]> git.saurik.com Git - wxWidgets.git/blob - interface/wx/thread.h
move TestTextInputStream() function in CppUnit's TextStreamTestCase class
[wxWidgets.git] / interface / wx / thread.h
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: thread.h
3 // Purpose: interface of all thread-related wxWidgets classes
4 // Author: wxWidgets team
5 // RCS-ID: $Id$
6 // Licence: wxWindows license
7 /////////////////////////////////////////////////////////////////////////////
8
9
10 /** See wxCondition. */
11 enum wxCondError
12 {
13 wxCOND_NO_ERROR = 0,
14 wxCOND_INVALID,
15 wxCOND_TIMEOUT, //!< WaitTimeout() has timed out
16 wxCOND_MISC_ERROR
17 };
18
19
20 /**
21 @class wxCondition
22
23 wxCondition variables correspond to pthread conditions or to Win32 event objects.
24 They may be used in a multithreaded application to wait until the given condition
25 becomes @true which happens when the condition becomes signaled.
26
27 For example, if a worker thread is doing some long task and another thread has
28 to wait until it is finished, the latter thread will wait on the condition
29 object and the worker thread will signal it on exit (this example is not
30 perfect because in this particular case it would be much better to just
31 wxThread::Wait for the worker thread, but if there are several worker threads
32 it already makes much more sense).
33
34 Note that a call to wxCondition::Signal may happen before the other thread calls
35 wxCondition::Wait and, just as with the pthread conditions, the signal is then
36 lost and so if you want to be sure that you don't miss it you must keep the
37 mutex associated with the condition initially locked and lock it again before calling
38 wxCondition::Signal. Of course, this means that this call is going to block
39 until wxCondition::Wait is called by another thread.
40
41 @section condition_example Example
42
43 This example shows how a main thread may launch a worker thread which starts
44 running and then waits until the main thread signals it to continue:
45
46 @code
47 class MySignallingThread : public wxThread
48 {
49 public:
50 MySignallingThread(wxMutex *mutex, wxCondition *condition)
51 {
52 m_mutex = mutex;
53 m_condition = condition;
54
55 Create();
56 }
57
58 virtual ExitCode Entry()
59 {
60 ... do our job ...
61
62 // tell the other(s) thread(s) that we're about to terminate: we must
63 // lock the mutex first or we might signal the condition before the
64 // waiting threads start waiting on it!
65 wxMutexLocker lock(*m_mutex);
66 m_condition->Broadcast(); // same as Signal() here -- one waiter only
67
68 return 0;
69 }
70
71 private:
72 wxCondition *m_condition;
73 wxMutex *m_mutex;
74 };
75
76 int main()
77 {
78 wxMutex mutex;
79 wxCondition condition(mutex);
80
81 // the mutex should be initially locked
82 mutex.Lock();
83
84 // create and run the thread but notice that it won't be able to
85 // exit (and signal its exit) before we unlock the mutex below
86 MySignallingThread *thread = new MySignallingThread(&mutex, &condition);
87
88 thread->Run();
89
90 // wait for the thread termination: Wait() atomically unlocks the mutex
91 // which allows the thread to continue and starts waiting
92 condition.Wait();
93
94 // now we can exit
95 return 0;
96 }
97 @endcode
98
99 Of course, here it would be much better to simply use a joinable thread and
100 call wxThread::Wait on it, but this example does illustrate the importance of
101 properly locking the mutex when using wxCondition.
102
103 @library{wxbase}
104 @category{threading}
105
106 @see wxThread, wxMutex
107 */
108 class wxCondition
109 {
110 public:
111 /**
112 Default and only constructor.
113 The @a mutex must be locked by the caller before calling Wait() function.
114 Use IsOk() to check if the object was successfully initialized.
115 */
116 wxCondition(wxMutex& mutex);
117
118 /**
119 Destroys the wxCondition object.
120
121 The destructor is not virtual so this class should not be used polymorphically.
122 */
123 ~wxCondition();
124
125 /**
126 Broadcasts to all waiting threads, waking all of them up.
127
128 Note that this method may be called whether the mutex associated with
129 this condition is locked or not.
130
131 @see Signal()
132 */
133 wxCondError Broadcast();
134
135 /**
136 Returns @true if the object had been initialized successfully, @false
137 if an error occurred.
138 */
139 bool IsOk() const;
140
141 /**
142 Signals the object waking up at most one thread.
143
144 If several threads are waiting on the same condition, the exact thread
145 which is woken up is undefined. If no threads are waiting, the signal is
146 lost and the condition would have to be signalled again to wake up any
147 thread which may start waiting on it later.
148
149 Note that this method may be called whether the mutex associated with this
150 condition is locked or not.
151
152 @see Broadcast()
153 */
154 wxCondError Signal();
155
156 /**
157 Waits until the condition is signalled.
158
159 This method atomically releases the lock on the mutex associated with this
160 condition (this is why it must be locked prior to calling Wait()) and puts the
161 thread to sleep until Signal() or Broadcast() is called.
162 It then locks the mutex again and returns.
163
164 Note that even if Signal() had been called before Wait() without waking
165 up any thread, the thread would still wait for another one and so it is
166 important to ensure that the condition will be signalled after
167 Wait() or the thread may sleep forever.
168
169 @return Returns wxCOND_NO_ERROR on success, another value if an error occurred.
170
171 @see WaitTimeout()
172 */
173 wxCondError Wait();
174
175 /**
176 Waits until the condition is signalled or the timeout has elapsed.
177
178 This method is identical to Wait() except that it returns, with the
179 return code of @c wxCOND_TIMEOUT as soon as the given timeout expires.
180
181 @param milliseconds
182 Timeout in milliseconds
183
184 @return Returns wxCOND_NO_ERROR if the condition was signalled,
185 wxCOND_TIMEOUT if the timeout elapsed before this happened or
186 another error code from wxCondError enum.
187 */
188 wxCondError WaitTimeout(unsigned long milliseconds);
189 };
190
191
192 /**
193 @class wxCriticalSectionLocker
194
195 This is a small helper class to be used with wxCriticalSection objects.
196
197 A wxCriticalSectionLocker enters the critical section in the constructor and
198 leaves it in the destructor making it much more difficult to forget to leave
199 a critical section (which, in general, will lead to serious and difficult
200 to debug problems).
201
202 Example of using it:
203
204 @code
205 void Set Foo()
206 {
207 // gs_critSect is some (global) critical section guarding access to the
208 // object "foo"
209 wxCriticalSectionLocker locker(gs_critSect);
210
211 if ( ... )
212 {
213 // do something
214 ...
215
216 return;
217 }
218
219 // do something else
220 ...
221
222 return;
223 }
224 @endcode
225
226 Without wxCriticalSectionLocker, you would need to remember to manually leave
227 the critical section before each @c return.
228
229 @library{wxbase}
230 @category{threading}
231
232 @see wxCriticalSection, wxMutexLocker
233 */
234 class wxCriticalSectionLocker
235 {
236 public:
237 /**
238 Constructs a wxCriticalSectionLocker object associated with given
239 @a criticalsection and enters it.
240 */
241 wxCriticalSectionLocker(wxCriticalSection& criticalsection);
242
243 /**
244 Destructor leaves the critical section.
245 */
246 ~wxCriticalSectionLocker();
247 };
248
249
250
251 /**
252 @class wxThreadHelper
253
254 The wxThreadHelper class is a mix-in class that manages a single background
255 thread, either detached or joinable (see wxThread for the differences).
