]> git.saurik.com Git - wxWidgets.git/blob - src/zlib/trees.c
added some wxMSW stuff
[wxWidgets.git] / src / zlib / trees.c
1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-1998 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
11 *
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 * REFERENCES
19 *
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26 *
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32 /* @(#) $Id$ */
33
34 /* #define GEN_TREES_H */
35
36 #include "deflate.h"
37
38 #ifdef DEBUG
39 # include <ctype.h>
40 #endif
41
42 /* ===========================================================================
43 * Constants
44 */
45
46 #define MAX_BL_BITS 7
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
48
49 #define END_BLOCK 256
50 /* end of block literal code */
51
52 #define REP_3_6 16
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55 #define REPZ_3_10 17
56 /* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58 #define REPZ_11_138 18
59 /* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
70 local const uch bl_order[BL_CODES]
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76 #define Buf_size (8 * 2*sizeof(char))
77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
78 * more than 16 bits on some systems.)
79 */
80
81 /* ===========================================================================
82 * Local data. These are initialized only once.
83 */
84
85 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86
87 #if defined(GEN_TREES_H) || !defined(STDC)
88 /* non ANSI compilers may not accept trees.h */
89
90 local ct_data static_ltree[L_CODES+2];
91 /* The static literal tree. Since the bit lengths are imposed, there is no
92 * need for the L_CODES extra codes used during heap construction. However
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94 * below).
95 */
96
97 local ct_data static_dtree[D_CODES];
98 /* The static distance tree. (Actually a trivial tree since all codes use
99 * 5 bits.)
100 */
101
102 uch _dist_code[DIST_CODE_LEN];
103 /* Distance codes. The first 256 values correspond to the distances
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of
105 * the 15 bit distances.
106 */
107
108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
109 /* length code for each normalized match length (0 == MIN_MATCH) */
110
111 local int base_length[LENGTH_CODES];
112 /* First normalized length for each code (0 = MIN_MATCH) */
113
114 local int base_dist[D_CODES];
115 /* First normalized distance for each code (0 = distance of 1) */
116
117 #else
118 # include "trees.h"
119 #endif /* GEN_TREES_H */
120
121 struct static_tree_desc_s {
122 const ct_data *static_tree; /* static tree or NULL */
123 const intf *extra_bits; /* extra bits for each code or NULL */
124 int extra_base; /* base index for extra_bits */
125 int elems; /* max number of elements in the tree */
126 int max_length; /* max bit length for the codes */
127 };
128
129 local static_tree_desc static_l_desc =
130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
131
132 local static_tree_desc static_d_desc =
133 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
134
135 local static_tree_desc static_bl_desc =
136 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
137
138 /* ===========================================================================
139 * Local (static) routines in this file.
140 */
141
142 local void tr_static_init OF((void));
143 local void init_block OF((deflate_state *s));
144 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
145 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
146 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
147 local void build_tree OF((deflate_state *s, tree_desc *desc));
148 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
149 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
150 local int build_bl_tree OF((deflate_state *s));
151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152 int blcodes));
153 local void compress_block OF((deflate_state *s, ct_data *ltree,
154 ct_data *dtree));
155 local void set_data_type OF((deflate_state *s));
156 local unsigned bi_reverse OF((unsigned value, int length));
157 local void bi_windup OF((deflate_state *s));
158 local void bi_flush OF((deflate_state *s));
159 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
160 int header));
161
162 #ifdef GEN_TREES_H
163 local void gen_trees_header OF((void));
164 #endif
165
166 #ifndef DEBUG
167 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168 /* Send a code of the given tree. c and tree must not have side effects */
169
170 #else /* DEBUG */
171 # define send_code(s, c, tree) \
172 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
173 send_bits(s, tree[c].Code, tree[c].Len); }
174 #endif
175
176 /* ===========================================================================
177 * Output a short LSB first on the stream.
178 * IN assertion: there is enough room in pendingBuf.
179 */
180 #define put_short(s, w) { \
181 put_byte(s, (uch)((w) & 0xff)); \
182 put_byte(s, (uch)((ush)(w) >> 8)); \
183 }
184
185 /* ===========================================================================
186 * Send a value on a given number of bits.
187 * IN assertion: length <= 16 and value fits in length bits.
188 */
189 #ifdef DEBUG
190 local void send_bits OF((deflate_state *s, int value, int length));
191
192 local void send_bits(s, value, length)
193 deflate_state *s;
194 int value; /* value to send */
195 int length; /* number of bits */
196 {
197 Tracevv((stderr," l %2d v %4x ", length, value));
198 Assert(length > 0 && length <= 15, "invalid length");
199 s->bits_sent += (ulg)length;
200
201 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
202 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
203 * unused bits in value.
