1 \section{\class{wxArray
}}\label{wxarray
}
3 This section describes the so called
{\it dynamic arrays
}. This is a C
4 array-like data structure i.e. the member access time is constant (and not
5 linear according to the number of container elements as for linked lists). However, these
6 arrays are dynamic in the sense that they will automatically allocate more
7 memory if there is not enough of it for adding a new element. They also perform
8 range checking on the index values but in debug mode only, so please be sure to
9 compile your application in debug mode to use it (see
\helpref{debugging overview
}{debuggingoverview
} for
10 details). So, unlike the arrays in some other
11 languages, attempt to access an element beyond the arrays bound doesn't
12 automatically expand the array but provokes an assertion failure instead in
13 debug build and does nothing (except possibly crashing your program) in the
16 The array classes were designed to be reasonably efficient, both in terms of
17 run-time speed and memory consumption and the executable size. The speed of
18 array item access is, of course, constant (independent of the number of elements)
19 making them much more efficient than linked lists (
\helpref{wxList
}{wxlist
}).
20 Adding items to the arrays is also implemented in more or less constant time -
21 but the price is preallocating the memory in advance. In the
\helpref{memory management
}{wxarraymemorymanagement
} section
22 you may find some useful hints about optimizing wxArray memory usage. As for executable size, all
23 wxArray functions are inline, so they do not take
{\it any space at all
}.
25 wxWindows has three different kinds of array. All of them derive from
26 wxBaseArray class which works with untyped data and can not be used directly.
27 The standard macros WX
\_DEFINE\_ARRAY(), WX
\_DEFINE\_SORTED\_ARRAY() and
28 WX
\_DEFINE\_OBJARRAY() are used to define a new class deriving from it. The
29 classes declared will be called in this documentation wxArray, wxSortedArray and
30 wxObjArray but you should keep in mind that no classes with such names actually
31 exist, each time you use one of WX
\_DEFINE\_XXXARRAY macro you define a class
32 with a new name. In fact, these names are "template" names and each usage of one
33 of the macros mentioned above creates a template specialization for the given
36 wxArray is suitable for storing integer types and pointers which it does not
37 treat as objects in any way, i.e. the element pointed to by the pointer is not
38 deleted when the element is removed from the array. It should be noted that
39 all of wxArray's functions are inline, so it costs strictly nothing to define as
40 many array types as you want (either in terms of the executable size or the
41 speed) as long as at least one of them is defined and this is always the case
42 because wxArrays are used by wxWindows internally. This class has one serious
43 limitation: it can only be used for storing integral types (bool, char, short,
44 int, long and their unsigned variants) or pointers (of any kind). An attempt
45 to use with objects of sizeof() greater than sizeof(long) will provoke a
46 runtime assertion failure, however declaring a wxArray of floats will not (on
47 the machines where sizeof(float) <= sizeof(long)), yet it will
{\bf not
} work,
48 please use wxObjArray for storing floats and doubles (NB: a more efficient
49 wxArrayDouble class is scheduled for the next release of wxWindows).
51 wxSortedArray is a wxArray variant which should be used when searching in the
52 array is a frequently used operation. It requires you to define an additional
53 function for comparing two elements of the array element type and always stores
54 its items in the sorted order (according to this function). Thus, it is
55 \helpref{Index()
}{wxarrayindex
} function execution time is $O(log(N))$ instead of
56 $O(N)$ for the usual arrays but the
\helpref{Add()
}{wxarrayadd
} method is
57 slower: it is $O(log(N))$ instead of constant time (neglecting time spent in
58 memory allocation routine). However, in a usual situation elements are added to
59 an array much less often than searched inside it, so wxSortedArray may lead to
60 huge performance improvements compared to wxArray. Finally, it should be
61 noticed that, as wxArray, wxSortedArray can be only used for storing integral
64 wxObjArray class treats its elements like "objects". It may delete them when
65 they are removed from the array (invoking the correct destructor) and copies
66 them using the objects copy constructor. In order to implement this behaviour
67 the definition of the wxObjArray arrays is split in two parts: first, you should
68 declare the new wxObjArray class using WX
\_DECLARE\_OBJARRAY() macro and then
69 you must include the file defining the implementation of template type:
70 <wx/arrimpl.cpp> and define the array class with WX
\_DEFINE\_OBJARRAY() macro
71 from a point where the full (as opposed to `forward') declaration of the array
72 elements class is in scope. As it probably sounds very complicated here is an
76 #include <wx/dynarray.h>
78 // we must forward declare the array because it is used inside the class
83 // this defines two new types: ArrayOfDirectories and ArrayOfFiles which can be
84 // now used as shown below
85 WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
86 WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);
91 ArrayOfDirectories m_subdirectories; // all subdirectories
92 ArrayOfFiles m_files; // all files in this directory
97 // now that we have MyDirectory declaration in scope we may finish the
98 // definition of ArrayOfDirectories -- note that this expands into some C++
99 // code and so should only be compiled once (i.e., don't put this in the
100 // header, but into a source file or you will get linkin errors)
101 #include <wx/arrimpl.cpp> // this is a magic incantation which must be done!
