4 * Copyright (C) 1994-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the coefficient buffer controller for decompression.
9 * This controller is the top level of the JPEG decompressor proper.
10 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
12 * In buffered-image mode, this controller is the interface between
13 * input-oriented processing and output-oriented processing.
14 * Also, the input side (only) is used when reading a file for transcoding.
17 #define JPEG_INTERNALS
21 /* Block smoothing is only applicable for progressive JPEG, so: */
22 #ifndef D_PROGRESSIVE_SUPPORTED
23 #undef BLOCK_SMOOTHING_SUPPORTED
26 /* Private buffer controller object */
29 struct jpeg_d_coef_controller pub
; /* public fields */
31 /* These variables keep track of the current location of the input side. */
32 /* cinfo->input_iMCU_row is also used for this. */
33 JDIMENSION MCU_ctr
; /* counts MCUs processed in current row */
34 int MCU_vert_offset
; /* counts MCU rows within iMCU row */
35 int MCU_rows_per_iMCU_row
; /* number of such rows needed */
37 /* The output side's location is represented by cinfo->output_iMCU_row. */
39 /* In single-pass modes, it's sufficient to buffer just one MCU.
40 * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
41 * and let the entropy decoder write into that workspace each time.
42 * (On 80x86, the workspace is FAR even though it's not really very big;
43 * this is to keep the module interfaces unchanged when a large coefficient
44 * buffer is necessary.)
45 * In multi-pass modes, this array points to the current MCU's blocks
46 * within the virtual arrays; it is used only by the input side.
48 JBLOCKROW MCU_buffer
[D_MAX_BLOCKS_IN_MCU
];
50 #ifdef D_MULTISCAN_FILES_SUPPORTED
51 /* In multi-pass modes, we need a virtual block array for each component. */
52 jvirt_barray_ptr whole_image
[MAX_COMPONENTS
];
55 #ifdef BLOCK_SMOOTHING_SUPPORTED
56 /* When doing block smoothing, we latch coefficient Al values here */
57 int * coef_bits_latch
;
58 #define SAVED_COEFS 6 /* we save coef_bits[0..5] */
62 typedef my_coef_controller
* my_coef_ptr
;
64 /* Forward declarations */
65 METHODDEF(int) decompress_onepass
66 JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
));
67 #ifdef D_MULTISCAN_FILES_SUPPORTED
68 METHODDEF(int) decompress_data
69 JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
));
71 #ifdef BLOCK_SMOOTHING_SUPPORTED
72 LOCAL(boolean
) smoothing_ok
JPP((j_decompress_ptr cinfo
));
73 METHODDEF(int) decompress_smooth_data
74 JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
));
79 start_iMCU_row (j_decompress_ptr cinfo
)
80 /* Reset within-iMCU-row counters for a new row (input side) */
82 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
84 /* In an interleaved scan, an MCU row is the same as an iMCU row.
85 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
86 * But at the bottom of the image, process only what's left.
88 if (cinfo
->comps_in_scan
> 1) {
89 coef
->MCU_rows_per_iMCU_row
= 1;
91 if (cinfo
->input_iMCU_row
< (cinfo
->total_iMCU_rows
-1))
92 coef
->MCU_rows_per_iMCU_row
= cinfo
->cur_comp_info
[0]->v_samp_factor
;
94 coef
->MCU_rows_per_iMCU_row
= cinfo
->cur_comp_info
[0]->last_row_height
;
98 coef
->MCU_vert_offset
= 0;
103 * Initialize for an input processing pass.
107 #if defined(__VISAGECPP__)
108 start_input_pass2 (j_decompress_ptr cinfo
)
110 start_input_pass (j_decompress_ptr cinfo
)
113 cinfo
->input_iMCU_row
= 0;
114 start_iMCU_row(cinfo
);
118 * Initialize for an output processing pass.
122 start_output_pass (j_decompress_ptr cinfo
)
124 #ifdef BLOCK_SMOOTHING_SUPPORTED
125 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
127 /* If multipass, check to see whether to use block smoothing on this pass */
128 if (coef
->pub
.coef_arrays
!= NULL
) {
129 if (cinfo
->do_block_smoothing
&& smoothing_ok(cinfo
))
130 coef
->pub
.decompress_data
= decompress_smooth_data
;
132 coef
->pub
.decompress_data
= decompress_data
;
135 cinfo
->output_iMCU_row
= 0;
140 * Decompress and return some data in the single-pass case.