204 */
205 if (s->bi_valid > (int)Buf_size - length) {
206 s->bi_buf |= (value << s->bi_valid);
207 put_short(s, s->bi_buf);
208 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
209 s->bi_valid += length - Buf_size;
210 } else {
211 s->bi_buf |= value << s->bi_valid;
212 s->bi_valid += length;
213 }
214 }
215 #else /* !DEBUG */
216
217 #define send_bits(s, value, length) \
218 { int len = length;\
219 if (s->bi_valid > (int)Buf_size - len) {\
220 int val = value;\
221 s->bi_buf |= (val << s->bi_valid);\
222 put_short(s, s->bi_buf);\
223 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
224 s->bi_valid += len - Buf_size;\
225 } else {\
226 s->bi_buf |= (value) << s->bi_valid;\
227 s->bi_valid += len;\
228 }\
229 }
230 #endif /* DEBUG */
231
232
233 #define MAX(a,b) (a >= b ? a : b)
234 /* the arguments must not have side effects */
235
236 /* ===========================================================================
237 * Initialize the various 'constant' tables.
238 */
239 local void tr_static_init()
240 {
241 #if defined(GEN_TREES_H) || !defined(STDC)
242 static int static_init_done = 0;
243 int n; /* iterates over tree elements */
244 int bits; /* bit counter */
245 int length; /* length value */
246 int code; /* code value */
247 int dist; /* distance index */
248 ush bl_count[MAX_BITS+1];
249 /* number of codes at each bit length for an optimal tree */
250
251 if (static_init_done) return;
252
253 /* Initialize the mapping length (0..255) -> length code (0..28) */
254 length = 0;
255 for (code = 0; code < LENGTH_CODES-1; code++) {
256 base_length[code] = length;
257 for (n = 0; n < (1<<extra_lbits[code]); n++) {
258 _length_code[length++] = (uch)code;
259 }
260 }
261 Assert (length == 256, "tr_static_init: length != 256");
262 /* Note that the length 255 (match length 258) can be represented
263 * in two different ways: code 284 + 5 bits or code 285, so we
264 * overwrite length_code[255] to use the best encoding:
265 */
266 _length_code[length-1] = (uch)code;
267
268 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
269 dist = 0;
270 for (code = 0 ; code < 16; code++) {
271 base_dist[code] = dist;
272 for (n = 0; n < (1<<extra_dbits[code]); n++) {
273 _dist_code[dist++] = (uch)code;
274 }
275 }
276 Assert (dist == 256, "tr_static_init: dist != 256");
277 dist >>= 7; /* from now on, all distances are divided by 128 */
278 for ( ; code < D_CODES; code++) {
279 base_dist[code] = dist << 7;
280 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
281 _dist_code[256 + dist++] = (uch)code;
282 }
283 }
284 Assert (dist == 256, "tr_static_init: 256+dist != 512");
285
286 /* Construct the codes of the static literal tree */
287 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
288 n = 0;
289 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
290 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
291 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
292 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
293 /* Codes 286 and 287 do not exist, but we must include them in the
294 * tree construction to get a canonical Huffman tree (longest code
295 * all ones)
296 */
297 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
298
299 /* The static distance tree is trivial: */
300 for (n = 0; n < D_CODES; n++) {
301 static_dtree[n].Len = 5;
302 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
303 }
304 static_init_done = 1;
305
306 # ifdef GEN_TREES_H
307 gen_trees_header();
308 # endif
309 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
310 }
311
312 /* ===========================================================================
313 * Genererate the file trees.h describing the static trees.
314 */
315 #ifdef GEN_TREES_H
316 # ifndef DEBUG
317 # include <stdio.h>
318 # endif
319
320 # define SEPARATOR(i, last, width) \
321 ((i) == (last)? "\n};\n\n" : \
322 ((i) % (width) == (width)-1 ? ",\n" : ", "))
323
324 void gen_trees_header()
325 {
326 FILE *header = fopen("trees.h", "w");
327 int i;
328
329 Assert (header != NULL, "Can't open trees.h");
330 fprintf(header,
331 "/* header created automatically with -DGEN_TREES_H */\n\n");
332
333 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
334 for (i = 0; i < L_CODES+2; i++) {
335 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
336 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
337 }
338
339 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
340 for (i = 0; i < D_CODES; i++) {
341 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
342 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
343 }
344
345 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
346 for (i = 0; i < DIST_CODE_LEN; i++) {
347 fprintf(header, "%2u%s", _dist_code[i],
348 SEPARATOR(i, DIST_CODE_LEN-1, 20));
349 }
350
351 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
352 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
353 fprintf(header, "%2u%s", _length_code[i],
354 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
355 }
356
357 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
358 for (i = 0; i < LENGTH_CODES; i++) {
359 fprintf(header, "%1u%s", base_length[i],
360 SEPARATOR(i, LENGTH_CODES-1, 20));
361 }
362
363 fprintf(header, "local const int base_dist[D_CODES] = {\n");
364 for (i = 0; i < D_CODES; i++) {
365 fprintf(header, "%5u%s", base_dist[i],
366 SEPARATOR(i, D_CODES-1, 10));
367 }
368
369 fclose(header);
370 }
371 #endif /* GEN_TREES_H */
372
373 /* ===========================================================================
374 * Initialize the tree data structures for a new zlib stream.