256 By deriving from wxThreadHelper, a class can implement the thread
257 code in its own wxThreadHelper::Entry() method and easily share data and
258 synchronization objects between the main thread and the worker thread.
259
260 Doing this prevents the awkward passing of pointers that is needed when the
261 original object in the main thread needs to synchronize with its worker thread
262 in its own wxThread derived object.
263
264 For example, wxFrame may need to make some calculations in a background thread
265 and then display the results of those calculations in the main window.
266
267 Ordinarily, a wxThread derived object would be created with the calculation
268 code implemented in wxThread::Entry. To access the inputs to the calculation,
269 the frame object would often need to pass a pointer to itself to the thread object.
270 Similarly, the frame object would hold a pointer to the thread object.
271
272 Shared data and synchronization objects could be stored in either object
273 though the object without the data would have to access the data through
274 a pointer.
275 However with wxThreadHelper the frame object and the thread object are
276 treated as the same object. Shared data and synchronization variables are
277 stored in the single object, eliminating a layer of indirection and the
278 associated pointers.
279
280 Example:
281 @code
282 wxDECLARE_EVENT(wxEVT_COMMAND_MYTHREAD_UPDATE, wxThreadEvent);
283
284 class MyFrame : public wxFrame, public wxThreadHelper
285 {
286 public:
287 MyFrame(...) { ... }
288 ~MyFrame()
289 {
290 // it's better to do any thread cleanup in the OnClose()
291 // event handler, rather than in the destructor.
292 // This is because the event loop for a top-level window is not
293 // active anymore when its destructor is called and if the thread
294 // sends events when ending, they won't be processed unless
295 // you ended the thread from OnClose.
296 // See @ref overview_windowdeletion for more info.
297 }
298
299 ...
300 void DoStartALongTask();
301 void OnThreadUpdate(wxThreadEvent& evt);
302 void OnClose(wxCloseEvent& evt);
303 ...
304
305 protected:
306 virtual wxThread::ExitCode Entry();
307
308 // the output data of the Entry() routine:
309 char m_data[1024];
310 wxCriticalSection m_dataCS; // protects field above
311
312 DECLARE_EVENT_TABLE()
313 };
314
315 wxDEFINE_EVENT(wxEVT_COMMAND_MYTHREAD_UPDATE, wxThreadEvent)
316 BEGIN_EVENT_TABLE(MyFrame, wxFrame)
317 EVT_COMMAND(wxID_ANY, wxEVT_COMMAND_MYTHREAD_UPDATE, MyFrame::OnThreadUpdate)
318 EVT_CLOSE(MyFrame::OnClose)
319 END_EVENT_TABLE()
320
321 void MyFrame::DoStartALongTask()
322 {
323 // we want to start a long task, but we don't want our GUI to block
324 // while it's executed, so we use a thread to do it.
325 if (CreateThread(wxTHREAD_JOINABLE) != wxTHREAD_NO_ERROR)
326 {
327 wxLogError("Could not create the worker thread!");
328 return;
329 }
330
331 // go!
332 if (GetThread()->Run() != wxTHREAD_NO_ERROR)
333 {
334 wxLogError("Could not run the worker thread!");
335 return;
336 }
337 }
338
339 wxThread::ExitCode MyFrame::Entry()
340 {
341 // IMPORTANT:
342 // this function gets executed in the secondary thread context!
343
344 int offset = 0;
345
346 // here we do our long task, periodically calling TestDestroy():
347 while (!GetThread()->TestDestroy())
348 {
349 // since this Entry() is implemented in MyFrame context we don't
350 // need any pointer to access the m_data, m_processedData, m_dataCS
351 // variables... very nice!
352
353 // this is an example of the generic structure of a download thread:
354 char buffer[1024];
355 download_chunk(buffer, 1024); // this takes time...
356
357 {
358 // ensure noone reads m_data while we write it
359 wxCriticalSectionLocker lock(m_dataCS);
360 memcpy(m_data+offset, buffer, 1024);
361 offset += 1024;
362 }
363
364
365 // VERY IMPORTANT: do not call any GUI function inside this
366 // function; rather use wxQueueEvent():
367 wxQueueEvent(this, new wxThreadEvent(wxEVT_COMMAND_MYTHREAD_UPDATE));
368 // we used pointer 'this' assuming it's safe; see OnClose()
369 }
370
371 // TestDestroy() returned true (which means the main thread asked us
372 // to terminate as soon as possible) or we ended the long task...
373 return (wxThread::ExitCode)0;
374 }
375
376 void MyFrame::OnClose(wxCloseEvent&)
377 {
378 // important: before terminating, we _must_ wait for our joinable
379 // thread to end, if it's running; in fact it uses variables of this
380 // instance and posts events to *this event handler
381
382 if (GetThread() && // DoStartALongTask() may have not been called
383 GetThread()->IsRunning())
384 GetThread()->Wait();
385
386 Destroy();
387 }
388
389 void MyFrame::OnThreadUpdate(wxThreadEvent& evt)
390 {
391 // ...do something... e.g. m_pGauge->Pulse();
392
393 // read some parts of m_data just for fun:
394 wxCriticalSectionLocker lock(m_dataCS);
395 wxPrintf("%c", m_data[100]);
396 }
397 @endcode
398
399 @library{wxbase}
400 @category{threading}
401
402 @see wxThread, wxThreadEvent
403 */
404 class wxThreadHelper
405 {
406 public:
407 /**
408 This constructor simply initializes internal member variables and tells
409 wxThreadHelper which type the thread internally managed should be.
410 */
411 wxThreadHelper(wxThreadKind kind = wxTHREAD_JOINABLE);
412
413 /**
414 The destructor frees the resources associated with the thread, forcing
415 it to terminate (it uses wxThread::Kill function).
416
417 Because of the wxThread::Kill unsafety, you should always wait
418 (with wxThread::Wait) for joinable threads to end or call wxThread::Delete
419 on detached threads, instead of relying on this destructor for stopping
420 the thread.
421 */
422 virtual ~wxThreadHelper();
423
424 /**
425 This is the entry point of the thread.
426
427 This function is pure virtual and must be implemented by any derived class.
428 The thread execution will start here.
429
430 You'll typically want your Entry() to look like:
431 @code
432 wxThread::ExitCode Entry()
433 {
434 while (!GetThread()->TestDestroy())
435 {
436 // ... do some work ...
437
438 if (IsWorkCompleted)
439 break;
440
441 if (HappenedStoppingError)
442 return (wxThread::ExitCode)1; // failure
443 }
444
445 return (wxThread::ExitCode)0; // success
446 }
447 @endcode
448
449 The returned value is the thread exit code which is only useful for
450 joinable threads and is the value returned by @c "GetThread()->Wait()".
451
452 This function is called by wxWidgets itself and should never be called
453 directly.
454 */
455 virtual ExitCode Entry() = 0;
456
457 /**
458 @deprecated
459 Use CreateThread() instead.
460 */
461 wxThreadError Create(unsigned int stackSize = 0);
462
463 /**
464 Creates a new thread of the given @a kind.
465
466 The thread object is created in the suspended state, and you
467 should call @ref wxThread::Run "GetThread()->Run()" to start running it.
