1 /* trees.c -- output deflated data using Huffman coding 
   2  * Copyright (C) 1995-2005 Jean-loup Gailly 
   3  * For conditions of distribution and use, see copyright notice in zlib.h 
   9  *      The "deflation" process uses several Huffman trees. The more 
  10  *      common source values are represented by shorter bit sequences. 
  12  *      Each code tree is stored in a compressed form which is itself 
  13  * a Huffman encoding of the lengths of all the code strings (in 
  14  * ascending order by source values).  The actual code strings are 
  15  * reconstructed from the lengths in the inflate process, as described 
  16  * in the deflate specification. 
  20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 
  21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 
  24  *          Data Compression:  Methods and Theory, pp. 49-50. 
  25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. 
  29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6. 
  34 /* #define GEN_TREES_H */ 
  42 /* =========================================================================== 
  47 /* Bit length codes must not exceed MAX_BL_BITS bits */ 
  50 /* end of block literal code */ 
  53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 
  56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */ 
  58 #define REPZ_11_138  18 
  59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */ 
  61 local 
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */ 
  62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 
  64 local 
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */ 
  65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 
  67 local 
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */ 
  68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 
  70 local 
const uch bl_order
[BL_CODES
] 
  71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 
  72 /* The lengths of the bit length codes are sent in order of decreasing 
  73  * probability, to avoid transmitting the lengths for unused bit length codes. 
  76 #define Buf_size (8 * 2*sizeof(char)) 
  77 /* Number of bits used within bi_buf. (bi_buf might be implemented on 
  78  * more than 16 bits on some systems.) 
  81 /* =========================================================================== 
  82  * Local data. These are initialized only once. 
  85 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */ 
  87 #if defined(GEN_TREES_H) || !defined(STDC) 
  88 /* non ANSI compilers may not accept trees.h */ 
  90 local ct_data static_ltree
[L_CODES
+2]; 
  91 /* The static literal tree. Since the bit lengths are imposed, there is no 
  92  * need for the L_CODES extra codes used during heap construction. However 
  93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 
  97 local ct_data static_dtree
[D_CODES
]; 
  98 /* The static distance tree. (Actually a trivial tree since all codes use 
 102 uch _dist_code
[DIST_CODE_LEN
]; 
 103 /* Distance codes. The first 256 values correspond to the distances 
 104  * 3 .. 258, the last 256 values correspond to the top 8 bits of 
 105  * the 15 bit distances. 
 108 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1]; 
 109 /* length code for each normalized match length (0 == MIN_MATCH) */ 
 111 local 
int base_length
[LENGTH_CODES
]; 
 112 /* First normalized length for each code (0 = MIN_MATCH) */ 
 114 local 
int base_dist
[D_CODES
]; 
 115 /* First normalized distance for each code (0 = distance of 1) */ 
 119 #endif /* GEN_TREES_H */ 
 121 struct static_tree_desc_s 
{ 
 122     const ct_data 
*static_tree
;  /* static tree or NULL */ 
 123     const intf 
*extra_bits
;      /* extra bits for each code or NULL */ 
 124     int     extra_base
;          /* base index for extra_bits */ 
 125     int     elems
;               /* max number of elements in the tree */ 
 126     int     max_length
;          /* max bit length for the codes */ 
 129 local static_tree_desc  static_l_desc 
= 
 130 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
}; 
 132 local static_tree_desc  static_d_desc 
= 
 133 {static_dtree
, extra_dbits
, 0,          D_CODES
, MAX_BITS
}; 
 135 local static_tree_desc  static_bl_desc 
= 
 136 {(const ct_data 
*)0, extra_blbits
, 0,   BL_CODES
, MAX_BL_BITS
}; 
 138 /* =========================================================================== 
 139  * Local (static) routines in this file. 
 142 local 
void tr_static_init 
OF((void)); 
 143 local 
void init_block     
OF((deflate_state 
*s
)); 
 144 local 
void pqdownheap     
OF((deflate_state 
*s
, ct_data 
*tree
, int k
)); 
 145 local 
void gen_bitlen     
OF((deflate_state 
*s
, tree_desc 
*desc
)); 
 146 local 
void gen_codes      
OF((ct_data 
*tree
, int max_code
, ushf 
*bl_count
)); 
 147 local 
void build_tree     
OF((deflate_state 
*s
, tree_desc 
*desc
)); 
 148 local 
void scan_tree      
OF((deflate_state 
*s
, ct_data 
*tree
, int max_code
)); 
 149 local 
void send_tree      
OF((deflate_state 
*s
, ct_data 
*tree
, int max_code
)); 
 150 local 
int  build_bl_tree  
OF((deflate_state 
*s
)); 
 151 local 
void send_all_trees 
OF((deflate_state 
*s
, int lcodes
, int dcodes
, 
 153 local 
void compress_block 
OF((deflate_state 
*s
, ct_data 
*ltree
, 
 155 local 
void set_data_type  
OF((deflate_state 
*s
)); 
 156 local 
unsigned bi_reverse 
OF((unsigned value
, int length
)); 
 157 local 
void bi_windup      
OF((deflate_state 
*s
)); 
 158 local 
void bi_flush       
OF((deflate_state 
*s
)); 
 159 local 
void copy_block     
OF((deflate_state 
*s
, charf 
*buf
, unsigned len
, 
 163 local 
void gen_trees_header 
OF((void)); 
 167 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 
 168    /* Send a code of the given tree. c and tree must not have side effects */ 
 171 #  define send_code(s, c, tree) \ 
 172      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 
 173        send_bits(s, tree[c].Code, tree[c].Len); } 
 176 /* =========================================================================== 
 177  * Output a short LSB first on the stream. 