375 */
376 void _tr_init(s)
377 deflate_state *s;
378 {
379 tr_static_init();
380
381 s->compressed_len = 0L;
382
383 s->l_desc.dyn_tree = s->dyn_ltree;
384 s->l_desc.stat_desc = &static_l_desc;
385
386 s->d_desc.dyn_tree = s->dyn_dtree;
387 s->d_desc.stat_desc = &static_d_desc;
388
389 s->bl_desc.dyn_tree = s->bl_tree;
390 s->bl_desc.stat_desc = &static_bl_desc;
391
392 s->bi_buf = 0;
393 s->bi_valid = 0;
394 s->last_eob_len = 8; /* enough lookahead for inflate */
395 #ifdef DEBUG
396 s->bits_sent = 0L;
397 #endif
398
399 /* Initialize the first block of the first file: */
400 init_block(s);
401 }
402
403 /* ===========================================================================
404 * Initialize a new block.
405 */
406 local void init_block(s)
407 deflate_state *s;
408 {
409 int n; /* iterates over tree elements */
410
411 /* Initialize the trees. */
412 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
413 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
414 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415
416 s->dyn_ltree[END_BLOCK].Freq = 1;
417 s->opt_len = s->static_len = 0L;
418 s->last_lit = s->matches = 0;
419 }
420
421 #define SMALLEST 1
422 /* Index within the heap array of least frequent node in the Huffman tree */
423
424
425 /* ===========================================================================
426 * Remove the smallest element from the heap and recreate the heap with
427 * one less element. Updates heap and heap_len.
428 */
429 #define pqremove(s, tree, top) \
430 {\
431 top = s->heap[SMALLEST]; \
432 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433 pqdownheap(s, tree, SMALLEST); \
434 }
435
436 /* ===========================================================================
437 * Compares to subtrees, using the tree depth as tie breaker when
438 * the subtrees have equal frequency. This minimizes the worst case length.
439 */
440 #define smaller(tree, n, m, depth) \
441 (tree[n].Freq < tree[m].Freq || \
442 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443
444 /* ===========================================================================
445 * Restore the heap property by moving down the tree starting at node k,
446 * exchanging a node with the smallest of its two sons if necessary, stopping
447 * when the heap property is re-established (each father smaller than its
448 * two sons).
449 */
450 local void pqdownheap(s, tree, k)
451 deflate_state *s;
452 ct_data *tree; /* the tree to restore */
453 int k; /* node to move down */
454 {
455 int v = s->heap[k];
456 int j = k << 1; /* left son of k */
457 while (j <= s->heap_len) {
458 /* Set j to the smallest of the two sons: */
459 if (j < s->heap_len &&
460 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
461 j++;
462 }
463 /* Exit if v is smaller than both sons */
464 if (smaller(tree, v, s->heap[j], s->depth)) break;
465
466 /* Exchange v with the smallest son */
467 s->heap[k] = s->heap[j]; k = j;
468
469 /* And continue down the tree, setting j to the left son of k */
470 j <<= 1;
471 }
472 s->heap[k] = v;
473 }
474
475 /* ===========================================================================
476 * Compute the optimal bit lengths for a tree and update the total bit length
477 * for the current block.
478 * IN assertion: the fields freq and dad are set, heap[heap_max] and
479 * above are the tree nodes sorted by increasing frequency.
480 * OUT assertions: the field len is set to the optimal bit length, the
481 * array bl_count contains the frequencies for each bit length.
482 * The length opt_len is updated; static_len is also updated if stree is
483 * not null.
484 */
485 local void gen_bitlen(s, desc)
486 deflate_state *s;
487 tree_desc *desc; /* the tree descriptor */
488 {
489 ct_data *tree = desc->dyn_tree;
490 int max_code = desc->max_code;
491 const ct_data *stree = desc->stat_desc->static_tree;
492 const intf *extra = desc->stat_desc->extra_bits;
493 int base = desc->stat_desc->extra_base;
494 int max_length = desc->stat_desc->max_length;
495 int h; /* heap index */
496 int n, m; /* iterate over the tree elements */
497 int bits; /* bit length */
498 int xbits; /* extra bits */
499 ush f; /* frequency */
500 int overflow = 0; /* number of elements with bit length too large */
501
502 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
503
504 /* In a first pass, compute the optimal bit lengths (which may
505 * overflow in the case of the bit length tree).