468
469 You may optionally specify the stack size to be allocated to it (ignored
470 on platforms that don't support setting it explicitly, e.g. Unix).
471
472 @return One of the ::wxThreadError enum values.
473 */
474 wxThreadError CreateThread(wxThreadKind kind = wxTHREAD_JOINABLE,
475 unsigned int stackSize = 0);
476
477 /**
478 This is a public function that returns the wxThread object associated with
479 the thread.
480 */
481 wxThread* GetThread() const;
482
483 /**
484 Returns the last type of thread given to the CreateThread() function
485 or to the constructor.
486 */
487 wxThreadKind GetThreadKind() const;
488 };
489
490 /**
491 Possible critical section types
492 */
493
494 enum wxCriticalSectionType
495 {
496 wxCRITSEC_DEFAULT,
497 /** Recursive critical section under both Windows and Unix */
498
499 wxCRITSEC_NON_RECURSIVE
500 /** Non-recursive critical section under Unix, recursive under Windows */
501 };
502
503 /**
504 @class wxCriticalSection
505
506 A critical section object is used for exactly the same purpose as a wxMutex.
507 The only difference is that under Windows platform critical sections are only
508 visible inside one process, while mutexes may be shared among processes,
509 so using critical sections is slightly more efficient.
510
511 The terminology is also slightly different: mutex may be locked (or acquired)
512 and unlocked (or released) while critical section is entered and left by the program.
513
514 Finally, you should try to use wxCriticalSectionLocker class whenever
515 possible instead of directly using wxCriticalSection for the same reasons
516 wxMutexLocker is preferrable to wxMutex - please see wxMutex for an example.
517
518 @library{wxbase}
519 @category{threading}
520
521 @note Critical sections can be used before the wxWidgets library is fully
522 initialized. In particular, it's safe to create global
523 wxCriticalSection instances.
524
525 @see wxThread, wxCondition, wxCriticalSectionLocker
526 */
527 class wxCriticalSection
528 {
529 public:
530 /**
531 Default constructor initializes critical section object.
532 By default critical sections are recursive under Unix and Windows.
533 */
534 wxCriticalSection( wxCriticalSectionType critSecType = wxCRITSEC_DEFAULT );
535
536 /**
537 Destructor frees the resources.
538 */
539 ~wxCriticalSection();
540
541 /**
542 Enter the critical section (same as locking a mutex): if another thread
543 has already entered it, this call will block until the other thread
544 calls Leave().
545 There is no error return for this function.
546
547 After entering the critical section protecting a data variable,
548 the thread running inside the critical section may safely use/modify it.
549
550 Note that entering the same critical section twice or more from the same
551 thread doesn't result in a deadlock; in this case in fact this function will
552 immediately return.
553 */
554 void Enter();
555
556 /**
557 Leave the critical section allowing other threads use the global data
558 protected by it. There is no error return for this function.
559 */
560 void Leave();
561 };
562
563 /**
564 The possible thread kinds.
565 */
566 enum wxThreadKind
567 {
568 /** Detached thread */
569 wxTHREAD_DETACHED,
570
571 /** Joinable thread */
572 wxTHREAD_JOINABLE
573 };
574
575 /**
576 The possible thread errors.
577 */
578 enum wxThreadError
579 {
580 /** No error */
581 wxTHREAD_NO_ERROR = 0,
582
583 /** No resource left to create a new thread. */
584 wxTHREAD_NO_RESOURCE,
585
586 /** The thread is already running. */
587 wxTHREAD_RUNNING,
588
589 /** The thread isn't running. */
590 wxTHREAD_NOT_RUNNING,
591
592 /** Thread we waited for had to be killed. */
593 wxTHREAD_KILLED,
594
595 /** Some other error */
596 wxTHREAD_MISC_ERROR
597 };
598
599 /**
600 Defines the interval of priority
601 */
602 enum
603 {
604 WXTHREAD_MIN_PRIORITY = 0u,
605 WXTHREAD_DEFAULT_PRIORITY = 50u,
606 WXTHREAD_MAX_PRIORITY = 100u
607 };
608
609
610 /**
611 @class wxThread
612
613 A thread is basically a path of execution through a program.
614 Threads are sometimes called @e light-weight processes, but the fundamental difference
615 between threads and processes is that memory spaces of different processes are
616 separated while all threads share the same address space.
617
618 While it makes it much easier to share common data between several threads, it
619 also makes it much easier to shoot oneself in the foot, so careful use of
620 synchronization objects such as mutexes (see wxMutex) or critical sections
621 (see wxCriticalSection) is recommended.
622 In addition, don't create global thread objects because they allocate memory
623 in their constructor, which will cause problems for the memory checking system.
624
625
626 @section thread_types Types of wxThreads
627
628 There are two types of threads in wxWidgets: @e detached and @e joinable,
629 modeled after the the POSIX thread API. This is different from the Win32 API
630 where all threads are joinable.
631
632 By default wxThreads in wxWidgets use the @b detached behavior.
633 Detached threads delete themselves once they have completed, either by themselves
634 when they complete processing or through a call to Delete(), and thus
635 @b must be created on the heap (through the new operator, for example).
636
637 Typically you'll want to store the instances of the detached wxThreads you
638 allocate, so that you can call functions on them.
639 Because of their nature however you'll need to always use a critical section
640 when accessing them:
641
642 @code
643 // declare a new type of event, to be used by our MyThread class:
644 wxDECLARE_EVENT(wxEVT_COMMAND_MYTHREAD_COMPLETED, wxThreadEvent);
645 wxDECLARE_EVENT(wxEVT_COMMAND_MYTHREAD_UPDATE, wxThreadEvent);
646 class MyFrame;
647
648 class MyThread : public wxThread
649 {
650 public:
651 MyThread(MyFrame *handler)
652 : wxThread(wxTHREAD_DETACHED)
653 { m_pHandler = handler }
654 ~MyThread();
655
656 protected:
657 virtual ExitCode Entry();
658 MyFrame *m_pHandler;
659 };
660
661 class MyFrame : public wxFrame
662 {
663 public:
664 ...
665 ~MyFrame()
666 {
667 // it's better to do any thread cleanup in the OnClose()
668 // event handler, rather than in the destructor.
669 // This is because the event loop for a top-level window is not
670 // active anymore when its destructor is called and if the thread
671 // sends events when ending, they won't be processed unless
672 // you ended the thread from OnClose.
673 // See @ref overview_windowdeletion for more info.
674 }
675 ...