141 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
142 * Input and output must run in lockstep since we have only a one-MCU buffer.
143 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
145 * NB: output_buf contains a plane for each component in image,
146 * which we index according to the component's SOF position.
150 decompress_onepass (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)
152 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
153 JDIMENSION MCU_col_num
; /* index of current MCU within row */
154 JDIMENSION last_MCU_col
= cinfo
->MCUs_per_row
- 1;
155 JDIMENSION last_iMCU_row
= cinfo
->total_iMCU_rows
- 1;
156 int blkn
, ci
, xindex
, yindex
, yoffset
, useful_width
;
157 JSAMPARRAY output_ptr
;
158 JDIMENSION start_col
, output_col
;
159 jpeg_component_info
*compptr
;
160 inverse_DCT_method_ptr inverse_DCT
;
162 /* Loop to process as much as one whole iMCU row */
163 for (yoffset
= coef
->MCU_vert_offset
; yoffset
< coef
->MCU_rows_per_iMCU_row
;
165 for (MCU_col_num
= coef
->MCU_ctr
; MCU_col_num
<= last_MCU_col
;
167 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
168 jzero_far((void FAR
*) coef
->MCU_buffer
[0],
169 (size_t) (cinfo
->blocks_in_MCU
* SIZEOF(JBLOCK
)));
170 if (! (*cinfo
->entropy
->decode_mcu
) (cinfo
, coef
->MCU_buffer
)) {
171 /* Suspension forced; update state counters and exit */
172 coef
->MCU_vert_offset
= yoffset
;
173 coef
->MCU_ctr
= MCU_col_num
;
174 return JPEG_SUSPENDED
;
176 /* Determine where data should go in output_buf and do the IDCT thing.
177 * We skip dummy blocks at the right and bottom edges (but blkn gets
178 * incremented past them!). Note the inner loop relies on having
179 * allocated the MCU_buffer[] blocks sequentially.
181 blkn
= 0; /* index of current DCT block within MCU */
182 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
183 compptr
= cinfo
->cur_comp_info
[ci
];
184 /* Don't bother to IDCT an uninteresting component. */
185 if (! compptr
->component_needed
) {
186 blkn
+= compptr
->MCU_blocks
;
189 inverse_DCT
= cinfo
->idct
->inverse_DCT
[compptr
->component_index
];
190 useful_width
= (MCU_col_num
< last_MCU_col
) ? compptr
->MCU_width
191 : compptr
->last_col_width
;
192 output_ptr
= output_buf
[compptr
->component_index
] +
193 yoffset
* compptr
->DCT_scaled_size
;
194 start_col
= MCU_col_num
* compptr
->MCU_sample_width
;
195 for (yindex
= 0; yindex
< compptr
->MCU_height
; yindex
++) {
196 if (cinfo
->input_iMCU_row
< last_iMCU_row
||
197 yoffset
+yindex
< compptr
->last_row_height
) {
198 output_col
= start_col
;
199 for (xindex
= 0; xindex
< useful_width
; xindex
++) {
200 (*inverse_DCT
) (cinfo
, compptr
,
201 (JCOEFPTR
) coef
->MCU_buffer
[blkn
+xindex
],
202 output_ptr
, output_col
);
203 output_col
+= compptr
->DCT_scaled_size
;
206 blkn
+= compptr
->MCU_width
;
207 output_ptr
+= compptr
->DCT_scaled_size
;
211 /* Completed an MCU row, but perhaps not an iMCU row */
214 /* Completed the iMCU row, advance counters for next one */
215 cinfo
->output_iMCU_row
++;
216 if (++(cinfo
->input_iMCU_row
) < cinfo
->total_iMCU_rows
) {
217 start_iMCU_row(cinfo
);
218 return JPEG_ROW_COMPLETED
;
220 /* Completed the scan */
221 (*cinfo
->inputctl
->finish_input_pass
) (cinfo
);
222 return JPEG_SCAN_COMPLETED
;
227 * Dummy consume-input routine for single-pass operation.