102 WX_DEFINE_OBJARRAY(ArrayOfDirectories);
107 It is not as elegant as writing
110 typedef std::vector<MyDirectory> ArrayOfDirectories;
113 but is not that complicated and allows the code to be compiled with any, however
114 dumb, C++ compiler in the world.
116 Things are much simpler for wxArray and wxSortedArray however: it is enough
120 WX_DEFINE_ARRAY(MyDirectory *, ArrayOfDirectories);
121 WX_DEFINE_SORTED_ARRAY(MyFile *, ArrayOfFiles);
124 \wxheading{See also:
}
126 \helpref{Container classes overview
}{wxcontaineroverview
},
\helpref{wxList
}{wxlist
}
128 \wxheading{Include files
}
130 <wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp>
133 \latexignore{\rtfignore{\wxheading{Function groups
}}}
135 \membersection{Macros for template array definition
}
137 To use an array you must first define the array class. This is done with the
138 help of the macros in this section. The class of array elements must be (at
139 least) forward declared for WX
\_DEFINE\_ARRAY, WX
\_DEFINE\_SORTED\_ARRAY and
140 WX
\_DECLARE\_OBJARRAY macros and must be fully declared before you use
141 WX
\_DEFINE\_OBJARRAY macro.
143 \helpref{WX
\_DEFINE\_ARRAY}{wxdefinearray
}\\
144 \helpref{WX
\_DEFINE\_EXPORTED\_ARRAY}{wxdefinearray
}\\
145 \helpref{WX
\_DEFINE\_USER\_EXPORTED\_ARRAY}{wxdefinearray
}\\
146 \helpref{WX
\_DEFINE\_SORTED\_ARRAY}{wxdefinesortedarray
}\\
147 \helpref{WX
\_DEFINE\_SORTED\_EXPORTED\_ARRAY}{wxdefinesortedarray
}\\
148 \helpref{WX
\_DEFINE\_SORTED\_USER\_EXPORTED\_ARRAY}{wxdefinesortedarray
}\\
149 \helpref{WX
\_DECLARE\_EXPORTED\_OBJARRAY}{wxdeclareobjarray
}\\
150 \helpref{WX
\_DECLARE\_USER\_EXPORTED\_OBJARRAY}{wxdeclareobjarray
}\\
151 \helpref{WX
\_DEFINE\_OBJARRAY}{wxdefineobjarray
}\\
152 \helpref{WX
\_DEFINE\_EXPORTED\_OBJARRAY}{wxdefineobjarray
}\\
153 \helpref{WX
\_DEFINE\_USER\_EXPORTED\_OBJARRAY}{wxdefineobjarray
}
155 \membersection{Constructors and destructors
}
157 Array classes are
100\% C++ objects and as such they have the appropriate copy
158 constructors and assignment operators. Copying wxArray just copies the elements
159 but copying wxObjArray copies the arrays items. However, for memory-efficiency
160 sake, neither of these classes has virtual destructor. It is not very important
161 for wxArray which has trivial destructor anyhow, but it does mean that you
162 should avoid deleting wxObjArray through a wxBaseArray pointer (as you would
163 never use wxBaseArray anyhow it shouldn't be a problem) and that you should not
164 derive your own classes from the array classes.