676 void DoStartThread();
677 void DoPauseThread();
678
679 // a resume routine would be nearly identic to DoPauseThread()
680 void DoResumeThread() { ... }
681
682 void OnThreadUpdate(wxThreadEvent&);
683 void OnThreadCompletion(wxThreadEvent&);
684 void OnClose(wxCloseEvent&);
685
686 protected:
687 MyThread *m_pThread;
688 wxCriticalSection m_pThreadCS; // protects the m_pThread pointer
689
690 DECLARE_EVENT_TABLE()
691 };
692
693 BEGIN_EVENT_TABLE(MyFrame, wxFrame)
694 EVT_CLOSE(MyFrame::OnClose)
695 EVT_MENU(Minimal_Start, MyFrame::DoStartThread)
696 EVT_COMMAND(wxID_ANY, wxEVT_COMMAND_MYTHREAD_UPDATE, MyFrame::OnThreadUpdate)
697 EVT_COMMAND(wxID_ANY, wxEVT_COMMAND_MYTHREAD_COMPLETED, MyFrame::OnThreadCompletion)
698 END_EVENT_TABLE()
699
700 wxDEFINE_EVENT(wxEVT_COMMAND_MYTHREAD_COMPLETED, wxThreadEvent)
701 wxDEFINE_EVENT(wxEVT_COMMAND_MYTHREAD_UPDATE, wxThreadEvent)
702
703 void MyFrame::DoStartThread()
704 {
705 m_pThread = new MyThread(this);
706
707 if ( m_pThread->Create() != wxTHREAD_NO_ERROR )
708 {
709 wxLogError("Can't create the thread!");
710 delete m_pThread;
711 m_pThread = NULL;
712 }
713 else
714 {
715 if (m_pThread->Run() != wxTHREAD_NO_ERROR )
716 {
717 wxLogError("Can't create the thread!");
718 delete m_pThread;
719 m_pThread = NULL;
720 }
721
722 // after the call to wxThread::Run(), the m_pThread pointer is "unsafe":
723 // at any moment the thread may cease to exist (because it completes its work).
724 // To avoid dangling pointers OnThreadExit() will set m_pThread
725 // to NULL when the thread dies.
726 }
727 }
728
729 wxThread::ExitCode MyThread::Entry()
730 {
731 while (!TestDestroy())
732 {
733 // ... do a bit of work...
734
735 wxQueueEvent(m_pHandler, new wxThreadEvent(wxEVT_COMMAND_MYTHREAD_UPDATE));
736 }
737
738 // signal the event handler that this thread is going to be destroyed
739 // NOTE: here we assume that using the m_pHandler pointer is safe,
740 // (in this case this is assured by the MyFrame destructor)
741 wxQueueEvent(m_pHandler, new wxThreadEvent(wxEVT_COMMAND_MYTHREAD_COMPLETED));
742
743 return (wxThread::ExitCode)0; // success
744 }
745
746 MyThread::~MyThread()
747 {
748 wxCriticalSectionLocker enter(m_pHandler->m_pThreadCS);
749
750 // the thread is being destroyed; make sure not to leave dangling pointers around
751 m_pHandler->m_pThread = NULL;
752 }
753
754 void MyFrame::OnThreadCompletion(wxThreadEvent&)
755 {
756 wxMessageOutputDebug().Printf("MYFRAME: MyThread exited!\n");
757 }
758
759 void MyFrame::OnThreadUpdate(wxThreadEvent&)
760 {
761 wxMessageOutputDebug().Printf("MYFRAME: MyThread update...\n");
762 }
763
764 void MyFrame::DoPauseThread()
765 {
766 // anytime we access the m_pThread pointer we must ensure that it won't
767 // be modified in the meanwhile; since only a single thread may be
768 // inside a given critical section at a given time, the following code
769 // is safe:
770 wxCriticalSectionLocker enter(m_pThreadCS);
771
772 if (m_pThread) // does the thread still exist?
773 {
774 // without a critical section, once reached this point it may happen
775 // that the OS scheduler gives control to the MyThread::Entry() function,
776 // which in turn may return (because it completes its work) making
777 // invalid the m_pThread pointer
778
779 if (m_pThread->Pause() != wxTHREAD_NO_ERROR )
780 wxLogError("Can't pause the thread!");
781 }
782 }
783
784 void MyFrame::OnClose(wxCloseEvent&)
785 {
786 {
787 wxCriticalSectionLocker enter(m_pThreadCS);
788
789 if (m_pThread) // does the thread still exist?
790 {
791 m_out.Printf("MYFRAME: deleting thread");
792
793 if (m_pThread->Delete() != wxTHREAD_NO_ERROR )
794 wxLogError("Can't delete the thread!");
795 }
796 } // exit from the critical section to give the thread
797 // the possibility to enter its destructor
798 // (which is guarded with m_pThreadCS critical section!)
799
800 while (1)
801 {
802 { // was the ~MyThread() function executed?
803 wxCriticalSectionLocker enter(m_pThreadCS);
804 if (!m_pThread) break;
805 }
806
807 // wait for thread completion
808 wxThread::This()->Sleep(1);
809 }
810
811 Destroy();
812 }
813 @endcode
814
815 For a more detailed and comprehensive example, see @sample{thread}.
816 For a simpler way to share data and synchronization objects between
817 the main and the secondary thread see wxThreadHelper.
818
819 Conversely, @b joinable threads do not delete themselves when they are done
820 processing and as such are safe to create on the stack. Joinable threads
821 also provide the ability for one to get value it returned from Entry()
822 through Wait().
823 You shouldn't hurry to create all the threads joinable, however, because this
824 has a disadvantage as well: you @b must Wait() for a joinable thread or the
825 system resources used by it will never be freed, and you also must delete the
826 corresponding wxThread object yourself if you did not create it on the stack.
827 In contrast, detached threads are of the "fire-and-forget" kind: you only have
828 to start a detached thread and it will terminate and destroy itself.
829
830
831 @section thread_deletion wxThread Deletion
832
833 Regardless of whether it has terminated or not, you should call Wait() on a
834 @b joinable thread to release its memory, as outlined in @ref thread_types.
835 If you created a joinable thread on the heap, remember to delete it manually
836 with the @c delete operator or similar means as only detached threads handle
837 this type of memory management.
838
839 Since @b detached threads delete themselves when they are finished processing,
840 you should take care when calling a routine on one. If you are certain the
841 thread is still running and would like to end it, you may call Delete()
842 to gracefully end it (which implies that the thread will be deleted after
843 that call to Delete()). It should be implied that you should @b never attempt
844 to delete a detached thread with the @c delete operator or similar means.
845
846 As mentioned, Wait() or Delete() functions attempt to gracefully terminate a
847 joinable and a detached thread, respectively. They do this by waiting until
848 the thread in question calls TestDestroy() or ends processing (i.e. returns
849 from wxThread::Entry).
850
851 Obviously, if the thread does call TestDestroy() and does not end, the
852 thread which called Wait() or Delete() will come to halt.
853 This is why it's important to call TestDestroy() in the Entry() routine of
854 your threads as often as possible and immediately exit when it returns @true.
855
856 As a last resort you can end the thread immediately through Kill(). It is
857 strongly recommended that you do not do this, however, as it does not free
858 the resources associated with the object (although the wxThread object of
859 detached threads will still be deleted) and could leave the C runtime
860 library in an undefined state.
861
862
863 @section thread_secondary wxWidgets Calls in Secondary Threads
864
865 All threads other than the "main application thread" (the one running
866 wxApp::OnInit() or the one your main function runs in, for example) are
867 considered "secondary threads". These include all threads created by Create()
868 or the corresponding constructors.
869
870 GUI calls, such as those to a wxWindow or wxBitmap are explicitly not safe
871 at all in secondary threads and could end your application prematurely.
872 This is due to several reasons, including the underlying native API and
873 the fact that wxThread does not run a GUI event loop similar to other APIs
874 as MFC.
875
876 A workaround for some wxWidgets ports is calling wxMutexGUIEnter()
877 before any GUI calls and then calling wxMutexGUILeave() afterwords.