231 dummy_consume_data (j_decompress_ptr cinfo
)
233 return JPEG_SUSPENDED
; /* Always indicate nothing was done */
237 #ifdef D_MULTISCAN_FILES_SUPPORTED
240 * Consume input data and store it in the full-image coefficient buffer.
241 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
242 * ie, v_samp_factor block rows for each component in the scan.
243 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
247 consume_data (j_decompress_ptr cinfo
)
249 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
250 JDIMENSION MCU_col_num
; /* index of current MCU within row */
251 int blkn
, ci
, xindex
, yindex
, yoffset
;
252 JDIMENSION start_col
;
253 JBLOCKARRAY buffer
[MAX_COMPS_IN_SCAN
];
254 JBLOCKROW buffer_ptr
;
255 jpeg_component_info
*compptr
;
257 /* Align the virtual buffers for the components used in this scan. */
258 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
259 compptr
= cinfo
->cur_comp_info
[ci
];
260 buffer
[ci
] = (*cinfo
->mem
->access_virt_barray
)
261 ((j_common_ptr
) cinfo
, coef
->whole_image
[compptr
->component_index
],
262 cinfo
->input_iMCU_row
* compptr
->v_samp_factor
,
263 (JDIMENSION
) compptr
->v_samp_factor
, TRUE
);
264 /* Note: entropy decoder expects buffer to be zeroed,
265 * but this is handled automatically by the memory manager
266 * because we requested a pre-zeroed array.
270 /* Loop to process one whole iMCU row */
271 for (yoffset
= coef
->MCU_vert_offset
; yoffset
< coef
->MCU_rows_per_iMCU_row
;
273 for (MCU_col_num
= coef
->MCU_ctr
; MCU_col_num
< cinfo
->MCUs_per_row
;
275 /* Construct list of pointers to DCT blocks belonging to this MCU */
276 blkn
= 0; /* index of current DCT block within MCU */
277 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
278 compptr
= cinfo
->cur_comp_info
[ci
];
279 start_col
= MCU_col_num
* compptr
->MCU_width
;
280 for (yindex
= 0; yindex
< compptr
->MCU_height
; yindex
++) {
281 buffer_ptr
= buffer
[ci
][yindex
+yoffset
] + start_col
;
282 for (xindex
= 0; xindex
< compptr
->MCU_width
; xindex
++) {
283 coef
->MCU_buffer
[blkn
++] = buffer_ptr
++;
287 /* Try to fetch the MCU. */
288 if (! (*cinfo
->entropy
->decode_mcu
) (cinfo
, coef
->MCU_buffer
)) {
289 /* Suspension forced; update state counters and exit */
290 coef
->MCU_vert_offset
= yoffset
;
291 coef
->MCU_ctr
= MCU_col_num
;
292 return JPEG_SUSPENDED
;
295 /* Completed an MCU row, but perhaps not an iMCU row */
298 /* Completed the iMCU row, advance counters for next one */
299 if (++(cinfo
->input_iMCU_row
) < cinfo
->total_iMCU_rows
) {
300 start_iMCU_row(cinfo
);
301 return JPEG_ROW_COMPLETED
;
303 /* Completed the scan */
304 (*cinfo
->inputctl
->finish_input_pass
) (cinfo
);
305 return JPEG_SCAN_COMPLETED
;
310 * Decompress and return some data in the multi-pass case.
311 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
312 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
314 * NB: output_buf contains a plane for each component in image.