166 \helpref{wxArray default constructor
}{wxarrayctordef
}\\
167 \helpref{wxArray copy constructors and assignment operators
}{wxarrayctorcopy
}\\
168 \helpref{\destruct{wxArray
}}{wxarraydtor
}
170 \membersection{Memory management
}\label{wxarraymemorymanagement
}
172 Automatic array memory management is quite trivial: the array starts by
173 preallocating some minimal amount of memory (defined by
174 WX
\_ARRAY\_DEFAULT\_INITIAL\_SIZE) and when further new items exhaust already
175 allocated memory it reallocates it adding
50\% of the currently allocated
176 amount, but no more than some maximal number which is defined by
177 ARRAY
\_MAXSIZE\_INCREMENT constant. Of course, this may lead to some memory
178 being wasted (ARRAY
\_MAXSIZE\_INCREMENT in the worst case, i.e.
4Kb in the
179 current implementation), so the
\helpref{Shrink()
}{wxarrayshrink
} function is
180 provided to unallocate the extra memory. The
\helpref{Alloc()
}{wxarrayalloc
}
181 function can also be quite useful if you know in advance how many items you are
182 going to put in the array and will prevent the array code from reallocating the
183 memory more times than needed.
185 \helpref{Alloc
}{wxarrayalloc
}\\
186 \helpref{Shrink
}{wxarrayshrink
}
188 \membersection{Number of elements and simple item access
}
190 Functions in this section return the total number of array elements and allow to
191 retrieve them - possibly using just the C array indexing $
[]$ operator which
192 does exactly the same as
\helpref{Item()
}{wxarrayitem
} method.
194 \helpref{Count
}{wxarraycount
}\\
195 \helpref{GetCount
}{wxarraygetcount
}\\
196 \helpref{IsEmpty
}{wxarrayisempty
}\\
197 \helpref{Item
}{wxarrayitem
}\\
198 \helpref{Last
}{wxarraylast
}
200 \membersection{Adding items
}
202 \helpref{Add
}{wxarrayadd
}\\
203 \helpref{Insert
}{wxarrayinsert
}\\
204 \helpref{WX
\_APPEND\_ARRAY}{wxappendarray
}
206 \membersection{Removing items
}
208 \helpref{WX
\_CLEAR\_ARRAY}{wxcleararray
}\\
209 \helpref{Empty
}{wxarrayempty
}\\
210 \helpref{Clear
}{wxarrayclear
}\\
211 \helpref{RemoveAt
}{wxarrayremoveat
}\\
212 \helpref{Remove
}{wxarrayremove
}
214 \membersection{Searching and sorting
}
216 \helpref{Index
}{wxarrayindex
}\\
217 \helpref{Sort
}{wxarraysort
}
219 %%%%% MEMBERS HERE %%%%%
220 \helponly{\insertatlevel{2}{
226 \membersection{WX
\_DEFINE\_ARRAY}\label{wxdefinearray
}
228 \func{}{WX
\_DEFINE\_ARRAY}{\param{}{T
},
\param{}{name
}}
230 \func{}{WX
\_DEFINE\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
232 \func{}{WX
\_DEFINE\_USER\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
},
\param{}{exportspec
}}
234 This macro defines a new array class named
{\it name
} and containing the
235 elements of type
{\it T
}. The second form is used when compiling wxWindows as
236 a DLL under Windows and array needs to be visible outside the DLL. The third is
237 needed for exporting an array from a user DLL.
242 WX_DEFINE_ARRAY(int, wxArrayInt);
245 WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);
248 Note that wxWindows predefines the following standard array classes: wxArrayInt,
249 wxArrayLong and wxArrayPtrVoid.
251 \membersection{WX
\_DEFINE\_SORTED\_ARRAY}\label{wxdefinesortedarray
}
253 \func{}{WX
\_DEFINE\_SORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
255 \func{}{WX
\_DEFINE\_SORTED\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
257 \func{}{WX
\_DEFINE\_SORTED\_USER\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
259 This macro defines a new sorted array class named
{\it name
} and containing
260 the elements of type
{\it T
}. The second form is used when compiling wxWindows as
261 a DLL under Windows and array needs to be visible outside the DLL. The third is
262 needed for exporting an array from a user DLL.