878 However, the recommended way is to simply process the GUI calls in the main
879 thread through an event that is posted by wxQueueEvent().
880 This does not imply that calls to these classes are thread-safe, however,
881 as most wxWidgets classes are not thread-safe, including wxString.
882
883
884 @section thread_poll Don't Poll a wxThread
885
886 A common problem users experience with wxThread is that in their main thread
887 they will check the thread every now and then to see if it has ended through
888 IsRunning(), only to find that their application has run into problems
889 because the thread is using the default behavior (i.e. it's @b detached) and
890 has already deleted itself.
891 Naturally, they instead attempt to use joinable threads in place of the previous
892 behavior. However, polling a wxThread for when it has ended is in general a
893 bad idea - in fact calling a routine on any running wxThread should be avoided
894 if possible. Instead, find a way to notify yourself when the thread has ended.
895
896 Usually you only need to notify the main thread, in which case you can
897 post an event to it via wxQueueEvent().
898 In the case of secondary threads you can call a routine of another class
899 when the thread is about to complete processing and/or set the value of
900 a variable, possibly using mutexes (see wxMutex) and/or other synchronization
901 means if necessary.
902
903 @library{wxbase}
904 @category{threading}
905
906 @see wxThreadHelper, wxMutex, wxCondition, wxCriticalSection,
907 @ref overview_thread
908 */
909 class wxThread
910 {
911 public:
912 /**
913 The return type for the thread functions.
914 */
915 typedef void* ExitCode;
916
917 /**
918 This constructor creates a new detached (default) or joinable C++
919 thread object. It does not create or start execution of the real thread -
920 for this you should use the Create() and Run() methods.
921
922 The possible values for @a kind parameters are:
923 - @b wxTHREAD_DETACHED - Creates a detached thread.
924 - @b wxTHREAD_JOINABLE - Creates a joinable thread.
925 */
926 wxThread(wxThreadKind kind = wxTHREAD_DETACHED);
927
928 /**
929 The destructor frees the resources associated with the thread.
930 Notice that you should never delete a detached thread -- you may only call
931 Delete() on it or wait until it terminates (and auto destructs) itself.
932
933 Because the detached threads delete themselves, they can only be allocated on the heap.
934 Joinable threads should be deleted explicitly. The Delete() and Kill() functions
935 will not delete the C++ thread object. It is also safe to allocate them on stack.
936 */
937 virtual ~wxThread();
938
939 /**
940 Creates a new thread.
941
942 The thread object is created in the suspended state, and you should call Run()
943 to start running it. You may optionally specify the stack size to be allocated
944 to it (Ignored on platforms that don't support setting it explicitly,
945 eg. Unix system without @c pthread_attr_setstacksize).
946
947 If you do not specify the stack size,the system's default value is used.
948
949 @warning
950 It is a good idea to explicitly specify a value as systems'
951 default values vary from just a couple of KB on some systems (BSD and
952 OS/2 systems) to one or several MB (Windows, Solaris, Linux).
953 So, if you have a thread that requires more than just a few KB of memory, you
954 will have mysterious problems on some platforms but not on the common ones.
955 On the other hand, just indicating a large stack size by default will give you
956 performance issues on those systems with small default stack since those
957 typically use fully committed memory for the stack.
958 On the contrary, if you use a lot of threads (say several hundred),
959 virtual adress space can get tight unless you explicitly specify a
960 smaller amount of thread stack space for each thread.
961
962 @return One of:
963 - @b wxTHREAD_NO_ERROR - No error.
964 - @b wxTHREAD_NO_RESOURCE - There were insufficient resources to create the thread.
965 - @b wxTHREAD_NO_RUNNING - The thread is already running
966 */
967 wxThreadError Create(unsigned int stackSize = 0);
968
969 /**
970 Calling Delete() gracefully terminates a @b detached thread, either when
971 the thread calls TestDestroy() or when it finishes processing.
972
973 @note
974 This function works on a joinable thread but in that case makes
975 the TestDestroy() function of the thread return @true and then
976 waits for its completion (i.e. it differs from Wait() because
977 it asks the thread to terminate before waiting).
978
979 See @ref thread_deletion for a broader explanation of this routine.
980 */
981 wxThreadError Delete(void** rc = NULL);
982
983 /**
984 Returns the number of system CPUs or -1 if the value is unknown.
985
986 For multi-core systems the returned value is typically the total number
987 of @e cores, since the OS usually abstract a single N-core CPU
988 as N different cores.
989
990 @see SetConcurrency()
991 */
992 static int GetCPUCount();
993
994 /**
995 Returns the platform specific thread ID of the current thread as a long.
996
997 This can be used to uniquely identify threads, even if they are not wxThreads.
998
999 @see GetMainId()
1000 */
1001 static wxThreadIdType GetCurrentId();
1002
1003 /**
1004 Gets the thread identifier: this is a platform dependent number that uniquely
1005 identifies the thread throughout the system during its existence
1006 (i.e. the thread identifiers may be reused).
1007 */
1008 wxThreadIdType GetId() const;
1009
1010 /**
1011 Returns the thread kind as it was given in the ctor.
1012
1013 @since 2.9.0
1014 */
1015 wxThreadKind GetKind() const;
1016
1017 /**
1018 Returns the thread ID of the main thread.
1019
1020 @see IsMain()
1021
1022 @since 2.9.1
1023 */
1024 static wxThreadIdType GetMainId();
1025
1026 /**
1027 Gets the priority of the thread, between zero and 100.
1028
1029 The following priorities are defined:
1030 - @b WXTHREAD_MIN_PRIORITY: 0
1031 - @b WXTHREAD_DEFAULT_PRIORITY: 50
1032 - @b WXTHREAD_MAX_PRIORITY: 100
1033 */
1034 unsigned int GetPriority() const;
1035
1036 /**
1037 Returns @true if the thread is alive (i.e. started and not terminating).
1038
1039 Note that this function can only safely be used with joinable threads, not
1040 detached ones as the latter delete themselves and so when the real thread is
1041 no longer alive, it is not possible to call this function because
1042 the wxThread object no longer exists.
1043 */
1044 bool IsAlive() const;
1045
1046 /**
1047 Returns @true if the thread is of the detached kind, @false if it is a
1048 joinable one.
1049 */
1050 bool IsDetached() const;
1051
1052 /**
1053 Returns @true if the calling thread is the main application thread.
1054
1055 Main thread in the context of wxWidgets is the one which initialized
1056 the library.
1057
1058 @see GetMainId(), GetCurrentId()
1059 */
1060 static bool IsMain();
1061
1062 /**
1063 Returns @true if the thread is paused.
1064 */
1065 bool IsPaused() const;
1066
1067 /**
1068 Returns @true if the thread is running.
1069
1070 This method may only be safely used for joinable threads, see the remark in
1071 IsAlive().
1072 */
1073 bool IsRunning() const;
1074
1075 /**
1076 Immediately terminates the target thread.
1077
1078 @b "This function is dangerous and should be used with extreme care"
1079 (and not used at all whenever possible)! The resources allocated to the
1080 thread will not be freed and the state of the C runtime library may become
1081 inconsistent. Use Delete() for detached threads or Wait() for joinable
1082 threads instead.
1083
1084 For detached threads Kill() will also delete the associated C++ object.
1085 However this will not happen for joinable threads and this means that you will
1086 still have to delete the wxThread object yourself to avoid memory leaks.