506 */
507 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
508
509 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
510 n = s->heap[h];
511 bits = tree[tree[n].Dad].Len + 1;
512 if (bits > max_length) bits = max_length, overflow++;
513 tree[n].Len = (ush)bits;
514 /* We overwrite tree[n].Dad which is no longer needed */
515
516 if (n > max_code) continue; /* not a leaf node */
517
518 s->bl_count[bits]++;
519 xbits = 0;
520 if (n >= base) xbits = extra[n-base];
521 f = tree[n].Freq;
522 s->opt_len += (ulg)f * (bits + xbits);
523 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
524 }
525 if (overflow == 0) return;
526
527 Trace((stderr,"\nbit length overflow\n"));
528 /* This happens for example on obj2 and pic of the Calgary corpus */
529
530 /* Find the first bit length which could increase: */
531 do {
532 bits = max_length-1;
533 while (s->bl_count[bits] == 0) bits--;
534 s->bl_count[bits]--; /* move one leaf down the tree */
535 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
536 s->bl_count[max_length]--;
537 /* The brother of the overflow item also moves one step up,
538 * but this does not affect bl_count[max_length]
539 */
540 overflow -= 2;
541 } while (overflow > 0);
542
543 /* Now recompute all bit lengths, scanning in increasing frequency.
544 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
545 * lengths instead of fixing only the wrong ones. This idea is taken
546 * from 'ar' written by Haruhiko Okumura.)
547 */
548 for (bits = max_length; bits != 0; bits--) {
549 n = s->bl_count[bits];
550 while (n != 0) {
551 m = s->heap[--h];
552 if (m > max_code) continue;
553 if (tree[m].Len != (unsigned) bits) {
554 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
555 s->opt_len += ((long)bits - (long)tree[m].Len)
556 *(long)tree[m].Freq;
557 tree[m].Len = (ush)bits;
558 }
559 n--;
560 }
561 }
562 }
563
564 /* ===========================================================================
565 * Generate the codes for a given tree and bit counts (which need not be
566 * optimal).
567 * IN assertion: the array bl_count contains the bit length statistics for
568 * the given tree and the field len is set for all tree elements.
569 * OUT assertion: the field code is set for all tree elements of non
570 * zero code length.
571 */
572 local void gen_codes (tree, max_code, bl_count)
573 ct_data *tree; /* the tree to decorate */
574 int max_code; /* largest code with non zero frequency */
575 ushf *bl_count; /* number of codes at each bit length */
576 {
577 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
578 ush code = 0; /* running code value */
579 int bits; /* bit index */
580 int n; /* code index */
581
582 /* The distribution counts are first used to generate the code values
583 * without bit reversal.
584 */
585 for (bits = 1; bits <= MAX_BITS; bits++) {
586 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
587 }
588 /* Check that the bit counts in bl_count are consistent. The last code
589 * must be all ones.
590 */
591 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
592 "inconsistent bit counts");
593 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
594
595 for (n = 0; n <= max_code; n++) {
596 int len = tree[n].Len;
597 if (len == 0) continue;
598 /* Now reverse the bits */
599 tree[n].Code = bi_reverse(next_code[len]++, len);
600
601 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
602 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
603 }
604 }
605
606 /* ===========================================================================
607 * Construct one Huffman tree and assigns the code bit strings and lengths.
608 * Update the total bit length for the current block.
609 * IN assertion: the field freq is set for all tree elements.
610 * OUT assertions: the fields len and code are set to the optimal bit length
611 * and corresponding code. The length opt_len is updated; static_len is
612 * also updated if stree is not null. The field max_code is set.
613 */
614 local void build_tree(s, desc)
615 deflate_state *s;
616 tree_desc *desc; /* the tree descriptor */
617 {
618 ct_data *tree = desc->dyn_tree;
619 const ct_data *stree = desc->stat_desc->static_tree;
620 int elems = desc->stat_desc->elems;
621 int n, m; /* iterate over heap elements */
622 int max_code = -1; /* largest code with non zero frequency */
623 int node; /* new node being created */
624
625 /* Construct the initial heap, with least frequent element in
626 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
627 * heap[0] is not used.
628 */
629 s->heap_len = 0, s->heap_max = HEAP_SIZE;
630
631 for (n = 0; n < elems; n++) {
632 if (tree[n].Freq != 0) {
633 s->heap[++(s->heap_len)] = max_code = n;
634 s->depth[n] = 0;
635 } else {
636 tree[n].Len = 0;
637 }
638 }
639
640 /* The pkzip format requires that at least one distance code exists,
641 * and that at least one bit should be sent even if there is only one
642 * possible code. So to avoid special checks later on we force at least
643 * two codes of non zero frequency.