 178  * IN assertion: there is enough room in pendingBuf. 
 180 #define put_short(s, w) { \ 
 181     put_byte(s, (uch)((w) & 0xff)); \ 
 182     put_byte(s, (uch)((ush)(w) >> 8)); \ 
 185 /* =========================================================================== 
 186  * Send a value on a given number of bits. 
 187  * IN assertion: length <= 16 and value fits in length bits. 
 190 local 
void send_bits      
OF((deflate_state 
*s
, int value
, int length
)); 
 192 local 
void send_bits(s
, value
, length
) 
 194     int value
;  /* value to send */ 
 195     int length
; /* number of bits */ 
 197     Tracevv((stderr
," l %2d v %4x ", length
, value
)); 
 198     Assert(length 
> 0 && length 
<= 15, "invalid length"); 
 199     s
->bits_sent 
+= (ulg
)length
; 
 201     /* If not enough room in bi_buf, use (valid) bits from bi_buf and 
 202      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 
 203      * unused bits in value. 
 205     if (s
->bi_valid 
> (int)Buf_size 
- length
) { 
 206         s
->bi_buf 
|= (value 
<< s
->bi_valid
); 
 207         put_short(s
, s
->bi_buf
); 
 208         s
->bi_buf 
= (ush
)value 
>> (Buf_size 
- s
->bi_valid
); 
 209         s
->bi_valid 
+= length 
- Buf_size
; 
 211         s
->bi_buf 
|= value 
<< s
->bi_valid
; 
 212         s
->bi_valid 
+= length
; 
 217 #define send_bits(s, value, length) \ 
 219   if (s->bi_valid > (int)Buf_size - len) {\ 
 221     s->bi_buf |= (val << s->bi_valid);\ 
 222     put_short(s, s->bi_buf);\ 
 223     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 
 224     s->bi_valid += len - Buf_size;\ 
 226     s->bi_buf |= (value) << s->bi_valid;\ 
 233 /* the arguments must not have side effects */ 
 235 /* =========================================================================== 
 236  * Initialize the various 'constant' tables. 
 238 local 
void tr_static_init() 
 240 #if defined(GEN_TREES_H) || !defined(STDC) 
 241     static int static_init_done 
= 0; 
 242     int n
;        /* iterates over tree elements */ 
 243     int bits
;     /* bit counter */ 
 244     int length
;   /* length value */ 
 245     int code
;     /* code value */ 
 246     int dist
;     /* distance index */ 
 247     ush bl_count
[MAX_BITS
+1]; 
 248     /* number of codes at each bit length for an optimal tree */ 
 250     if (static_init_done
) return; 
 252     /* For some embedded targets, global variables are not initialized: */ 
 253     static_l_desc
.static_tree 
= static_ltree
; 
 254     static_l_desc
.extra_bits 
= extra_lbits
; 
 255     static_d_desc
.static_tree 
= static_dtree
; 
 256     static_d_desc
.extra_bits 
= extra_dbits
; 
 257     static_bl_desc
.extra_bits 
= extra_blbits
; 
 259     /* Initialize the mapping length (0..255) -> length code (0..28) */ 
 261     for (code 
= 0; code 
< LENGTH_CODES
-1; code
++) { 
 262         base_length
[code
] = length
; 
 263         for (n 
= 0; n 
< (1<<extra_lbits
[code
]); n
++) { 
 264             _length_code
[length
++] = (uch
)code
; 
 267     Assert (length 
== 256, "tr_static_init: length != 256"); 
 268     /* Note that the length 255 (match length 258) can be represented 
 269      * in two different ways: code 284 + 5 bits or code 285, so we 
 270      * overwrite length_code[255] to use the best encoding: 
 272     _length_code
[length
-1] = (uch
)code
; 
 274     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 
 276     for (code 
= 0 ; code 
< 16; code
++) { 
 277         base_dist
[code
] = dist
; 
 278         for (n 
= 0; n 
< (1<<extra_dbits
[code
]); n
++) { 
 279             _dist_code
[dist
++] = (uch
)code
; 
 282     Assert (dist 
== 256, "tr_static_init: dist != 256"); 
 283     dist 
>>= 7; /* from now on, all distances are divided by 128 */ 
 284     for ( ; code 
< D_CODES
; code
++) { 
 285         base_dist
[code
] = dist 
<< 7; 
 286         for (n 
= 0; n 
< (1<<(extra_dbits
[code
]-7)); n
++) { 
 287             _dist_code
[256 + dist
++] = (uch
)code
; 
 290     Assert (dist 
== 256, "tr_static_init: 256+dist != 512"); 
 292     /* Construct the codes of the static literal tree */ 
 293     for (bits 
= 0; bits 
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0; 
 295     while (n 
<= 143) static_ltree
[n
++].Len 
= 8, bl_count
[8]++; 
 296     while (n 
<= 255) static_ltree
[n
++].Len 
= 9, bl_count
[9]++; 
 297     while (n 
<= 279) static_ltree
[n
++].Len 
= 7, bl_count
[7]++; 
 298     while (n 
<= 287) static_ltree
[n
++].Len 
= 8, bl_count
[8]++; 
 299     /* Codes 286 and 287 do not exist, but we must include them in the 
 300      * tree construction to get a canonical Huffman tree (longest code 
 303     gen_codes((ct_data 
*)static_ltree
, L_CODES
+1, bl_count
); 
 305     /* The static distance tree is trivial: */ 
 306     for (n 
= 0; n 
< D_CODES
; n
++) { 
 307         static_dtree
[n
].Len 
= 5; 
 308         static_dtree
[n
].Code 
= bi_reverse((unsigned)n
, 5); 
 310     static_init_done 
= 1; 
 315 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 
 318 /* =========================================================================== 
 319  * Genererate the file trees.h describing the static trees. 