318 decompress_data (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)
320 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
321 JDIMENSION last_iMCU_row
= cinfo
->total_iMCU_rows
- 1;
322 JDIMENSION block_num
;
323 int ci
, block_row
, block_rows
;
325 JBLOCKROW buffer_ptr
;
326 JSAMPARRAY output_ptr
;
327 JDIMENSION output_col
;
328 jpeg_component_info
*compptr
;
329 inverse_DCT_method_ptr inverse_DCT
;
331 /* Force some input to be done if we are getting ahead of the input. */
332 while (cinfo
->input_scan_number
< cinfo
->output_scan_number
||
333 (cinfo
->input_scan_number
== cinfo
->output_scan_number
&&
334 cinfo
->input_iMCU_row
<= cinfo
->output_iMCU_row
)) {
335 if ((*cinfo
->inputctl
->consume_input
)(cinfo
) == JPEG_SUSPENDED
)
336 return JPEG_SUSPENDED
;
339 /* OK, output from the virtual arrays. */
340 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
342 /* Don't bother to IDCT an uninteresting component. */
343 if (! compptr
->component_needed
)
345 /* Align the virtual buffer for this component. */
346 buffer
= (*cinfo
->mem
->access_virt_barray
)
347 ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
],
348 cinfo
->output_iMCU_row
* compptr
->v_samp_factor
,
349 (JDIMENSION
) compptr
->v_samp_factor
, FALSE
);
350 /* Count non-dummy DCT block rows in this iMCU row. */
351 if (cinfo
->output_iMCU_row
< last_iMCU_row
)
352 block_rows
= compptr
->v_samp_factor
;
354 /* NB: can't use last_row_height here; it is input-side-dependent! */
355 block_rows
= (int) (compptr
->height_in_blocks
% compptr
->v_samp_factor
);
356 if (block_rows
== 0) block_rows
= compptr
->v_samp_factor
;
358 inverse_DCT
= cinfo
->idct
->inverse_DCT
[ci
];
359 output_ptr
= output_buf
[ci
];
360 /* Loop over all DCT blocks to be processed. */
361 for (block_row
= 0; block_row
< block_rows
; block_row
++) {
362 buffer_ptr
= buffer
[block_row
];
364 for (block_num
= 0; block_num
< compptr
->width_in_blocks
; block_num
++) {
365 (*inverse_DCT
) (cinfo
, compptr
, (JCOEFPTR
) buffer_ptr
,
366 output_ptr
, output_col
);
368 output_col
+= compptr
->DCT_scaled_size
;
370 output_ptr
+= compptr
->DCT_scaled_size
;
374 if (++(cinfo
->output_iMCU_row
) < cinfo
->total_iMCU_rows
)
375 return JPEG_ROW_COMPLETED
;
376 return JPEG_SCAN_COMPLETED
;
379 #endif /* D_MULTISCAN_FILES_SUPPORTED */
382 #ifdef BLOCK_SMOOTHING_SUPPORTED
385 * This code applies interblock smoothing as described by section K.8
386 * of the JPEG standard: the first 5 AC coefficients are estimated from
387 * the DC values of a DCT block and its 8 neighboring blocks.
388 * We apply smoothing only for progressive JPEG decoding, and only if
389 * the coefficients it can estimate are not yet known to full precision.
392 /* Natural-order array positions of the first 5 zigzag-order coefficients */
400 * Determine whether block smoothing is applicable and safe.
401 * We also latch the current states of the coef_bits[] entries for the
402 * AC coefficients; otherwise, if the input side of the decompressor
403 * advances into a new scan, we might think the coefficients are known
404 * more accurately than they really are.
408 smoothing_ok (j_decompress_ptr cinfo
)
410 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
411 boolean smoothing_useful
= FALSE
;
413 jpeg_component_info
*compptr
;
416 int * coef_bits_latch
;
418 if (! cinfo
->progressive_mode
|| cinfo
->coef_bits
== NULL
)
421 /* Allocate latch area if not already done */
422 if (coef
->coef_bits_latch
== NULL
)
423 coef
->coef_bits_latch
= (int *)
424 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
425 cinfo
->num_components
*
426 (SAVED_COEFS
* SIZEOF(int)));
427 coef_bits_latch
= coef
->coef_bits_latch
;
429 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
431 /* All components' quantization values must already be latched. */
432 if ((qtable
= compptr
->quant_table
) == NULL
)
434 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
435 if (qtable
->quantval
[0] == 0 ||
436 qtable
->quantval
[Q01_POS
] == 0 ||
437 qtable
->quantval
[Q10_POS
] == 0 ||
438 qtable
->quantval
[Q20_POS
] == 0 ||
439 qtable
->quantval
[Q11_POS
] == 0 ||
440 qtable
->quantval
[Q02_POS
] == 0)
442 /* DC values must be at least partly known for all components. */
443 coef_bits
= cinfo
->coef_bits
[ci
];
444 if (coef_bits
[0] < 0)
446 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
447 for (coefi
= 1; coefi
<= 5; coefi
++) {
448 coef_bits_latch
[coefi
] = coef_bits
[coefi
];
449 if (coef_bits
[coefi
] != 0)
450 smoothing_useful
= TRUE
;
452 coef_bits_latch
+= SAVED_COEFS
;
455 return smoothing_useful
;
460 * Variant of decompress_data for use when doing block smoothing.