644 */
645 while (s->heap_len < 2) {
646 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
647 tree[node].Freq = 1;
648 s->depth[node] = 0;
649 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
650 /* node is 0 or 1 so it does not have extra bits */
651 }
652 desc->max_code = max_code;
653
654 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
655 * establish sub-heaps of increasing lengths:
656 */
657 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
658
659 /* Construct the Huffman tree by repeatedly combining the least two
660 * frequent nodes.
661 */
662 node = elems; /* next internal node of the tree */
663 do {
664 pqremove(s, tree, n); /* n = node of least frequency */
665 m = s->heap[SMALLEST]; /* m = node of next least frequency */
666
667 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
668 s->heap[--(s->heap_max)] = m;
669
670 /* Create a new node father of n and m */
671 tree[node].Freq = tree[n].Freq + tree[m].Freq;
672 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
673 tree[n].Dad = tree[m].Dad = (ush)node;
674 #ifdef DUMP_BL_TREE
675 if (tree == s->bl_tree) {
676 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
677 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
678 }
679 #endif
680 /* and insert the new node in the heap */
681 s->heap[SMALLEST] = node++;
682 pqdownheap(s, tree, SMALLEST);
683
684 } while (s->heap_len >= 2);
685
686 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
687
688 /* At this point, the fields freq and dad are set. We can now
689 * generate the bit lengths.
690 */
691 gen_bitlen(s, (tree_desc *)desc);
692
693 /* The field len is now set, we can generate the bit codes */
694 gen_codes ((ct_data *)tree, max_code, s->bl_count);
695 }
696
697 /* ===========================================================================
698 * Scan a literal or distance tree to determine the frequencies of the codes
699 * in the bit length tree.
700 */
701 local void scan_tree (s, tree, max_code)
702 deflate_state *s;
703 ct_data *tree; /* the tree to be scanned */
704 int max_code; /* and its largest code of non zero frequency */
705 {
706 int n; /* iterates over all tree elements */
707 int prevlen = -1; /* last emitted length */
708 int curlen; /* length of current code */
709 int nextlen = tree[0].Len; /* length of next code */
710 int count = 0; /* repeat count of the current code */
711 int max_count = 7; /* max repeat count */
712 int min_count = 4; /* min repeat count */
713
714 if (nextlen == 0) max_count = 138, min_count = 3;
715 tree[max_code+1].Len = (ush)0xffff; /* guard */
716
717 for (n = 0; n <= max_code; n++) {
718 curlen = nextlen; nextlen = tree[n+1].Len;
719 if (++count < max_count && curlen == nextlen) {
720 continue;
721 } else if (count < min_count) {
722 s->bl_tree[curlen].Freq += count;
723 } else if (curlen != 0) {
724 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
725 s->bl_tree[REP_3_6].Freq++;
726 } else if (count <= 10) {
727 s->bl_tree[REPZ_3_10].Freq++;
728 } else {
729 s->bl_tree[REPZ_11_138].Freq++;
730 }
731 count = 0; prevlen = curlen;
732 if (nextlen == 0) {
733 max_count = 138, min_count = 3;
734 } else if (curlen == nextlen) {
735 max_count = 6, min_count = 3;
736 } else {
737 max_count = 7, min_count = 4;
738 }
739 }
740 }
741
742 /* ===========================================================================
743 * Send a literal or distance tree in compressed form, using the codes in
744 * bl_tree.
745 */
746 local void send_tree (s, tree, max_code)
747 deflate_state *s;
748 ct_data *tree; /* the tree to be scanned */
749 int max_code; /* and its largest code of non zero frequency */
750 {
751 int n; /* iterates over all tree elements */
752 int prevlen = -1; /* last emitted length */
753 int curlen; /* length of current code */
754 int nextlen = tree[0].Len; /* length of next code */
755 int count = 0; /* repeat count of the current code */
756 int max_count = 7; /* max repeat count */
757 int min_count = 4; /* min repeat count */
758
759 /* tree[max_code+1].Len = -1; */ /* guard already set */
760 if (nextlen == 0) max_count = 138, min_count = 3;
761
762 for (n = 0; n <= max_code; n++) {
763 curlen = nextlen; nextlen = tree[n+1].Len;
764 if (++count < max_count && curlen == nextlen) {
765 continue;
766 } else if (count < min_count) {
767 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
768
769 } else if (curlen != 0) {
770 if (curlen != prevlen) {
771 send_code(s, curlen, s->bl_tree); count--;
772 }
773 Assert(count >= 3 && count <= 6, " 3_6?");
774 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
775
776 } else if (count <= 10) {
777 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
778
779 } else {
780 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
781 }
782 count = 0; prevlen = curlen;
783 if (nextlen == 0) {
784 max_count = 138, min_count = 3;
785 } else if (curlen == nextlen) {
786 max_count = 6, min_count = 3;
787 } else {
788 max_count = 7, min_count = 4;
789 }
790 }
791 }
792
793 /* ===========================================================================
794 * Construct the Huffman tree for the bit lengths and return the index in
795 * bl_order of the last bit length code to send.