267 WX_DEFINE_SORTED_ARRAY(int, wxSortedArrayInt);
270 WX_DEFINE_SORTED_ARRAY(MyClass *, wxArrayOfMyClass);
273 You will have to initialize the objects of this class by passing a comparison
274 function to the array object constructor like this:
277 int CompareInts(int n1, int n2)
282 wxSortedArrayInt sorted(CompareInts);
284 int CompareMyClassObjects(MyClass *item1, MyClass *item2)
286 // sort the items by their address...
287 return Stricmp(item1->GetAddress(), item2->GetAddress());
290 wxArrayOfMyClass another(CompareMyClassObjects);
293 \membersection{WX
\_DECLARE\_OBJARRAY}\label{wxdeclareobjarray
}
295 \func{}{WX
\_DECLARE\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
297 \func{}{WX
\_DECLARE\_EXPORTED\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
299 \func{}{WX
\_DECLARE\_USER\_EXPORTED\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
301 This macro declares a new object array class named
{\it name
} and containing
302 the elements of type
{\it T
}. The second form is used when compiling wxWindows as
303 a DLL under Windows and array needs to be visible outside the DLL. The third is
304 needed for exporting an array from a user DLL.
310 WX_DEFINE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not "MyClass *"!
313 You must use
\helpref{WX
\_DEFINE\_OBJARRAY()
}{wxdefineobjarray
} macro to define
314 the array class - otherwise you would get link errors.
316 \membersection{WX
\_DEFINE\_OBJARRAY}\label{wxdefineobjarray
}
318 \func{}{WX
\_DEFINE\_OBJARRAY}{\param{}{name
}}
320 \func{}{WX
\_DEFINE\_EXPORTED\_OBJARRAY}{\param{}{name
}}
322 \func{}{WX
\_DEFINE\_USER\_EXPORTED\_OBJARRAY}{\param{}{name
}}
324 This macro defines the methods of the array class
{\it name
} not defined by the
325 \helpref{WX
\_DECLARE\_OBJARRAY()
}{wxdeclareobjarray
} macro. You must include the
326 file <wx/arrimpl.cpp> before using this macro and you must have the full
327 declaration of the class of array elements in scope! If you forget to do the
328 first, the error will be caught by the compiler, but, unfortunately, many
329 compilers will not give any warnings if you forget to do the second - but the
330 objects of the class will not be copied correctly and their real destructor will
331 not be called. The latter two forms are merely aliases of the first to satisfy
332 some people's sense of symmetry when using the exported declarations.
337 // first declare the class!
341 MyClass(const MyClass&);
348 #include <wx/arrimpl.cpp>
349 WX_DEFINE_OBJARRAY(wxArrayOfMyClass);
352 \membersection{WX
\_APPEND\_ARRAY}\label{wxappendarray
}
354 \func{void
}{WX
\_APPEND\_ARRAY}{\param{wxArray\&
}{array
},
\param{wxArray\&
}{other
}}
356 This macro may be used to append all elements of the
{\it other
} array to the
357 {\it array
}. The two arrays must be of the same type.
359 \membersection{WX
\_CLEAR\_ARRAY}\label{wxcleararray
}
361 \func{void
}{WX
\_CLEAR\_ARRAY}{\param{wxArray\&
}{array
}}
363 This macro may be used to delete all elements of the array before emptying it.
364 It can not be used with wxObjArrays - but they will delete their elements anyhow
365 when you call Empty().
367 \membersection{Default constructors
}\label{wxarrayctordef
}
369 \func{}{wxArray
}{\void}
371 \func{}{wxObjArray
}{\void}
373 Default constructor initializes an empty array object.
375 \func{}{wxSortedArray
}{\param{int
(*)(T first, T second)}{compareFunction}}
377 There is no default constructor for wxSortedArray classes - you must initialize it
378 with a function to use for item comparison. It is a function which is passed
379 two arguments of type {\it T} where {\it T} is the array element type and which
380 should return a negative, zero or positive value according to whether the first
381 element passed to it is less than, equal to or greater than the second one.