464 decompress_smooth_data (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)
466 my_coef_ptr coef
= (my_coef_ptr
) cinfo
->coef
;
467 JDIMENSION last_iMCU_row
= cinfo
->total_iMCU_rows
- 1;
468 JDIMENSION block_num
, last_block_column
;
469 int ci
, block_row
, block_rows
, access_rows
;
471 JBLOCKROW buffer_ptr
, prev_block_row
, next_block_row
;
472 JSAMPARRAY output_ptr
;
473 JDIMENSION output_col
;
474 jpeg_component_info
*compptr
;
475 inverse_DCT_method_ptr inverse_DCT
;
476 boolean first_row
, last_row
;
479 JQUANT_TBL
*quanttbl
;
480 JPEG_INT32 Q00
,Q01
,Q02
,Q10
,Q11
,Q20
, num
;
481 int DC1
,DC2
,DC3
,DC4
,DC5
,DC6
,DC7
,DC8
,DC9
;
484 /* Force some input to be done if we are getting ahead of the input. */
485 while (cinfo
->input_scan_number
<= cinfo
->output_scan_number
&&
486 ! cinfo
->inputctl
->eoi_reached
) {
487 if (cinfo
->input_scan_number
== cinfo
->output_scan_number
) {
488 /* If input is working on current scan, we ordinarily want it to
489 * have completed the current row. But if input scan is DC,
490 * we want it to keep one row ahead so that next block row's DC
491 * values are up to date.
493 JDIMENSION delta
= (cinfo
->Ss
== 0) ? 1 : 0;
494 if (cinfo
->input_iMCU_row
> cinfo
->output_iMCU_row
+delta
)
497 if ((*cinfo
->inputctl
->consume_input
)(cinfo
) == JPEG_SUSPENDED
)
498 return JPEG_SUSPENDED
;
501 /* OK, output from the virtual arrays. */
502 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
504 /* Don't bother to IDCT an uninteresting component. */
505 if (! compptr
->component_needed
)
507 /* Count non-dummy DCT block rows in this iMCU row. */
508 if (cinfo
->output_iMCU_row
< last_iMCU_row
) {
509 block_rows
= compptr
->v_samp_factor
;
510 access_rows
= block_rows
* 2; /* this and next iMCU row */
513 /* NB: can't use last_row_height here; it is input-side-dependent! */
514 block_rows
= (int) (compptr
->height_in_blocks
% compptr
->v_samp_factor
);
515 if (block_rows
== 0) block_rows
= compptr
->v_samp_factor
;
516 access_rows
= block_rows
; /* this iMCU row only */
519 /* Align the virtual buffer for this component. */
520 if (cinfo
->output_iMCU_row
> 0) {
521 access_rows
+= compptr
->v_samp_factor
; /* prior iMCU row too */
522 buffer
= (*cinfo
->mem
->access_virt_barray
)
523 ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
],
524 (cinfo
->output_iMCU_row
- 1) * compptr
->v_samp_factor
,
525 (JDIMENSION
) access_rows
, FALSE
);
526 buffer
+= compptr
->v_samp_factor
; /* point to current iMCU row */
529 buffer
= (*cinfo
->mem
->access_virt_barray
)
530 ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
],
531 (JDIMENSION
) 0, (JDIMENSION
) access_rows
, FALSE
);
534 /* Fetch component-dependent info */
535 coef_bits
= coef
->coef_bits_latch
+ (ci
* SAVED_COEFS
);
536 quanttbl
= compptr
->quant_table
;
537 Q00
= quanttbl
->quantval
[0];
538 Q01
= quanttbl
->quantval
[Q01_POS
];
539 Q10
= quanttbl
->quantval
[Q10_POS
];
540 Q20
= quanttbl
->quantval
[Q20_POS
];
541 Q11
= quanttbl
->quantval
[Q11_POS
];
542 Q02
= quanttbl
->quantval
[Q02_POS
];
543 inverse_DCT
= cinfo
->idct
->inverse_DCT
[ci
];
544 output_ptr
= output_buf
[ci
];
545 /* Loop over all DCT blocks to be processed. */
546 for (block_row
= 0; block_row
< block_rows
; block_row
++) {
547 buffer_ptr
= buffer
[block_row
];
548 if (first_row
&& block_row
== 0)
549 prev_block_row
= buffer_ptr
;
551 prev_block_row
= buffer
[block_row
-1];
552 if (last_row
&& block_row
== block_rows
-1)
553 next_block_row
= buffer_ptr
;
555 next_block_row
= buffer
[block_row
+1];
556 /* We fetch the surrounding DC values using a sliding-register approach.