1087
1088 In neither case OnExit() of the dying thread will be called, so no
1089 thread-specific cleanup will be performed.
1090 This function can only be called from another thread context, i.e. a thread
1091 cannot kill itself.
1092
1093 It is also an error to call this function for a thread which is not running or
1094 paused (in the latter case, the thread will be resumed first) -- if you do it,
1095 a @b wxTHREAD_NOT_RUNNING error will be returned.
1096 */
1097 wxThreadError Kill();
1098
1099 /**
1100 Suspends the thread.
1101
1102 Under some implementations (Win32), the thread is suspended immediately,
1103 under others it will only be suspended when it calls TestDestroy() for
1104 the next time (hence, if the thread doesn't call it at all, it won't be
1105 suspended).
1106
1107 This function can only be called from another thread context.
1108 */
1109 wxThreadError Pause();
1110
1111 /**
1112 Resumes a thread suspended by the call to Pause().
1113
1114 This function can only be called from another thread context.
1115 */
1116 wxThreadError Resume();
1117
1118 /**
1119 Starts the thread execution. Should be called after Create().
1120
1121 Note that once you Run() a @b detached thread, @e any function call you do
1122 on the thread pointer (you must allocate it on the heap) is @e "unsafe";
1123 i.e. the thread may have terminated at any moment after Run() and your pointer
1124 may be dangling. See @ref thread_types for an example of safe manipulation
1125 of detached threads.
1126
1127 This function can only be called from another thread context.
1128 */
1129 wxThreadError Run();
1130
1131 /**
1132 Sets the thread concurrency level for this process.
1133
1134 This is, roughly, the number of threads that the system tries to schedule
1135 to run in parallel.
1136 The value of 0 for @a level may be used to set the default one.
1137
1138 @return @true on success or @false otherwise (for example, if this function is
1139 not implemented for this platform -- currently everything except Solaris).
1140 */
1141 static bool SetConcurrency(size_t level);
1142
1143 /**
1144 Sets the priority of the thread, between 0 and 100.
1145 It can only be set after calling Create() but before calling Run().
1146
1147 The following priorities are defined:
1148 - @b WXTHREAD_MIN_PRIORITY: 0
1149 - @b WXTHREAD_DEFAULT_PRIORITY: 50
1150 - @b WXTHREAD_MAX_PRIORITY: 100
1151 */
1152 void SetPriority(unsigned int priority);
1153
1154 /**
1155 Pauses the thread execution for the given amount of time.
1156
1157 This is the same as wxMilliSleep().
1158 */
1159 static void Sleep(unsigned long milliseconds);
1160
1161 /**
1162 This function should be called periodically by the thread to ensure that
1163 calls to Pause() and Delete() will work.
1164
1165 If it returns @true, the thread should exit as soon as possible.
1166 Notice that under some platforms (POSIX), implementation of Pause() also
1167 relies on this function being called, so not calling it would prevent
1168 both stopping and suspending thread from working.
1169 */
1170 virtual bool TestDestroy();
1171
1172 /**
1173 Return the thread object for the calling thread.
1174
1175 @NULL is returned if the calling thread is the main (GUI) thread, but
1176 IsMain() should be used to test whether the thread is really the main one
1177 because @NULL may also be returned for the thread not created with wxThread
1178 class. Generally speaking, the return value for such a thread is undefined.
1179 */
1180 static wxThread* This();
1181
1182 /**
1183 Waits for a @b joinable thread to terminate and returns the value the thread
1184 returned from Entry() or @c "(ExitCode)-1" on error. Notice that, unlike
1185 Delete(), this function doesn't cancel the thread in any way so the caller
1186 waits for as long as it takes to the thread to exit.
1187
1188 You can only Wait() for @b joinable (not detached) threads.
1189
1190 This function can only be called from another thread context.
1191
1192 See @ref thread_deletion for a broader explanation of this routine.
1193 */
1194 ExitCode Wait();
1195
1196 /**
1197 Give the rest of the thread's time-slice to the system allowing the other
1198 threads to run.
1199
1200 Note that using this function is @b strongly discouraged, since in
1201 many cases it indicates a design weakness of your threading model
1202 (as does using Sleep() functions).
1203
1204 Threads should use the CPU in an efficient manner, i.e. they should
1205 do their current work efficiently, then as soon as the work is done block
1206 on a wakeup event (wxCondition, wxMutex, select(), poll(), ...) which will
1207 get signalled e.g. by other threads or a user device once further thread
1208 work is available.
1209 Using Yield() or Sleep() indicates polling-type behaviour, since we're
1210 fuzzily giving up our timeslice and wait until sometime later we'll get
1211 reactivated, at which time we realize that there isn't really much to do
1212 and Yield() again...
1213
1214 The most critical characteristic of Yield() is that it's operating system
1215 specific: there may be scheduler changes which cause your thread to not
1216 wake up relatively soon again, but instead many seconds later,
1217 causing huge performance issues for your application.
1218
1219 <strong>
1220 With a well-behaving, CPU-efficient thread the operating system is likely
1221 to properly care for its reactivation the moment it needs it, whereas with
1222 non-deterministic, Yield-using threads all bets are off and the system
1223 scheduler is free to penalize them drastically</strong>, and this effect
1224 gets worse with increasing system load due to less free CPU resources available.
1225 You may refer to various Linux kernel @c sched_yield discussions for more
1226 information.
1227
1228 See also Sleep().
1229 */
1230 static void Yield();
1231
1232 protected:
1233
1234 /**
1235 This is the entry point of the thread.
1236
1237 This function is pure virtual and must be implemented by any derived class.
1238 The thread execution will start here.
1239
1240 The returned value is the thread exit code which is only useful for
1241 joinable threads and is the value returned by Wait().
1242 This function is called by wxWidgets itself and should never be called
1243 directly.
1244 */
1245 virtual ExitCode Entry() = 0;
1246
1247 /**
1248 This is a protected function of the wxThread class and thus can only be called
1249 from a derived class. It also can only be called in the context of this
1250 thread, i.e. a thread can only exit from itself, not from another thread.
1251
1252 This function will terminate the OS thread (i.e. stop the associated path of
1253 execution) and also delete the associated C++ object for detached threads.
1254 OnExit() will be called just before exiting.
1255 */
1256 void Exit(ExitCode exitcode = 0);
1257
1258 private:
1259
1260 /**
1261 Called when the thread exits.
1262
1263 This function is called in the context of the thread associated with the
1264 wxThread object, not in the context of the main thread.
1265 This function will not be called if the thread was @ref Kill() killed.
1266
1267 This function should never be called directly.
1268 */
1269 virtual void OnExit();
1270 };
1271
1272
1273 /** See wxSemaphore. */
1274 enum wxSemaError
1275 {
1276 wxSEMA_NO_ERROR = 0,
1277 wxSEMA_INVALID, //!< semaphore hasn't been initialized successfully
1278 wxSEMA_BUSY, //!< returned by TryWait() if Wait() would block
1279 wxSEMA_TIMEOUT, //!< returned by WaitTimeout()
1280 wxSEMA_OVERFLOW, //!< Post() would increase counter past the max
1281 wxSEMA_MISC_ERROR
1282 };
1283
1284 /**
1285 @class wxSemaphore
1286
1287 wxSemaphore is a counter limiting the number of threads concurrently accessing
1288 a shared resource. This counter is always between 0 and the maximum value
1289 specified during the semaphore creation. When the counter is strictly greater
1290 than 0, a call to wxSemaphore::Wait() returns immediately and decrements the
1291 counter. As soon as it reaches 0, any subsequent calls to wxSemaphore::Wait
1292 block and only return when the semaphore counter becomes strictly positive
1293 again as the result of calling wxSemaphore::Post which increments the counter.