796 */
797 local int build_bl_tree(s)
798 deflate_state *s;
799 {
800 int max_blindex; /* index of last bit length code of non zero freq */
801
802 /* Determine the bit length frequencies for literal and distance trees */
803 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
804 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
805
806 /* Build the bit length tree: */
807 build_tree(s, (tree_desc *)(&(s->bl_desc)));
808 /* opt_len now includes the length of the tree representations, except
809 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
810 */
811
812 /* Determine the number of bit length codes to send. The pkzip format
813 * requires that at least 4 bit length codes be sent. (appnote.txt says
814 * 3 but the actual value used is 4.)
815 */
816 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
817 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
818 }
819 /* Update opt_len to include the bit length tree and counts */
820 s->opt_len += 3*(max_blindex+1) + 5+5+4;
821 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
822 s->opt_len, s->static_len));
823
824 return max_blindex;
825 }
826
827 /* ===========================================================================
828 * Send the header for a block using dynamic Huffman trees: the counts, the
829 * lengths of the bit length codes, the literal tree and the distance tree.
830 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
831 */
832 local void send_all_trees(s, lcodes, dcodes, blcodes)
833 deflate_state *s;
834 int lcodes, dcodes, blcodes; /* number of codes for each tree */
835 {
836 int rank; /* index in bl_order */
837
838 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
839 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
840 "too many codes");
841 Tracev((stderr, "\nbl counts: "));
842 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
843 send_bits(s, dcodes-1, 5);
844 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
845 for (rank = 0; rank < blcodes; rank++) {
846 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
847 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
848 }
849 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
850
851 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
852 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
853
854 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
855 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
856 }
857
858 /* ===========================================================================
859 * Send a stored block
860 */
861 void _tr_stored_block(s, buf, stored_len, eof)
862 deflate_state *s;
863 charf *buf; /* input block */
864 ulg stored_len; /* length of input block */
865 int eof; /* true if this is the last block for a file */
866 {
867 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
868 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869 s->compressed_len += (stored_len + 4) << 3;
870
871 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
872 }
873
874 /* ===========================================================================
875 * Send one empty static block to give enough lookahead for inflate.
876 * This takes 10 bits, of which 7 may remain in the bit buffer.
877 * The current inflate code requires 9 bits of lookahead. If the
878 * last two codes for the previous block (real code plus EOB) were coded
879 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
880 * the last real code. In this case we send two empty static blocks instead
881 * of one. (There are no problems if the previous block is stored or fixed.)
882 * To simplify the code, we assume the worst case of last real code encoded
883 * on one bit only.
884 */
885 void _tr_align(s)
886 deflate_state *s;
887 {
888 send_bits(s, STATIC_TREES<<1, 3);
889 send_code(s, END_BLOCK, static_ltree);
890 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891 bi_flush(s);
892 /* Of the 10 bits for the empty block, we have already sent
893 * (10 - bi_valid) bits. The lookahead for the last real code (before
894 * the EOB of the previous block) was thus at least one plus the length
895 * of the EOB plus what we have just sent of the empty static block.
896 */
897 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
898 send_bits(s, STATIC_TREES<<1, 3);
899 send_code(s, END_BLOCK, static_ltree);
900 s->compressed_len += 10L;
901 bi_flush(s);
902 }
903 s->last_eob_len = 7;
904 }
905
906 /* ===========================================================================
907 * Determine the best encoding for the current block: dynamic trees, static
908 * trees or store, and output the encoded block to the zip file. This function
909 * returns the total compressed length for the file so far.
910 */
911 ulg _tr_flush_block(s, buf, stored_len, eof)
912 deflate_state *s;
913 charf *buf; /* input block, or NULL if too old */
914 ulg stored_len; /* length of input block */
915 int eof; /* true if this is the last block for a file */
916 {
917 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
918 int max_blindex = 0; /* index of last bit length code of non zero freq */
919
920 /* Build the Huffman trees unless a stored block is forced */
921 if (s->level > 0) {
922
923 /* Check if the file is ascii or binary */
924 if (s->data_type == Z_UNKNOWN) set_data_type(s);
925
926 /* Construct the literal and distance trees */
927 build_tree(s, (tree_desc *)(&(s->l_desc)));
928 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
929 s->static_len));
930
931 build_tree(s, (tree_desc *)(&(s->d_desc)));
932 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
933 s->static_len));
934 /* At this point, opt_len and static_len are the total bit lengths of
935 * the compressed block data, excluding the tree representations.