 326 #  define SEPARATOR(i, last, width) \ 
 327       ((i) == (last)? "\n};\n\n" :    \ 
 328        ((i) % (width) == (width)-1 ? ",\n" : ", ")) 
 330 void gen_trees_header() 
 332     FILE *header 
= fopen("trees.h", "w"); 
 335     Assert (header 
!= NULL
, "Can't open trees.h"); 
 337             "/* header created automatically with -DGEN_TREES_H */\n\n"); 
 339     fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n"); 
 340     for (i 
= 0; i 
< L_CODES
+2; i
++) { 
 341         fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
, 
 342                 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5)); 
 345     fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n"); 
 346     for (i 
= 0; i 
< D_CODES
; i
++) { 
 347         fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
, 
 348                 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5)); 
 351     fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n"); 
 352     for (i 
= 0; i 
< DIST_CODE_LEN
; i
++) { 
 353         fprintf(header
, "%2u%s", _dist_code
[i
], 
 354                 SEPARATOR(i
, DIST_CODE_LEN
-1, 20)); 
 357     fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 
 358     for (i 
= 0; i 
< MAX_MATCH
-MIN_MATCH
+1; i
++) { 
 359         fprintf(header
, "%2u%s", _length_code
[i
], 
 360                 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20)); 
 363     fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n"); 
 364     for (i 
= 0; i 
< LENGTH_CODES
; i
++) { 
 365         fprintf(header
, "%1u%s", base_length
[i
], 
 366                 SEPARATOR(i
, LENGTH_CODES
-1, 20)); 
 369     fprintf(header
, "local const int base_dist[D_CODES] = {\n"); 
 370     for (i 
= 0; i 
< D_CODES
; i
++) { 
 371         fprintf(header
, "%5u%s", base_dist
[i
], 
 372                 SEPARATOR(i
, D_CODES
-1, 10)); 
 377 #endif /* GEN_TREES_H */ 
 379 /* =========================================================================== 
 380  * Initialize the tree data structures for a new zlib stream. 
 387     s
->l_desc
.dyn_tree 
= s
->dyn_ltree
; 
 388     s
->l_desc
.stat_desc 
= &static_l_desc
; 
 390     s
->d_desc
.dyn_tree 
= s
->dyn_dtree
; 
 391     s
->d_desc
.stat_desc 
= &static_d_desc
; 
 393     s
->bl_desc
.dyn_tree 
= s
->bl_tree
; 
 394     s
->bl_desc
.stat_desc 
= &static_bl_desc
; 
 398     s
->last_eob_len 
= 8; /* enough lookahead for inflate */ 
 400     s
->compressed_len 
= 0L; 
 404     /* Initialize the first block of the first file: */ 
 408 /* =========================================================================== 
 409  * Initialize a new block. 
 411 local 
void init_block(s
) 
 414     int n
; /* iterates over tree elements */ 
 416     /* Initialize the trees. */ 
 417     for (n 
= 0; n 
< L_CODES
;  n
++) s
->dyn_ltree
[n
].Freq 
= 0; 
 418     for (n 
= 0; n 
< D_CODES
;  n
++) s
->dyn_dtree
[n
].Freq 
= 0; 
 419     for (n 
= 0; n 
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq 
= 0; 
 421     s
->dyn_ltree
[END_BLOCK
].Freq 
= 1; 
 422     s
->opt_len 
= s
->static_len 
= 0L; 
 423     s
->last_lit 
= s
->matches 
= 0; 
 427 /* Index within the heap array of least frequent node in the Huffman tree */ 
 430 /* =========================================================================== 
 431  * Remove the smallest element from the heap and recreate the heap with 
 432  * one less element. Updates heap and heap_len. 
 434 #define pqremove(s, tree, top) \ 
 436     top = s->heap[SMALLEST]; \ 
 437     s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 
 438     pqdownheap(s, tree, SMALLEST); \ 
 441 /* =========================================================================== 
 442  * Compares to subtrees, using the tree depth as tie breaker when 
 443  * the subtrees have equal frequency. This minimizes the worst case length. 
 445 #define smaller(tree, n, m, depth) \ 
 446    (tree[n].Freq < tree[m].Freq || \ 
 447    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 
 449 /* =========================================================================== 
 450  * Restore the heap property by moving down the tree starting at node k, 
 451  * exchanging a node with the smallest of its two sons if necessary, stopping 
 452  * when the heap property is re-established (each father smaller than its 
 455 local 
void pqdownheap(s
, tree
, k
) 
 457     ct_data 
*tree
;  /* the tree to restore */ 
 458     int k
;               /* node to move down */ 
 461     int j 
= k 
<< 1;  /* left son of k */ 
 462     while (j 
<= s
->heap_len
) { 
 463         /* Set j to the smallest of the two sons: */ 
 464         if (j 
< s
->heap_len 
&& 
 465             smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) { 
 468         /* Exit if v is smaller than both sons */ 
 469         if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break; 
 471         /* Exchange v with the smallest son */ 
 472         s
->heap
[k
] = s
->heap
[j
];  k 
= j
; 
 474         /* And continue down the tree, setting j to the left son of k */ 
 480 /* =========================================================================== 
 481  * Compute the optimal bit lengths for a tree and update the total bit length 
 482  * for the current block. 
 483  * IN assertion: the fields freq and dad are set, heap[heap_max] and 
 484  *    above are the tree nodes sorted by increasing frequency. 
