]> git.saurik.com Git - wxWidgets.git/blob - src/tiff/libtiff/tif_pixarlog.c
Export a couple of carbon functions so that shared builds in carbon compile correctly.
[wxWidgets.git] / src / tiff / libtiff / tif_pixarlog.c
1 /* $Id$ */
2
3 /*
4 * Copyright (c) 1996-1997 Sam Leffler
5 * Copyright (c) 1996 Pixar
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Pixar, Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29
30 /*
31 * TIFF Library.
32 * PixarLog Compression Support
33 *
34 * Contributed by Dan McCoy.
35 *
36 * PixarLog film support uses the TIFF library to store companded
37 * 11 bit values into a tiff file, which are compressed using the
38 * zip compressor.
39 *
40 * The codec can take as input and produce as output 32-bit IEEE float values
41 * as well as 16-bit or 8-bit unsigned integer values.
42 *
43 * On writing any of the above are converted into the internal
44 * 11-bit log format. In the case of 8 and 16 bit values, the
45 * input is assumed to be unsigned linear color values that represent
46 * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
47 * be the normal linear color range, in addition over 1 values are
48 * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49 * The encoding is lossless for 8-bit values, slightly lossy for the
50 * other bit depths. The actual color precision should be better
51 * than the human eye can perceive with extra room to allow for
52 * error introduced by further image computation. As with any quantized
53 * color format, it is possible to perform image calculations which
54 * expose the quantization error. This format should certainly be less
55 * susceptable to such errors than standard 8-bit encodings, but more
56 * susceptable than straight 16-bit or 32-bit encodings.
57 *
58 * On reading the internal format is converted to the desired output format.
59 * The program can request which format it desires by setting the internal
60 * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
62 * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
63 * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
64 *
65 * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 * values with the difference that if there are exactly three or four channels
67 * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 *
69 * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 * packed in 16-bit values. However no tools are supplied for interpreting
71 * these values.
72 *
73 * "hot" (over 1.0) areas written in floating point get clamped to
74 * 1.0 in the integer data types.
75 *
76 * When the file is closed after writing, the bit depth and sample format
77 * are set always to appear as if 8-bit data has been written into it.
78 * That way a naive program unaware of the particulars of the encoding
79 * gets the format it is most likely able to handle.
80 *
81 * The codec does it's own horizontal differencing step on the coded
82 * values so the libraries predictor stuff should be turned off.
83 * The codec also handle byte swapping the encoded values as necessary
84 * since the library does not have the information necessary
85 * to know the bit depth of the raw unencoded buffer.
86 *
87 */
88
89 #include "tif_predict.h"
90 #include "zlib.h"
91
92 #include <stdio.h>
93 #include <stdlib.h>
94 #include <math.h>
95
96 /* Tables for converting to/from 11 bit coded values */
97
98 #define TSIZE 2048 /* decode table size (11-bit tokens) */
99 #define TSIZEP1 2049 /* Plus one for slop */
100 #define ONE 1250 /* token value of 1.0 exactly */
101 #define RATIO 1.004 /* nominal ratio for log part */
102
103 #define CODE_MASK 0x7ff /* 11 bits. */
104
105 static float Fltsize;
106 static float LogK1, LogK2;
107
108 #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); }
109
110 static void
111 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
112 float *ToLinearF)
113 {
114 register unsigned int cr, cg, cb, ca, mask;
115 register float t0, t1, t2, t3;
116
117 if (n >= stride) {
118 mask = CODE_MASK;
119 if (stride == 3) {
120 t0 = ToLinearF[cr = wp[0]];
121 t1 = ToLinearF[cg = wp[1]];
122 t2 = ToLinearF[cb = wp[2]];
123 op[0] = t0;
124 op[1] = t1;
125 op[2] = t2;
126 n -= 3;