936 */
937
938 /* Build the bit length tree for the above two trees, and get the index
939 * in bl_order of the last bit length code to send.
940 */
941 max_blindex = build_bl_tree(s);
942
943 /* Determine the best encoding. Compute first the block length in bytes*/
944 opt_lenb = (s->opt_len+3+7)>>3;
945 static_lenb = (s->static_len+3+7)>>3;
946
947 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
948 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
949 s->last_lit));
950
951 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
952
953 } else {
954 Assert(buf != (char*)0, "lost buf");
955 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
956 }
957
958 /* If compression failed and this is the first and last block,
959 * and if the .zip file can be seeked (to rewrite the local header),
960 * the whole file is transformed into a stored file:
961 */
962 #ifdef STORED_FILE_OK
963 # ifdef FORCE_STORED_FILE
964 if (eof && s->compressed_len == 0L) { /* force stored file */
965 # else
966 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
967 # endif
968 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
969 if (buf == (charf*)0) error ("block vanished");
970
971 copy_block(buf, (unsigned)stored_len, 0); /* without header */
972 s->compressed_len = stored_len << 3;
973 s->method = STORED;
974 } else
975 #endif /* STORED_FILE_OK */
976
977 #ifdef FORCE_STORED
978 if (buf != (char*)0) { /* force stored block */
979 #else
980 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
981 /* 4: two words for the lengths */
982 #endif
983 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
984 * Otherwise we can't have processed more than WSIZE input bytes since
985 * the last block flush, because compression would have been
986 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
987 * transform a block into a stored block.
988 */
989 _tr_stored_block(s, buf, stored_len, eof);
990
991 #ifdef FORCE_STATIC
992 } else if (static_lenb >= 0) { /* force static trees */
993 #else
994 } else if (static_lenb == opt_lenb) {
995 #endif
996 send_bits(s, (STATIC_TREES<<1)+eof, 3);
997 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
998 s->compressed_len += 3 + s->static_len;
999 } else {
1000 send_bits(s, (DYN_TREES<<1)+eof, 3);
1001 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1002 max_blindex+1);
1003 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1004 s->compressed_len += 3 + s->opt_len;
1005 }
1006 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1007 init_block(s);
1008
1009 if (eof) {
1010 bi_windup(s);
1011 s->compressed_len += 7; /* align on byte boundary */
1012 }
1013 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1014 s->compressed_len-7*eof));
1015
1016 return s->compressed_len >> 3;
1017 }
1018
1019 /* ===========================================================================
1020 * Save the match info and tally the frequency counts. Return true if
1021 * the current block must be flushed.
1022 */
1023 int _tr_tally (s, dist, lc)
1024 deflate_state *s;
1025 unsigned dist; /* distance of matched string */
1026 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1027 {
1028 s->d_buf[s->last_lit] = (ush)dist;
1029 s->l_buf[s->last_lit++] = (uch)lc;
1030 if (dist == 0) {
1031 /* lc is the unmatched char */
1032 s->dyn_ltree[lc].Freq++;
1033 } else {
1034 s->matches++;
1035 /* Here, lc is the match length - MIN_MATCH */
1036 dist--; /* dist = match distance - 1 */
1037 Assert((ush)dist < (ush)MAX_DIST(s) &&
1038 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1039 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1040
1041 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1042 s->dyn_dtree[d_code(dist)].Freq++;
1043 }
1044
1045 #ifdef TRUNCATE_BLOCK
1046 /* Try to guess if it is profitable to stop the current block here */
1047 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1048 /* Compute an upper bound for the compressed length */
1049 ulg out_length = (ulg)s->last_lit*8L;
1050 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1051 int dcode;
1052 for (dcode = 0; dcode < D_CODES; dcode++) {
1053 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1054 (5L+extra_dbits[dcode]);
1055 }
1056 out_length >>= 3;
1057 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1058 s->last_lit, in_length, out_length,
1059 100L - out_length*100L/in_length));
1060 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1061 }
1062 #endif
1063 return (s->last_lit == s->lit_bufsize-1);
1064 /* We avoid equality with lit_bufsize because of wraparound at 64K
1065 * on 16 bit machines and because stored blocks are restricted to
1066 * 64K-1 bytes.