 485  * OUT assertions: the field len is set to the optimal bit length, the 
 486  *     array bl_count contains the frequencies for each bit length. 
 487  *     The length opt_len is updated; static_len is also updated if stree is 
 490 local 
void gen_bitlen(s
, desc
) 
 492     tree_desc 
*desc
;    /* the tree descriptor */ 
 494     ct_data 
*tree        
= desc
->dyn_tree
; 
 495     int max_code         
= desc
->max_code
; 
 496     const ct_data 
*stree 
= desc
->stat_desc
->static_tree
; 
 497     const intf 
*extra    
= desc
->stat_desc
->extra_bits
; 
 498     int base             
= desc
->stat_desc
->extra_base
; 
 499     int max_length       
= desc
->stat_desc
->max_length
; 
 500     int h
;              /* heap index */ 
 501     int n
, m
;           /* iterate over the tree elements */ 
 502     int bits
;           /* bit length */ 
 503     int xbits
;          /* extra bits */ 
 504     ush f
;              /* frequency */ 
 505     int overflow 
= 0;   /* number of elements with bit length too large */ 
 507     for (bits 
= 0; bits 
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0; 
 509     /* In a first pass, compute the optimal bit lengths (which may 
 510      * overflow in the case of the bit length tree). 
 512     tree
[s
->heap
[s
->heap_max
]].Len 
= 0; /* root of the heap */ 
 514     for (h 
= s
->heap_max
+1; h 
< HEAP_SIZE
; h
++) { 
 516         bits 
= tree
[tree
[n
].Dad
].Len 
+ 1; 
 517         if (bits 
> max_length
) bits 
= max_length
, overflow
++; 
 518         tree
[n
].Len 
= (ush
)bits
; 
 519         /* We overwrite tree[n].Dad which is no longer needed */ 
 521         if (n 
> max_code
) continue; /* not a leaf node */ 
 525         if (n 
>= base
) xbits 
= extra
[n
-base
]; 
 527         s
->opt_len 
+= (ulg
)f 
* (bits 
+ xbits
); 
 528         if (stree
) s
->static_len 
+= (ulg
)f 
* (stree
[n
].Len 
+ xbits
); 
 530     if (overflow 
== 0) return; 
 532     Trace((stderr
,"\nbit length overflow\n")); 
 533     /* This happens for example on obj2 and pic of the Calgary corpus */ 
 535     /* Find the first bit length which could increase: */ 
 538         while (s
->bl_count
[bits
] == 0) bits
--; 
 539         s
->bl_count
[bits
]--;      /* move one leaf down the tree */ 
 540         s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */ 
 541         s
->bl_count
[max_length
]--; 
 542         /* The brother of the overflow item also moves one step up, 
 543          * but this does not affect bl_count[max_length] 
 546     } while (overflow 
> 0); 
 548     /* Now recompute all bit lengths, scanning in increasing frequency. 
 549      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 
 550      * lengths instead of fixing only the wrong ones. This idea is taken 
 551      * from 'ar' written by Haruhiko Okumura.) 
 553     for (bits 
= max_length
; bits 
!= 0; bits
--) { 
 554         n 
= s
->bl_count
[bits
]; 
 557             if (m 
> max_code
) continue; 
 558             if ((unsigned) tree
[m
].Len 
!= (unsigned) bits
) { 
 559                 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
)); 
 560                 s
->opt_len 
+= ((long)bits 
- (long)tree
[m
].Len
) 
 562                 tree
[m
].Len 
= (ush
)bits
; 
 569 /* =========================================================================== 
 570  * Generate the codes for a given tree and bit counts (which need not be 
 572  * IN assertion: the array bl_count contains the bit length statistics for 
 573  * the given tree and the field len is set for all tree elements. 
 574  * OUT assertion: the field code is set for all tree elements of non 
 577 local 
void gen_codes (tree
, max_code
, bl_count
) 
 578     ct_data 
*tree
;             /* the tree to decorate */ 
 579     int max_code
;              /* largest code with non zero frequency */ 
 580     ushf 
*bl_count
;            /* number of codes at each bit length */ 
 582     ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */ 
 583     ush code 
= 0;              /* running code value */ 
 584     int bits
;                  /* bit index */ 
 585     int n
;                     /* code index */ 
 587     /* The distribution counts are first used to generate the code values 
 588      * without bit reversal. 
 590     for (bits 
= 1; bits 
<= MAX_BITS
; bits
++) { 
 591         next_code
[bits
] = code 
= (code 
+ bl_count
[bits
-1]) << 1; 
 593     /* Check that the bit counts in bl_count are consistent. The last code 
 596     Assert (code 
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1, 
 597             "inconsistent bit counts"); 
 598     Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
)); 
 600     for (n 
= 0;  n 
<= max_code
; n
++) { 
 601         int len 
= tree
[n
].Len
; 
 602         if (len 
== 0) continue; 
 603         /* Now reverse the bits */ 
 604         tree
[n
].Code 
= bi_reverse(next_code
[len
]++, len
); 
 606         Tracecv(tree 
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ", 
 607              n
, (isgraph(n
) ? n 
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1)); 
 611 /* =========================================================================== 
 612  * Construct one Huffman tree and assigns the code bit strings and lengths. 
 613  * Update the total bit length for the current block. 
 614  * IN assertion: the field freq is set for all tree elements. 
 615  * OUT assertions: the fields len and code are set to the optimal bit length 
 616  *     and corresponding code. The length opt_len is updated; static_len is 
 617  *     also updated if stree is not null. The field max_code is set. 