127 while (n > 0) {
128 wp += 3;
129 op += 3;
130 n -= 3;
131 t0 = ToLinearF[(cr += wp[0]) & mask];
132 t1 = ToLinearF[(cg += wp[1]) & mask];
133 t2 = ToLinearF[(cb += wp[2]) & mask];
134 op[0] = t0;
135 op[1] = t1;
136 op[2] = t2;
137 }
138 } else if (stride == 4) {
139 t0 = ToLinearF[cr = wp[0]];
140 t1 = ToLinearF[cg = wp[1]];
141 t2 = ToLinearF[cb = wp[2]];
142 t3 = ToLinearF[ca = wp[3]];
143 op[0] = t0;
144 op[1] = t1;
145 op[2] = t2;
146 op[3] = t3;
147 n -= 4;
148 while (n > 0) {
149 wp += 4;
150 op += 4;
151 n -= 4;
152 t0 = ToLinearF[(cr += wp[0]) & mask];
153 t1 = ToLinearF[(cg += wp[1]) & mask];
154 t2 = ToLinearF[(cb += wp[2]) & mask];
155 t3 = ToLinearF[(ca += wp[3]) & mask];
156 op[0] = t0;
157 op[1] = t1;
158 op[2] = t2;
159 op[3] = t3;
160 }
161 } else {
162 REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
163 n -= stride;
164 while (n > 0) {
165 REPEAT(stride,
166 wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
167 n -= stride;
168 }
169 }
170 }
171 }
172
173 static void
174 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
175 float *ToLinearF)
176 {
177 register unsigned int cr, cg, cb, ca, mask;
178 register float t0, t1, t2, t3;
179
180 #define SCALE12 2048.0F
181 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
182
183 if (n >= stride) {
184 mask = CODE_MASK;
185 if (stride == 3) {
186 t0 = ToLinearF[cr = wp[0]] * SCALE12;
187 t1 = ToLinearF[cg = wp[1]] * SCALE12;
188 t2 = ToLinearF[cb = wp[2]] * SCALE12;
189 op[0] = CLAMP12(t0);
190 op[1] = CLAMP12(t1);
191 op[2] = CLAMP12(t2);
192 n -= 3;
193 while (n > 0) {
194 wp += 3;
195 op += 3;
196 n -= 3;
197 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
198 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
199 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
200 op[0] = CLAMP12(t0);
201 op[1] = CLAMP12(t1);
202 op[2] = CLAMP12(t2);
203 }
204 } else if (stride == 4) {
205 t0 = ToLinearF[cr = wp[0]] * SCALE12;
206 t1 = ToLinearF[cg = wp[1]] * SCALE12;
207 t2 = ToLinearF[cb = wp[2]] * SCALE12;
208 t3 = ToLinearF[ca = wp[3]] * SCALE12;
209 op[0] = CLAMP12(t0);
210 op[1] = CLAMP12(t1);
211 op[2] = CLAMP12(t2);
212 op[3] = CLAMP12(t3);
213 n -= 4;
214 while (n > 0) {
215 wp += 4;
216 op += 4;
217 n -= 4;
218 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
219 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
220 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
221 t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
222 op[0] = CLAMP12(t0);
223 op[1] = CLAMP12(t1);
224 op[2] = CLAMP12(t2);
225 op[3] = CLAMP12(t3);
226 }
227 } else {
228 REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
229 *op = CLAMP12(t0); wp++; op++)
230 n -= stride;
231 while (n > 0) {
232 REPEAT(stride,
233 wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
234 *op = CLAMP12(t0); wp++; op++)
235 n -= stride;
236 }
237 }
238 }
239 }
240
241 static void
242 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
243 uint16 *ToLinear16)
244 {
245 register unsigned int cr, cg, cb, ca, mask;
246
247 if (n >= stride) {
248 mask = CODE_MASK;
249 if (stride == 3) {
250 op[0] = ToLinear16[cr = wp[0]];
251 op[1] = ToLinear16[cg = wp[1]];
252 op[2] = ToLinear16[cb = wp[2]];
253 n -= 3;
254 while (n > 0) {
255 wp += 3;
256 op += 3;
257 n -= 3;
258 op[0] = ToLinear16[(cr += wp[0]) & mask];
259 op[1] = ToLinear16[(cg += wp[1]) & mask];
260 op[2] = ToLinear16[(cb += wp[2]) & mask];
261 }
262 } else if (stride == 4) {
263 op[0] = ToLinear16[cr = wp[0]];
264 op[1] = ToLinear16[cg = wp[1]];
265 op[2] = ToLinear16[cb = wp[2]];
266 op[3] = ToLinear16[ca = wp[3]];
267 n -= 4;
268 while (n > 0) {
269 wp += 4;
270 op += 4;
271 n -= 4;
272 op[0] = ToLinear16[(cr += wp[0]) & mask];
273 op[1] = ToLinear16[(cg += wp[1]) & mask];
274 op[2] = ToLinear16[(cb += wp[2]) & mask];
275 op[3] = ToLinear16[(ca += wp[3]) & mask];
276 }
277 } else {
278 REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
279 n -= stride;
280 while (n > 0) {
281 REPEAT(stride,
282 wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
283 n -= stride;
284 }
285 }
286 }
287 }
288
289 /*
290 * Returns the log encoded 11-bit values with the horizontal
291 * differencing undone.
