) ('0' + (int) ((ll.m_hi >> i) & 1));
600 result[63 - i] = (char) ('0' + (int) ((ll.m_lo >> i) & 1));
601 }
602
603 return o << result;
604 }
605 #endif // wxUSE_STD_IOSTREAM
606
607 #endif // wxUSE_LONGLONG_NATIVE
608
609 #endif // wxUSE_LONGLONG