 619 local 
void build_tree(s
, desc
) 
 621     tree_desc 
*desc
; /* the tree descriptor */ 
 623     ct_data 
*tree         
= desc
->dyn_tree
; 
 624     const ct_data 
*stree  
= desc
->stat_desc
->static_tree
; 
 625     int elems             
= desc
->stat_desc
->elems
; 
 626     int n
, m
;          /* iterate over heap elements */ 
 627     int max_code 
= -1; /* largest code with non zero frequency */ 
 628     int node
;          /* new node being created */ 
 630     /* Construct the initial heap, with least frequent element in 
 631      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 
 632      * heap[0] is not used. 
 634     s
->heap_len 
= 0, s
->heap_max 
= HEAP_SIZE
; 
 636     for (n 
= 0; n 
< elems
; n
++) { 
 637         if (tree
[n
].Freq 
!= 0) { 
 638             s
->heap
[++(s
->heap_len
)] = max_code 
= n
; 
 645     /* The pkzip format requires that at least one distance code exists, 
 646      * and that at least one bit should be sent even if there is only one 
 647      * possible code. So to avoid special checks later on we force at least 
 648      * two codes of non zero frequency. 
 650     while (s
->heap_len 
< 2) { 
 651         node 
= s
->heap
[++(s
->heap_len
)] = (max_code 
< 2 ? ++max_code 
: 0); 
 654         s
->opt_len
--; if (stree
) s
->static_len 
-= stree
[node
].Len
; 
 655         /* node is 0 or 1 so it does not have extra bits */ 
 657     desc
->max_code 
= max_code
; 
 659     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 
 660      * establish sub-heaps of increasing lengths: 
 662     for (n 
= s
->heap_len
/2; n 
>= 1; n
--) pqdownheap(s
, tree
, n
); 
 664     /* Construct the Huffman tree by repeatedly combining the least two 
 667     node 
= elems
;              /* next internal node of the tree */ 
 669         pqremove(s
, tree
, n
);  /* n = node of least frequency */ 
 670         m 
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */ 
 672         s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */ 
 673         s
->heap
[--(s
->heap_max
)] = m
; 
 675         /* Create a new node father of n and m */ 
 676         tree
[node
].Freq 
= tree
[n
].Freq 
+ tree
[m
].Freq
; 
 677         s
->depth
[node
] = (uch
)((s
->depth
[n
] >= s
->depth
[m
] ? 
 678                                 s
->depth
[n
] : s
->depth
[m
]) + 1); 
 679         tree
[n
].Dad 
= tree
[m
].Dad 
= (ush
)node
; 
 681         if (tree 
== s
->bl_tree
) { 
 682             fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)", 
 683                     node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
); 
 686         /* and insert the new node in the heap */ 
 687         s
->heap
[SMALLEST
] = node
++; 
 688         pqdownheap(s
, tree
, SMALLEST
); 
 690     } while (s
->heap_len 
>= 2); 
 692     s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
]; 
 694     /* At this point, the fields freq and dad are set. We can now 
 695      * generate the bit lengths. 
 697     gen_bitlen(s
, (tree_desc 
*)desc
); 
 699     /* The field len is now set, we can generate the bit codes */ 
 700     gen_codes ((ct_data 
*)tree
, max_code
, s
->bl_count
); 
 703 /* =========================================================================== 
 704  * Scan a literal or distance tree to determine the frequencies of the codes 
 705  * in the bit length tree. 
 707 local 
void scan_tree (s
, tree
, max_code
) 
 709     ct_data 
*tree
;   /* the tree to be scanned */ 
 710     int max_code
;    /* and its largest code of non zero frequency */ 
 712     int n
;                     /* iterates over all tree elements */ 
 713     int prevlen 
= -1;          /* last emitted length */ 
 714     int curlen
;                /* length of current code */ 
 715     int nextlen 
= tree
[0].Len
; /* length of next code */ 
 716     int count 
= 0;             /* repeat count of the current code */ 
 717     int max_count 
= 7;         /* max repeat count */ 
 718     int min_count 
= 4;         /* min repeat count */ 
 720     if (nextlen 
== 0) max_count 
= 138, min_count 
= 3; 
 721     tree
[max_code
+1].Len 
= (ush
)0xffff; /* guard */ 
 723     for (n 
= 0; n 
<= max_code
; n
++) { 
 724         curlen 
= nextlen
; nextlen 
= tree
[n
+1].Len
; 
 725         if (++count 
< max_count 
&& curlen 
== nextlen
) { 
 727         } else if (count 
< min_count
) { 
 728             s
->bl_tree
[curlen
].Freq 
+= count
; 
 729         } else if (curlen 
!= 0) { 
 730             if (curlen 
!= prevlen
) s
->bl_tree
[curlen
].Freq
++; 
 731             s
->bl_tree
[REP_3_6
].Freq
++; 
 732         } else if (count 
<= 10) { 
 733             s
->bl_tree
[REPZ_3_10
].Freq
++; 
 735             s
->bl_tree
[REPZ_11_138
].Freq
++; 
 737         count 
= 0; prevlen 
= curlen
; 
 739             max_count 
= 138, min_count 
= 3; 
 740         } else if (curlen 
== nextlen
) { 
 741             max_count 
= 6, min_count 
= 3; 
 743             max_count 
= 7, min_count 
= 4; 
 748 /* =========================================================================== 
 749  * Send a literal or distance tree in compressed form, using the codes in 
 752 local 
void send_tree (s
, tree
, max_code
) 
 754     ct_data 
*tree
; /* the tree to be scanned */ 
 755     int max_code
;       /* and its largest code of non zero frequency */ 
 757     int n
;                     /* iterates over all tree elements */ 
 758     int prevlen 
= -1;          /* last emitted length */ 
 759     int curlen
;                /* length of current code */ 
 760     int nextlen 
= tree
[0].Len
; /* length of next code */ 
 761     int count 
= 0;             /* repeat count of the current code */ 
 762     int max_count 
= 7;         /* max repeat count */ 
 763     int min_count 
= 4;         /* min repeat count */ 
 765     /* tree[max_code+1].Len = -1; */  /* guard already set */ 
 766     if (nextlen 
== 0) max_count 
= 138, min_count 
= 3; 
 768     for (n 
= 0; n 
<= max_code
; n
++) { 
 769         curlen 
= nextlen
; nextlen 
= tree
[n
+1].Len
; 
 770         if (++count 
< max_count 
&& curlen 
== nextlen
) { 
 772         } else if (count 
< min_count
) { 
 773             do { send_code(s
, curlen
, s
->bl_tree
); } while (--count 
!= 0); 
 775         } else if (curlen 
!= 0) { 
 776             if (curlen 
!= prevlen
) { 
 777                 send_code(s
, curlen
, s
->bl_tree
); count
--; 
 779             Assert(count 
>= 3 && count 
<= 6, " 3_6?"); 
 780             send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2); 
 782         } else if (count 
<= 10) { 
 783             send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3); 
 786             send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7); 
 788         count 
= 0; prevlen 
= curlen
; 
 790             max_count 
= 138, min_count 
= 3; 
 791         } else if (curlen 
== nextlen
) { 
 792             max_count 
= 6, min_count 
= 3; 
 794             max_count 
= 7, min_count 
= 4; 
 799 /* =========================================================================== 
 800  * Construct the Huffman tree for the bit lengths and return the index in 
 801  * bl_order of the last bit length code to send. 