1294
1295 In general, semaphores are useful to restrict access to a shared resource
1296 which can only be accessed by some fixed number of clients at the same time.
1297 For example, when modeling a hotel reservation system a semaphore with the counter
1298 equal to the total number of available rooms could be created. Each time a room
1299 is reserved, the semaphore should be acquired by calling wxSemaphore::Wait
1300 and each time a room is freed it should be released by calling wxSemaphore::Post.
1301
1302 @library{wxbase}
1303 @category{threading}
1304 */
1305 class wxSemaphore
1306 {
1307 public:
1308 /**
1309 Specifying a @a maxcount of 0 actually makes wxSemaphore behave as if
1310 there is no upper limit. If @a maxcount is 1, the semaphore behaves almost as a
1311 mutex (but unlike a mutex it can be released by a thread different from the one
1312 which acquired it).
1313
1314 @a initialcount is the initial value of the semaphore which must be between
1315 0 and @a maxcount (if it is not set to 0).
1316 */
1317 wxSemaphore(int initialcount = 0, int maxcount = 0);
1318
1319 /**
1320 Destructor is not virtual, don't use this class polymorphically.
1321 */
1322 ~wxSemaphore();
1323
1324 /**
1325 Increments the semaphore count and signals one of the waiting
1326 threads in an atomic way. Returns @e wxSEMA_OVERFLOW if the count
1327 would increase the counter past the maximum.
1328
1329 @return One of:
1330 - wxSEMA_NO_ERROR: There was no error.
1331 - wxSEMA_INVALID : Semaphore hasn't been initialized successfully.
1332 - wxSEMA_OVERFLOW: Post() would increase counter past the max.
1333 - wxSEMA_MISC_ERROR: Miscellaneous error.
1334 */
1335 wxSemaError Post();
1336
1337 /**
1338 Same as Wait(), but returns immediately.
1339
1340 @return One of:
1341 - wxSEMA_NO_ERROR: There was no error.
1342 - wxSEMA_INVALID: Semaphore hasn't been initialized successfully.
1343 - wxSEMA_BUSY: Returned by TryWait() if Wait() would block, i.e. the count is zero.
1344 - wxSEMA_MISC_ERROR: Miscellaneous error.
1345 */
1346 wxSemaError TryWait();
1347
1348 /**
1349 Wait indefinitely until the semaphore count becomes strictly positive
1350 and then decrement it and return.
1351
1352 @return One of:
1353 - wxSEMA_NO_ERROR: There was no error.
1354 - wxSEMA_INVALID: Semaphore hasn't been initialized successfully.
1355 - wxSEMA_MISC_ERROR: Miscellaneous error.
1356 */
1357 wxSemaError Wait();
1358
1359 /**
1360 Same as Wait(), but with a timeout limit.
1361
1362 @return One of:
1363 - wxSEMA_NO_ERROR: There was no error.
1364 - wxSEMA_INVALID: Semaphore hasn't been initialized successfully.
1365 - wxSEMA_TIMEOUT: Timeout occurred without receiving semaphore.
1366 - wxSEMA_MISC_ERROR: Miscellaneous error.
1367 */
1368 wxSemaError WaitTimeout(unsigned long timeout_millis);
1369 };
1370
1371
1372
1373 /**
1374 @class wxMutexLocker
1375
1376 This is a small helper class to be used with wxMutex objects.
1377
1378 A wxMutexLocker acquires a mutex lock in the constructor and releases
1379 (or unlocks) the mutex in the destructor making it much more difficult to
1380 forget to release a mutex (which, in general, will promptly lead to serious
1381 problems). See wxMutex for an example of wxMutexLocker usage.
1382
1383 @library{wxbase}
1384 @category{threading}
1385
1386 @see wxMutex, wxCriticalSectionLocker
1387 */
1388 class wxMutexLocker
1389 {
1390 public:
1391 /**
1392 Constructs a wxMutexLocker object associated with mutex and locks it.
1393 Call IsOk() to check if the mutex was successfully locked.
1394 */
1395 wxMutexLocker(wxMutex& mutex);
1396
1397 /**
1398 Destructor releases the mutex if it was successfully acquired in the ctor.
1399 */
1400 ~wxMutexLocker();
1401
1402 /**
1403 Returns @true if mutex was acquired in the constructor, @false otherwise.
1404 */
1405 bool IsOk() const;
1406 };
1407
1408
1409 /**
1410 The possible wxMutex kinds.
1411 */
1412 enum wxMutexType
1413 {
1414 /** Normal non-recursive mutex: try to always use this one. */
1415 wxMUTEX_DEFAULT,
1416
1417 /** Recursive mutex: don't use these ones with wxCondition. */
1418 wxMUTEX_RECURSIVE
1419 };
1420
1421
1422 /**
1423 The possible wxMutex errors.
1424 */
1425 enum wxMutexError
1426 {
1427 /** The operation completed successfully. */
1428 wxMUTEX_NO_ERROR = 0,
1429
1430 /** The mutex hasn't been initialized. */
1431 wxMUTEX_INVALID,
1432
1433 /** The mutex is already locked by the calling thread. */
1434 wxMUTEX_DEAD_LOCK,
1435
1436 /** The mutex is already locked by another thread. */
1437 wxMUTEX_BUSY,
1438
1439 /** An attempt to unlock a mutex which is not locked. */
1440 wxMUTEX_UNLOCKED,
1441
1442 /** wxMutex::LockTimeout() has timed out. */
1443 wxMUTEX_TIMEOUT,
1444
1445 /** Any other error */
1446 wxMUTEX_MISC_ERROR
1447 };
1448
1449
1450 /**
1451 @class wxMutex
1452
1453 A mutex object is a synchronization object whose state is set to signaled when
1454 it is not owned by any thread, and nonsignaled when it is owned. Its name comes
1455 from its usefulness in coordinating mutually-exclusive access to a shared
1456 resource as only one thread at a time can own a mutex object.
1457
1458 Mutexes may be recursive in the sense that a thread can lock a mutex which it
1459 had already locked before (instead of dead locking the entire process in this
1460 situation by starting to wait on a mutex which will never be released while the
1461 thread is waiting) but using them is not recommended under Unix and they are
1462 @b not recursive by default. The reason for this is that recursive
1463 mutexes are not supported by all Unix flavours and, worse, they cannot be used
1464 with wxCondition.
1465
1466 For example, when several threads use the data stored in the linked list,
1467 modifications to the list should only be allowed to one thread at a time
1468 because during a new node addition the list integrity is temporarily broken
1469 (this is also called @e program @e invariant).