383 \membersection{wxArray copy constructor and assignment operator}\label{wxarrayctorcopy}
385 \func{}{wxArray}{\param{const wxArray\& }{array}}
387 \func{}{wxSortedArray}{\param{const wxSortedArray\& }{array}}
389 \func{}{wxObjArray}{\param{const wxObjArray\& }{array}}
391 \func{wxArray\&}{operator$=$}{\param{const wxArray\& }{array}}
393 \func{wxSortedArray\&}{operator$=$}{\param{const wxSortedArray\& }{array}}
395 \func{wxObjArray\&}{operator$=$}{\param{const wxObjArray\& }{array}}
397 The copy constructors and assignment operators perform a shallow array copy
398 (i.e. they don't copy the objects pointed to even if the source array contains
399 the items of pointer type) for wxArray and wxSortedArray and a deep copy (i.e.
400 the array element are copied too) for wxObjArray.
402 \membersection{wxArray::\destruct{wxArray}}\label{wxarraydtor}
404 \func{}{\destruct{wxArray}}{\void}
406 \func{}{\destruct{wxSortedArray}}{\void}
408 \func{}{\destruct{wxObjArray}}{\void}
410 The wxObjArray destructor deletes all the items owned by the array. This is not
411 done by wxArray and wxSortedArray versions - you may use
412 \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro for this.
414 \membersection{wxArray::Add}\label{wxarrayadd}
416 \func{void}{Add}{\param{T }{item}}
418 \func{void}{Add}{\param{T *}{item}}
420 \func{void}{Add}{\param{T \&}{item}}
422 Appends a new element to the array (where {\it T} is the type of the array
425 The first version is used with wxArray and wxSortedArray. The second and the
426 third are used with wxObjArray. There is an important difference between
427 them: if you give a pointer to the array, it will take ownership of it, i.e.
428 will delete it when the item is deleted from the array. If you give a reference
429 to the array, however, the array will make a copy of the item and will not take
430 ownership of the original item. Once again, it only makes sense for wxObjArrays
431 because the other array types never take ownership of their elements.
433 You may also use \helpref{WX\_APPEND\_ARRAY}{wxappendarray} macro to append all
434 elements of one array to another one.
436 \membersection{wxArray::Alloc}\label{wxarrayalloc}
438 \func{void}{Alloc}{\param{size\_t }{count}}
440 Preallocates memory for a given number of array elements. It is worth calling
441 when the number of items which are going to be added to the array is known in
442 advance because it will save unneeded memory reallocation. If the array already
443 has enough memory for the given number of items, nothing happens.
445 \membersection{wxArray::Clear}\label{wxarrayclear}
447 \func{void}{Clear}{\void}
449 This function does the same as \helpref{Empty()}{wxarrayempty} and additionally
450 frees the memory allocated to the array.
452 \membersection{wxArray::Count}\label{wxarraycount}
454 \constfunc{size\_t}{Count}{\void}
456 Same as \helpref{GetCount()}{wxarraygetcount}. This function is deprecated -
457 it exists only for compatibility.
459 \membersection{wxObjArray::Detach}\label{wxobjarraydetach}
461 \func{T *}{Detach}{\param{size\_t }{index}}
463 Removes the element from the array, but, unlike,
464 \helpref{Remove()}{wxarrayremove} doesn't delete it. The function returns the
465 pointer to the removed element.
467 \membersection{wxArray::Empty}\label{wxarrayempty}
469 \func{void}{Empty}{\void}
471 Empties the array. For wxObjArray classes, this destroys all of the array
472 elements. For wxArray and wxSortedArray this does nothing except marking the
473 array of being empty - this function does not free the allocated memory, use
474 \helpref{Clear()}{wxarrayclear} for this.
476 \membersection{wxArray::GetCount}\label{wxarraygetcount}
478 \constfunc{size\_t}{GetCount}{\void}
480 Return the number of items in the array.
482 \membersection{wxArray::Index}\label{wxarrayindex}
484 \func{int}{Index}{\param{T\& }{item}, \param{bool }{searchFromEnd = FALSE}}
486 \func{int}{Index}{\param{T\& }{item}}
488 The first version of the function is for wxArray and wxObjArray, the second is
489 for wxSortedArray only.