 803 local 
int build_bl_tree(s
) 
 806     int max_blindex
;  /* index of last bit length code of non zero freq */ 
 808     /* Determine the bit length frequencies for literal and distance trees */ 
 809     scan_tree(s
, (ct_data 
*)s
->dyn_ltree
, s
->l_desc
.max_code
); 
 810     scan_tree(s
, (ct_data 
*)s
->dyn_dtree
, s
->d_desc
.max_code
); 
 812     /* Build the bit length tree: */ 
 813     build_tree(s
, (tree_desc 
*)(&(s
->bl_desc
))); 
 814     /* opt_len now includes the length of the tree representations, except 
 815      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 
 818     /* Determine the number of bit length codes to send. The pkzip format 
 819      * requires that at least 4 bit length codes be sent. (appnote.txt says 
 820      * 3 but the actual value used is 4.) 
 822     for (max_blindex 
= BL_CODES
-1; max_blindex 
>= 3; max_blindex
--) { 
 823         if (s
->bl_tree
[bl_order
[max_blindex
]].Len 
!= 0) break; 
 825     /* Update opt_len to include the bit length tree and counts */ 
 826     s
->opt_len 
+= 3*(max_blindex
+1) + 5+5+4; 
 827     Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld", 
 828             s
->opt_len
, s
->static_len
)); 
 833 /* =========================================================================== 
 834  * Send the header for a block using dynamic Huffman trees: the counts, the 
 835  * lengths of the bit length codes, the literal tree and the distance tree. 
 836  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 
 838 local 
void send_all_trees(s
, lcodes
, dcodes
, blcodes
) 
 840     int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */ 
 842     int rank
;                    /* index in bl_order */ 
 844     Assert (lcodes 
>= 257 && dcodes 
>= 1 && blcodes 
>= 4, "not enough codes"); 
 845     Assert (lcodes 
<= L_CODES 
&& dcodes 
<= D_CODES 
&& blcodes 
<= BL_CODES
, 
 847     Tracev((stderr
, "\nbl counts: ")); 
 848     send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */ 
 849     send_bits(s
, dcodes
-1,   5); 
 850     send_bits(s
, blcodes
-4,  4); /* not -3 as stated in appnote.txt */ 
 851     for (rank 
= 0; rank 
< blcodes
; rank
++) { 
 852         Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
])); 
 853         send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3); 
 855     Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
)); 
 857     send_tree(s
, (ct_data 
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */ 
 858     Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
)); 
 860     send_tree(s
, (ct_data 
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */ 
 861     Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
)); 
 864 /* =========================================================================== 
 865  * Send a stored block 
 867 void _tr_stored_block(s
, buf
, stored_len
, eof
) 
 869     charf 
*buf
;       /* input block */ 
 870     ulg stored_len
;   /* length of input block */ 
 871     int eof
;          /* true if this is the last block for a file */ 
 873     send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3);  /* send block type */ 
 875     s
->compressed_len 
= (s
->compressed_len 
+ 3 + 7) & (ulg
)~7L; 
 876     s
->compressed_len 
+= (stored_len 
+ 4) << 3; 
 878     copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */ 
 881 /* =========================================================================== 
 882  * Send one empty static block to give enough lookahead for inflate. 
 883  * This takes 10 bits, of which 7 may remain in the bit buffer. 
 884  * The current inflate code requires 9 bits of lookahead. If the 
 885  * last two codes for the previous block (real code plus EOB) were coded 
 886  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode 
 887  * the last real code. In this case we send two empty static blocks instead 
 888  * of one. (There are no problems if the previous block is stored or fixed.) 
 889  * To simplify the code, we assume the worst case of last real code encoded 
 895     send_bits(s
, STATIC_TREES
<<1, 3); 
 896     send_code(s
, END_BLOCK
, static_ltree
); 
 898     s
->compressed_len 
+= 10L; /* 3 for block type, 7 for EOB */ 
 901     /* Of the 10 bits for the empty block, we have already sent 
 902      * (10 - bi_valid) bits. The lookahead for the last real code (before 
 903      * the EOB of the previous block) was thus at least one plus the length 
 904      * of the EOB plus what we have just sent of the empty static block. 