557 * Initialize all nine here so as to do the right thing on narrow pics.
559 DC1
= DC2
= DC3
= (int) prev_block_row
[0][0];
560 DC4
= DC5
= DC6
= (int) buffer_ptr
[0][0];
561 DC7
= DC8
= DC9
= (int) next_block_row
[0][0];
563 last_block_column
= compptr
->width_in_blocks
- 1;
564 for (block_num
= 0; block_num
<= last_block_column
; block_num
++) {
565 /* Fetch current DCT block into workspace so we can modify it. */
566 jcopy_block_row(buffer_ptr
, (JBLOCKROW
) workspace
, (JDIMENSION
) 1);
567 /* Update DC values */
568 if (block_num
< last_block_column
) {
569 DC3
= (int) prev_block_row
[1][0];
570 DC6
= (int) buffer_ptr
[1][0];
571 DC9
= (int) next_block_row
[1][0];
573 /* Compute coefficient estimates per K.8.
574 * An estimate is applied only if coefficient is still zero,
575 * and is not known to be fully accurate.
578 if ((Al
=coef_bits
[1]) != 0 && workspace
[1] == 0) {
579 num
= 36 * Q00
* (DC4
- DC6
);
581 pred
= (int) (((Q01
<<7) + num
) / (Q01
<<8));
582 if (Al
> 0 && pred
>= (1<<Al
))
585 pred
= (int) (((Q01
<<7) - num
) / (Q01
<<8));
586 if (Al
> 0 && pred
>= (1<<Al
))
590 workspace
[1] = (JCOEF
) pred
;
593 if ((Al
=coef_bits
[2]) != 0 && workspace
[8] == 0) {
594 num
= 36 * Q00
* (DC2
- DC8
);
596 pred
= (int) (((Q10
<<7) + num
) / (Q10
<<8));
597 if (Al
> 0 && pred
>= (1<<Al
))
600 pred
= (int) (((Q10
<<7) - num
) / (Q10
<<8));
601 if (Al
> 0 && pred
>= (1<<Al
))
605 workspace
[8] = (JCOEF
) pred
;
608 if ((Al
=coef_bits
[3]) != 0 && workspace
[16] == 0) {
609 num
= 9 * Q00
* (DC2
+ DC8
- 2*DC5
);
611 pred
= (int) (((Q20
<<7) + num
) / (Q20
<<8));
612 if (Al
> 0 && pred
>= (1<<Al
))
615 pred
= (int) (((Q20
<<7) - num
) / (Q20
<<8));
616 if (Al
> 0 && pred
>= (1<<Al
))
620 workspace
[16] = (JCOEF
) pred
;
623 if ((Al
=coef_bits
[4]) != 0 && workspace
[9] == 0) {
624 num
= 5 * Q00
* (DC1
- DC3
- DC7
+ DC9
);
626 pred
= (int) (((Q11
<<7) + num
) / (Q11
<<8));
627 if (Al
> 0 && pred
>= (1<<Al
))
630 pred
= (int) (((Q11
<<7) - num
) / (Q11
<<8));
631 if (Al
> 0 && pred
>= (1<<Al
))
635 workspace
[9] = (JCOEF
) pred
;
638 if ((Al
=coef_bits
[5]) != 0 && workspace
[2] == 0) {
639 num
= 9 * Q00
* (DC4
+ DC6
- 2*DC5
);
641 pred
= (int) (((Q02
<<7) + num
) / (Q02
<<8));
642 if (Al
> 0 && pred
>= (1<<Al
))
645 pred
= (int) (((Q02
<<7) - num
) / (Q02
<<8));
646 if (Al
> 0 && pred
>= (1<<Al
))
650 workspace
[2] = (JCOEF
) pred
;
652 /* OK, do the IDCT */
653 (*inverse_DCT
) (cinfo
, compptr
, (JCOEFPTR
) workspace
,
654 output_ptr
, output_col
);
655 /* Advance for next column */
656 DC1
= DC2
; DC2