491 Searches the element in the array, starting from either beginning or the end
492 depending on the value of {\it searchFromEnd} parameter. wxNOT\_FOUND is
493 returned if the element is not found, otherwise the index of the element is
496 Linear search is used for the wxArray and wxObjArray classes but binary search
497 in the sorted array is used for wxSortedArray (this is why searchFromEnd
498 parameter doesn't make sense for it).
500 {\bf NB:} even for wxObjArray classes, the operator==() of the elements in the
501 array is {\bf not} used by this function. It searches exactly the given
502 element in the array and so will only succeed if this element had been
503 previously added to the array, but fail even if another, identical, element is
506 \membersection{wxArray::Insert}\label{wxarrayinsert}
508 \func{void}{Insert}{\param{T }{item}, \param{size\_t }{n}}
510 \func{void}{Insert}{\param{T *}{item}, \param{size\_t }{n}}
512 \func{void}{Insert}{\param{T \&}{item}, \param{size\_t }{n}}
514 Insert a new item into the array before the item {\it n} - thus, {\it Insert(something, 0u)} will
515 insert an item in such way that it will become the
518 Please see \helpref{Add()}{wxarrayadd} for explanation of the differences
519 between the overloaded versions of this function.
521 \membersection{wxArray::IsEmpty}\label{wxarrayisempty}
523 \constfunc{bool}{IsEmpty}{\void}
525 Returns TRUE if the array is empty, FALSE otherwise.
527 \membersection{wxArray::Item}\label{wxarrayitem}
529 \constfunc{T\&}{Item}{\param{size\_t }{index}}
531 Returns the item at the given position in the array. If {\it index} is out of
532 bounds, an assert failure is raised in the debug builds but nothing special is
533 done in the release build.
535 The returned value is of type "reference to the array element type" for all of
538 \membersection{wxArray::Last}\label{wxarraylast}
540 \constfunc{T\&}{Last}{\void}
542 Returns the last element in the array, i.e. is the same as Item(GetCount() - 1).
543 An assert failure is raised in the debug mode if the array is empty.
545 The returned value is of type "reference to the array element type" for all of
548 \membersection{wxArray::Remove}\label{wxarrayremove}
550 \func{\void}{Remove}{\param{T }{item}}
552 Removes an element from the array by value: the first item of the
553 array equal to {\it item} is removed, an assert failure will result from an
554 attempt to remove an item which doesn't exist in the array.
556 When an element is removed from wxObjArray it is deleted by the array - use
557 \helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On the
558 other hand, when an object is removed from a wxArray nothing happens - you
559 should delete it manually if required:
567 See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
568 elements of a wxArray (supposed to contain pointers).
570 \membersection{wxArray::RemoveAt}\label{wxarrayremoveat}
572 \func{\void}{RemoveAt}{\param{size\_t }{index}}
574 Removes an element from the array by index. When an element
575 is removed from wxObjArray it is deleted by the array - use
576 \helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On the
577 other hand, when an object is removed from a wxArray nothing happens - you
578 should delete it manually if required:
586 See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
587 elements of a wxArray (supposed to contain pointers).
589 \membersection{wxArray::Shrink}\label{wxarrayshrink}
591 \func{void}{Shrink}{\void}
593 Frees all memory unused by the array. If the program knows that no new items
594 will be added to the array it may call Shrink() to reduce its memory usage.
595 However, if a new item is added to the array, some extra memory will be
598 \membersection{wxArray::Sort}\label{wxarraysort}
600 \func{void}{Sort}{\param{CMPFUNC<T> }{compareFunction}}
602 The notation CMPFUNC<T> should be read as if we had the following declaration:
605 template int CMPFUNC(T *first, T *second);
608 where {\it T} is the type of the array elements. I.e. it is a function returning
609 {\it int} which is passed two arguments of type {\it T *}.
611 Sorts the array using the specified compare function: this function should
612 return a negative, zero or positive value according to whether the first element
613 passed to it is less than, equal to or greater than the second one.
615 wxSortedArray doesn't have this function because it is always sorted.