 906     if (1 + s
->last_eob_len 
+ 10 - s
->bi_valid 
< 9) { 
 907         send_bits(s
, STATIC_TREES
<<1, 3); 
 908         send_code(s
, END_BLOCK
, static_ltree
); 
 910         s
->compressed_len 
+= 10L; 
 917 /* =========================================================================== 
 918  * Determine the best encoding for the current block: dynamic trees, static 
 919  * trees or store, and output the encoded block to the zip file. 
 921 void _tr_flush_block(s
, buf
, stored_len
, eof
) 
 923     charf 
*buf
;       /* input block, or NULL if too old */ 
 924     ulg stored_len
;   /* length of input block */ 
 925     int eof
;          /* true if this is the last block for a file */ 
 927     ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */ 
 928     int max_blindex 
= 0;  /* index of last bit length code of non zero freq */ 
 930     /* Build the Huffman trees unless a stored block is forced */ 
 933         /* Check if the file is binary or text */ 
 934         if (stored_len 
> 0 && s
->strm
->data_type 
== Z_UNKNOWN
) 
 937         /* Construct the literal and distance trees */ 
 938         build_tree(s
, (tree_desc 
*)(&(s
->l_desc
))); 
 939         Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
, 
 942         build_tree(s
, (tree_desc 
*)(&(s
->d_desc
))); 
 943         Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
, 
 945         /* At this point, opt_len and static_len are the total bit lengths of 
 946          * the compressed block data, excluding the tree representations. 
 949         /* Build the bit length tree for the above two trees, and get the index 
 950          * in bl_order of the last bit length code to send. 
 952         max_blindex 
= build_bl_tree(s
); 
 954         /* Determine the best encoding. Compute the block lengths in bytes. */ 
 955         opt_lenb 
= (s
->opt_len
+3+7)>>3; 
 956         static_lenb 
= (s
->static_len
+3+7)>>3; 
 958         Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 
 959                 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
, 
 962         if (static_lenb 
<= opt_lenb
) opt_lenb 
= static_lenb
; 
 965         Assert(buf 
!= (char*)0, "lost buf"); 
 966         opt_lenb 
= static_lenb 
= stored_len 
+ 5; /* force a stored block */ 
 970     if (buf 
!= (char*)0) { /* force stored block */ 
 972     if (stored_len
+4 <= opt_lenb 
&& buf 
!= (char*)0) { 
 973                        /* 4: two words for the lengths */ 
 975         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 
 976          * Otherwise we can't have processed more than WSIZE input bytes since 
 977          * the last block flush, because compression would have been 
 978          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 
 979          * transform a block into a stored block. 
 981         _tr_stored_block(s
, buf
, stored_len
, eof
); 
 984     } else if (static_lenb 
>= 0) { /* force static trees */ 
 986     } else if (s
->strategy 
== Z_FIXED 
|| static_lenb 
== opt_lenb
) { 
 988         send_bits(s
, (STATIC_TREES
<<1)+eof
, 3); 
 989         compress_block(s
, (ct_data 
*)static_ltree
, (ct_data 
*)static_dtree
); 
 991         s
->compressed_len 
+= 3 + s
->static_len
; 
 994         send_bits(s
, (DYN_TREES
<<1)+eof
, 3); 
 995         send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1, 
 997         compress_block(s
, (ct_data 
*)s
->dyn_ltree
, (ct_data 
*)s
->dyn_dtree
); 
 999         s
->compressed_len 
+= 3 + s
->opt_len
; 
1002     Assert (s
->compressed_len 
== s
->bits_sent
, "bad compressed size"); 
1003     /* The above check is made mod 2^32, for files larger than 512 MB 
1004      * and uLong implemented on 32 bits. 
1011         s
->compressed_len 
+= 7;  /* align on byte boundary */ 
1014     Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3, 
1015            s
->compressed_len
-7*eof
)); 
1018 /* =========================================================================== 
1019  * Save the match info and tally the frequency counts. Return true if 
1020  * the current block must be flushed. 