= DC3
;
657 DC4
= DC5
; DC5
= DC6
;
658 DC7
= DC8
; DC8
= DC9
;
659 buffer_ptr
++, prev_block_row
++, next_block_row
++;
660 output_col
+= compptr
->DCT_scaled_size
;
662 output_ptr
+= compptr
->DCT_scaled_size
;
666 if (++(cinfo
->output_iMCU_row
) < cinfo
->total_iMCU_rows
)
667 return JPEG_ROW_COMPLETED
;
668 return JPEG_SCAN_COMPLETED
;
671 #endif /* BLOCK_SMOOTHING_SUPPORTED */
675 * Initialize coefficient buffer controller.
679 jinit_d_coef_controller (j_decompress_ptr cinfo
, boolean need_full_buffer
)
684 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
685 SIZEOF(my_coef_controller
));
686 cinfo
->coef
= (struct jpeg_d_coef_controller
*) coef
;
687 #if defined(__VISAGECPP__)
688 coef
->pub
.start_input_pass2
= start_input_pass2
;
690 coef
->pub
.start_input_pass
= start_input_pass
;
693 coef
->pub
.start_output_pass
= start_output_pass
;
694 #ifdef BLOCK_SMOOTHING_SUPPORTED
695 coef
->coef_bits_latch
= NULL
;
698 /* Create the coefficient buffer. */
699 if (need_full_buffer
) {
700 #ifdef D_MULTISCAN_FILES_SUPPORTED
701 /* Allocate a full-image virtual array for each component, */
702 /* padded to a multiple of samp_factor DCT blocks in each direction. */
703 /* Note we ask for a pre-zeroed array. */
705 jpeg_component_info
*compptr
;
707 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
709 access_rows
= compptr
->v_samp_factor
;
710 #ifdef BLOCK_SMOOTHING_SUPPORTED
711 /* If block smoothing could be used, need a bigger window */
712 if (cinfo
->progressive_mode
)
715 coef
->whole_image
[ci
] = (*cinfo
->mem
->request_virt_barray
)
716 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, TRUE
,
717 (JDIMENSION
) jround_up((long) compptr
->width_in_blocks
,
718 (long) compptr
->h_samp_factor
),
719 (JDIMENSION
) jround_up((long) compptr
->height_in_blocks
,
720 (long) compptr
->v_samp_factor
),
721 (JDIMENSION
) access_rows
);
723 coef
->pub
.consume_data
= consume_data
;
724 coef
->pub
.decompress_data
= decompress_data
;
725 coef
->pub
.coef_arrays
= coef
->whole_image
; /* link to virtual arrays */
727 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
730 /* We only need a single-MCU buffer. */
735 (*cinfo
->mem
->alloc_large
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
736 D_MAX_BLOCKS_IN_MCU
* SIZEOF(JBLOCK
));
737 for (i
= 0; i
< D_MAX_BLOCKS_IN_MCU
; i
++) {
738 coef
->MCU_buffer
[i
] = buffer
+ i
;
740 coef
->pub
.consume_data
= dummy_consume_data
;
741 coef
->pub
.decompress_data
= decompress_onepass
;
742 coef
->pub
.coef_arrays
= NULL
; /* flag for no virtual arrays */