1470
1471 @code
1472 // this variable has an "s_" prefix because it is static: seeing an "s_" in
1473 // a multithreaded program is in general a good sign that you should use a
1474 // mutex (or a critical section)
1475 static wxMutex *s_mutexProtectingTheGlobalData;
1476
1477 // we store some numbers in this global array which is presumably used by
1478 // several threads simultaneously
1479 wxArrayInt s_data;
1480
1481 void MyThread::AddNewNode(int num)
1482 {
1483 // ensure that no other thread accesses the list
1484 s_mutexProtectingTheGlobalList->Lock();
1485
1486 s_data.Add(num);
1487
1488 s_mutexProtectingTheGlobalList->Unlock();
1489 }
1490
1491 // return true if the given number is greater than all array elements
1492 bool MyThread::IsGreater(int num)
1493 {
1494 // before using the list we must acquire the mutex
1495 wxMutexLocker lock(s_mutexProtectingTheGlobalData);
1496
1497 size_t count = s_data.Count();
1498 for ( size_t n = 0; n < count; n++ )
1499 {
1500 if ( s_data[n] > num )
1501 return false;
1502 }
1503
1504 return true;
1505 }
1506 @endcode
1507
1508 Notice how wxMutexLocker was used in the second function to ensure that the
1509 mutex is unlocked in any case: whether the function returns true or false
1510 (because the destructor of the local object @e lock is always called).
1511 Using this class instead of directly using wxMutex is, in general, safer
1512 and is even more so if your program uses C++ exceptions.
1513
1514 @library{wxbase}
1515 @category{threading}
1516
1517 @see wxThread, wxCondition, wxMutexLocker, wxCriticalSection
1518 */
1519 class wxMutex
1520 {
1521 public:
1522 /**
1523 Default constructor.
1524 */
1525 wxMutex(wxMutexType type = wxMUTEX_DEFAULT);
1526
1527 /**
1528 Destroys the wxMutex object.
1529 */
1530 ~wxMutex();
1531
1532 /**
1533 Locks the mutex object.
1534 This is equivalent to LockTimeout() with infinite timeout.
1535
1536 Note that if this mutex is already locked by the caller thread,
1537 this function doesn't block but rather immediately returns.
1538
1539 @return One of: @c wxMUTEX_NO_ERROR, @c wxMUTEX_DEAD_LOCK.
1540 */
1541 wxMutexError Lock();
1542
1543 /**
1544 Try to lock the mutex object during the specified time interval.
1545
1546 @return One of: @c wxMUTEX_NO_ERROR, @c wxMUTEX_DEAD_LOCK, @c wxMUTEX_TIMEOUT.
1547 */
1548 wxMutexError LockTimeout(unsigned long msec);
1549
1550 /**
1551 Tries to lock the mutex object. If it can't, returns immediately with an error.
1552
1553 @return One of: @c wxMUTEX_NO_ERROR, @c wxMUTEX_BUSY.
1554 */
1555 wxMutexError TryLock();
1556
1557 /**
1558 Unlocks the mutex object.
1559
1560 @return One of: @c wxMUTEX_NO_ERROR, @c wxMUTEX_UNLOCKED.
1561 */
1562 wxMutexError Unlock();
1563 };
1564
1565
1566
1567 // ============================================================================
1568 // Global functions/macros
1569 // ============================================================================
1570
1571 /** @addtogroup group_funcmacro_thread */
1572 //@{
1573
1574 /**
1575 This macro declares a (static) critical section object named @a cs if
1576 @c wxUSE_THREADS is 1 and does nothing if it is 0.
1577
1578 @header{wx/thread.h}
1579 */
1580 #define wxCRIT_SECT_DECLARE(cs)
1581
1582 /**
1583 This macro declares a critical section object named @a cs if
1584 @c wxUSE_THREADS is 1 and does nothing if it is 0. As it doesn't include
1585 the @c static keyword (unlike wxCRIT_SECT_DECLARE()), it can be used to
1586 declare a class or struct member which explains its name.
1587
1588 @header{wx/thread.h}
1589 */
1590 #define wxCRIT_SECT_DECLARE_MEMBER(cs)
1591
1592 /**
1593 This macro creates a wxCriticalSectionLocker named @a name and associated
1594 with the critical section @a cs if @c wxUSE_THREADS is 1 and does nothing
1595 if it is 0.
1596
1597 @header{wx/thread.h}
1598 */
1599 #define wxCRIT_SECT_LOCKER(name, cs)
1600
1601 /**
1602 This macro combines wxCRIT_SECT_DECLARE() and wxCRIT_SECT_LOCKER(): it
1603 creates a static critical section object and also the lock object
1604 associated with it. Because of this, it can be only used inside a function,
1605 not at global scope. For example:
1606
1607 @code
1608 int IncCount()
1609 {
1610 static int s_counter = 0;
1611
1612 wxCRITICAL_SECTION(counter);
1613
1614 return ++s_counter;
1615 }
1616 @endcode
1617
1618 Note that this example assumes that the function is called the first time
1619 from the main thread so that the critical section object is initialized
1620 correctly by the time other threads start calling it, if this is not the
1621 case this approach can @b not be used and the critical section must be made
1622 a global instead.
1623
1624 @header{wx/thread.h}
1625 */
1626 #define wxCRITICAL_SECTION(name)
1627
1628 /**
1629 This macro is equivalent to
1630 @ref wxCriticalSection::Leave "critical_section.Leave()" if
1631 @c wxUSE_THREADS is 1 and does nothing if it is 0.
1632
1633 @header{wx/thread.h}
1634 */
1635 #define wxLEAVE_CRIT_SECT(critical_section)
1636
1637 /**
1638 This macro is equivalent to
1639 @ref wxCriticalSection::Enter "critical_section.Enter()" if
1640 @c wxUSE_THREADS is 1 and does nothing if it is 0.
1641
1642 @header{wx/thread.h}
1643 */
1644 #define wxENTER_CRIT_SECT(critical_section)
1645
1646 /**
1647 Returns @true if this thread is the main one. Always returns @true if
1648 @c wxUSE_THREADS is 0.
1649
1650 @header{wx/thread.h}
1651 */
1652 bool wxIsMainThread();
1653
1654
1655
1656 /**
1657 This function must be called when any thread other than the main GUI thread
1658 wants to get access to the GUI library. This function will block the
1659 execution of the calling thread until the main thread (or any other thread
1660 holding the main GUI lock) leaves the GUI library and no other thread will
1661 enter the GUI library until the calling thread calls wxMutexGuiLeave().
1662
1663 Typically, these functions are used like this:
1664
1665 @code
1666 void MyThread::Foo(void)
1667 {
1668 // before doing any GUI calls we must ensure that
1669 // this thread is the only one doing it!
1670
1671 wxMutexGuiEnter();
1672
1673 // Call GUI here:
1674 my_window->DrawSomething();
1675
1676 wxMutexGuiLeave();
1677 }
1678 @endcode
1679
1680 This function is only defined on platforms which support preemptive
1681 threads and only works under some ports (wxMSW currently).
1682
1683 @note Under GTK, no creation of top-level windows is allowed in any thread
1684 but the main one.
1685
1686 @header{wx/thread.h}
1687 */
1688 void wxMutexGuiEnter();
1689
1690 /**
1691 This function is only defined on platforms which support preemptive
1692 threads.
1693
1694 @see wxMutexGuiEnter()
1695
1696 @header{wx/thread.h}
1697 */
1698 void wxMutexGuiLeave();
1699
1700 //@}
1701