1022 int _tr_tally (s
, dist
, lc
) 
1024     unsigned dist
;  /* distance of matched string */ 
1025     unsigned lc
;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ 
1027     s
->d_buf
[s
->last_lit
] = (ush
)dist
; 
1028     s
->l_buf
[s
->last_lit
++] = (uch
)lc
; 
1030         /* lc is the unmatched char */ 
1031         s
->dyn_ltree
[lc
].Freq
++; 
1034         /* Here, lc is the match length - MIN_MATCH */ 
1035         dist
--;             /* dist = match distance - 1 */ 
1036         Assert((ush
)dist 
< (ush
)MAX_DIST(s
) && 
1037                (ush
)lc 
<= (ush
)(MAX_MATCH
-MIN_MATCH
) && 
1038                (ush
)d_code(dist
) < (ush
)D_CODES
,  "_tr_tally: bad match"); 
1040         s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++; 
1041         s
->dyn_dtree
[d_code(dist
)].Freq
++; 
1044 #ifdef TRUNCATE_BLOCK 
1045     /* Try to guess if it is profitable to stop the current block here */ 
1046     if ((s
->last_lit 
& 0x1fff) == 0 && s
->level 
> 2) { 
1047         /* Compute an upper bound for the compressed length */ 
1048         ulg out_length 
= (ulg
)s
->last_lit
*8L; 
1049         ulg in_length 
= (ulg
)((long)s
->strstart 
- s
->block_start
); 
1051         for (dcode 
= 0; dcode 
< D_CODES
; dcode
++) { 
1052             out_length 
+= (ulg
)s
->dyn_dtree
[dcode
].Freq 
* 
1053                 (5L+extra_dbits
[dcode
]); 
1056         Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 
1057                s
->last_lit
, in_length
, out_length
, 
1058                100L - out_length
*100L/in_length
)); 
1059         if (s
->matches 
< s
->last_lit
/2 && out_length 
< in_length
/2) return 1; 
1062     return (s
->last_lit 
== s
->lit_bufsize
-1); 
1063     /* We avoid equality with lit_bufsize because of wraparound at 64K 
1064      * on 16 bit machines and because stored blocks are restricted to 
1069 /* =========================================================================== 
1070  * Send the block data compressed using the given Huffman trees 
1072 local 
void compress_block(s
, ltree
, dtree
) 
1074     ct_data 
*ltree
; /* literal tree */ 
1075     ct_data 
*dtree
; /* distance tree */ 
1077     unsigned dist
;      /* distance of matched string */ 
1078     int lc
;             /* match length or unmatched char (if dist == 0) */ 
1079     unsigned lx 
= 0;    /* running index in l_buf */ 
1080     unsigned code
;      /* the code to send */ 
1081     int extra
;          /* number of extra bits to send */ 
1083     if (s
->last_lit 
!= 0) do { 
1084         dist 
= s
->d_buf
[lx
]; 
1085         lc 
= s
->l_buf
[lx
++]; 
1087             send_code(s
, lc
, ltree
); /* send a literal byte */ 
1088             Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
)); 
1090             /* Here, lc is the match length - MIN_MATCH */ 
1091             code 
= _length_code
[lc
]; 
1092             send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */ 
1093             extra 
= extra_lbits
[code
]; 
1095                 lc 
-= base_length
[code
]; 
1096                 send_bits(s
, lc
, extra
);       /* send the extra length bits */ 
1098             dist
--; /* dist is now the match distance - 1 */ 
1099             code 
= d_code(dist
); 
1100             Assert (code 
< D_CODES
, "bad d_code"); 
1102             send_code(s
, code
, dtree
);       /* send the distance code */ 
1103             extra 
= extra_dbits
[code
]; 
1105                 dist 
-= base_dist
[code
]; 
1106                 send_bits(s
, dist
, extra
);   /* send the extra distance bits */ 
1108         } /* literal or match pair ? */ 
1110         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 
1111         Assert((uInt
)(s
->pending
) < s
->lit_bufsize 
+ 2*lx
, 
1112                "pendingBuf overflow"); 
1114     } while (lx 
< s
->last_lit
); 
1116     send_code(s
, END_BLOCK
, ltree
); 
1117     s
->last_eob_len 
= ltree
[END_BLOCK
].Len
; 
1120 /* =========================================================================== 
1121  * Set the data type to BINARY or TEXT, using a crude approximation: 
1122  * set it to Z_TEXT if all symbols are either printable characters (33 to 255) 
1123  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. 
1124  * IN assertion: the fields Freq of dyn_ltree are set. 
1126 local 
void set_data_type(s
) 
1131     for (n 
= 0; n 
< 9; n
++) 
1132         if (s
->dyn_ltree
[n
].Freq 
!= 0) 
1135         for (n 
= 14; n 
< 32; n
++) 
1136             if (s
->dyn_ltree
[n
].Freq 
!= 0) 
1138     s
->strm
->data_type 
= (n 
== 32) ? Z_TEXT 
: Z_BINARY
; 
1141 /* =========================================================================== 
1142  * Reverse the first len bits of a code, using straightforward code (a faster 
1143  * method would use a table) 
1144  * IN assertion: 1 <= len <= 15 
1146 local 
unsigned bi_reverse(code
, len
) 
1147     unsigned code
; /* the value to invert */ 
1148     int len
;       /* its bit length */ 
1150     register unsigned res 
= 0; 
1153         code 
>>= 1, res 
<<= 1; 
1154     } while (--len 
> 0); 
1158 /* =========================================================================== 
1159  * Flush the bit buffer, keeping at most 7 bits in it. 
1161 local 
void bi_flush(s
) 
1164     if (s
->bi_valid 
== 16) { 
1165         put_short(s
, s
->bi_buf
); 
1168     } else if (s
->bi_valid 
>= 8) { 
1169         put_byte(s
, (Byte
)s
->bi_buf
); 
1175 /* =========================================================================== 
1176  * Flush the bit buffer and align the output on a byte boundary 
1178 local 
void bi_windup(s
) 
1181     if (s
->bi_valid 
> 8) { 
1182         put_short(s
, s
->bi_buf
); 
1183     } else if (s
->bi_valid 
> 0) { 
1184         put_byte(s
, (Byte
)s
->bi_buf
); 
1189     s
->bits_sent 
= (s
->bits_sent
+7) & ~7; 
1193 /* =========================================================================== 
1194  * Copy a stored block, storing first the length and its 
1195  * one's complement if requested. 
1197 local 
void copy_block(s
, buf
, len
, header
) 
1199     charf    
*buf
;    /* the input data */ 
1200     unsigned len
;     /* its length */ 
1201     int      header
;  /* true if block header must be written */ 
1203     bi_windup(s
);        /* align on byte boundary */ 
1204     s
->last_eob_len 
= 8; /* enough lookahead for inflate */ 
1207         put_short(s
, (ush
)len
); 
1208         put_short(s
, (ush
)~len
); 
1210         s
->bits_sent 
+= 2*16; 
1214     s
->bits_sent 
+= (ulg
)len
<<3; 
1217         put_byte(s
, *buf
++);