1067 */
1068 }
1069
1070 /* ===========================================================================
1071 * Send the block data compressed using the given Huffman trees
1072 */
1073 local void compress_block(s, ltree, dtree)
1074 deflate_state *s;
1075 ct_data *ltree; /* literal tree */
1076 ct_data *dtree; /* distance tree */
1077 {
1078 unsigned dist; /* distance of matched string */
1079 int lc; /* match length or unmatched char (if dist == 0) */
1080 unsigned lx = 0; /* running index in l_buf */
1081 unsigned code; /* the code to send */
1082 int extra; /* number of extra bits to send */
1083
1084 if (s->last_lit != 0) do {
1085 dist = s->d_buf[lx];
1086 lc = s->l_buf[lx++];
1087 if (dist == 0) {
1088 send_code(s, lc, ltree); /* send a literal byte */
1089 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1090 } else {
1091 /* Here, lc is the match length - MIN_MATCH */
1092 code = _length_code[lc];
1093 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1094 extra = extra_lbits[code];
1095 if (extra != 0) {
1096 lc -= base_length[code];
1097 send_bits(s, lc, extra); /* send the extra length bits */
1098 }
1099 dist--; /* dist is now the match distance - 1 */
1100 code = d_code(dist);
1101 Assert (code < D_CODES, "bad d_code");
1102
1103 send_code(s, code, dtree); /* send the distance code */
1104 extra = extra_dbits[code];
1105 if (extra != 0) {
1106 dist -= base_dist[code];
1107 send_bits(s, dist, extra); /* send the extra distance bits */
1108 }
1109 } /* literal or match pair ? */
1110
1111 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1112 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1113
1114 } while (lx < s->last_lit);
1115
1116 send_code(s, END_BLOCK, ltree);
1117 s->last_eob_len = ltree[END_BLOCK].Len;
1118 }
1119
1120 /* ===========================================================================
1121 * Set the data type to ASCII or BINARY, using a crude approximation:
1122 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1123 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1124 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1125 */
1126 local void set_data_type(s)
1127 deflate_state *s;
1128 {
1129 int n = 0;
1130 unsigned ascii_freq = 0;
1131 unsigned bin_freq = 0;
1132 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1133 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1134 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1135 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1136 }
1137
1138 /* ===========================================================================
1139 * Reverse the first len bits of a code, using straightforward code (a faster
1140 * method would use a table)
1141 * IN assertion: 1 <= len <= 15
1142 */
1143 local unsigned bi_reverse(code, len)
1144 unsigned code; /* the value to invert */
1145 int len; /* its bit length */
1146 {
1147 register unsigned res = 0;
1148 do {
1149 res |= code & 1;
1150 code >>= 1, res <<= 1;
1151 } while (--len > 0);
1152 return res >> 1;
1153 }
1154
1155 /* ===========================================================================
1156 * Flush the bit buffer, keeping at most 7 bits in it.
1157 */
1158 local void bi_flush(s)
1159 deflate_state *s;
1160 {
1161 if (s->bi_valid == 16) {
1162 put_short(s, s->bi_buf);
1163 s->bi_buf = 0;
1164 s->bi_valid = 0;
1165 } else if (s->bi_valid >= 8) {
1166 put_byte(s, (Byte)s->bi_buf);
1167 s->bi_buf >>= 8;
1168 s->bi_valid -= 8;
1169 }
1170 }
1171
1172 /* ===========================================================================
1173 * Flush the bit buffer and align the output on a byte boundary
1174 */
1175 local void bi_windup(s)
1176 deflate_state *s;
1177 {
1178 if (s->bi_valid > 8) {
1179 put_short(s, s->bi_buf);
1180 } else if (s->bi_valid > 0) {
1181 put_byte(s, (Byte)s->bi_buf);
1182 }
1183 s->bi_buf = 0;
1184 s->bi_valid = 0;
1185 #ifdef DEBUG
1186 s->bits_sent = (s->bits_sent+7) & ~7;
1187 #endif
1188 }
1189
1190 /* ===========================================================================
1191 * Copy a stored block, storing first the length and its
1192 * one's complement if requested.
1193 */
1194 local void copy_block(s, buf, len, header)
1195 deflate_state *s;
1196 charf *buf; /* the input data */
1197 unsigned len; /* its length */
1198 int header; /* true if block header must be written */
1199 {
1200 bi_windup(s); /* align on byte boundary */
1201 s->last_eob_len = 8; /* enough lookahead for inflate */
1202
1203 if (header) {
1204 put_short(s, (ush)len);
1205 put_short(s, (ush)~len);
1206 #ifdef DEBUG
1207 s->bits_sent += 2*16;
1208 #endif
1209 }
1210 #ifdef DEBUG
1211 s->bits_sent += (ulg)len<<3;
1212 #endif
1213 while (len--) {
1214 put_byte(s, *buf++);
1215 }
1216 }