292 */
293 static void
294 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
295 {
296 register unsigned int cr, cg, cb, ca, mask;
297
298 if (n >= stride) {
299 mask = CODE_MASK;
300 if (stride == 3) {
301 op[0] = cr = wp[0]; op[1] = cg = wp[1]; op[2] = cb = wp[2];
302 n -= 3;
303 while (n > 0) {
304 wp += 3;
305 op += 3;
306 n -= 3;
307 op[0] = (cr += wp[0]) & mask;
308 op[1] = (cg += wp[1]) & mask;
309 op[2] = (cb += wp[2]) & mask;
310 }
311 } else if (stride == 4) {
312 op[0] = cr = wp[0]; op[1] = cg = wp[1];
313 op[2] = cb = wp[2]; op[3] = ca = wp[3];
314 n -= 4;
315 while (n > 0) {
316 wp += 4;
317 op += 4;
318 n -= 4;
319 op[0] = (cr += wp[0]) & mask;
320 op[1] = (cg += wp[1]) & mask;
321 op[2] = (cb += wp[2]) & mask;
322 op[3] = (ca += wp[3]) & mask;
323 }
324 } else {
325 REPEAT(stride, *op = *wp&mask; wp++; op++)
326 n -= stride;
327 while (n > 0) {
328 REPEAT(stride,
329 wp[stride] += *wp; *op = *wp&mask; wp++; op++)
330 n -= stride;
331 }
332 }
333 }
334 }
335
336 static void
337 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
338 unsigned char *ToLinear8)
339 {
340 register unsigned int cr, cg, cb, ca, mask;
341
342 if (n >= stride) {
343 mask = CODE_MASK;
344 if (stride == 3) {
345 op[0] = ToLinear8[cr = wp[0]];
346 op[1] = ToLinear8[cg = wp[1]];
347 op[2] = ToLinear8[cb = wp[2]];
348 n -= 3;
349 while (n > 0) {
350 n -= 3;
351 wp += 3;
352 op += 3;
353 op[0] = ToLinear8[(cr += wp[0]) & mask];
354 op[1] = ToLinear8[(cg += wp[1]) & mask];
355 op[2] = ToLinear8[(cb += wp[2]) & mask];
356 }
357 } else if (stride == 4) {
358 op[0] = ToLinear8[cr = wp[0]];
359 op[1] = ToLinear8[cg = wp[1]];
360 op[2] = ToLinear8[cb = wp[2]];
361 op[3] = ToLinear8[ca = wp[3]];
362 n -= 4;
363 while (n > 0) {
364 n -= 4;
365 wp += 4;
366 op += 4;
367 op[0] = ToLinear8[(cr += wp[0]) & mask];
368 op[1] = ToLinear8[(cg += wp[1]) & mask];
369 op[2] = ToLinear8[(cb += wp[2]) & mask];
370 op[3] = ToLinear8[(ca += wp[3]) & mask];
371 }
372 } else {
373 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
374 n -= stride;
375 while (n > 0) {
376 REPEAT(stride,
377 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
378 n -= stride;
379 }
380 }
381 }
382 }
383
384
385 static void
386 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
387 unsigned char *ToLinear8)
388 {
389 register unsigned int cr, cg, cb, ca, mask;
390 register unsigned char t0, t1, t2, t3;
391
392 if (n >= stride) {
393 mask = CODE_MASK;
394 if (stride == 3) {
395 op[0] = 0;
396 t1 = ToLinear8[cb = wp[2]];
397 t2 = ToLinear8[cg = wp[1]];
398 t3 = ToLinear8[cr = wp[0]];
399 op[1] = t1;
400 op[2] = t2;
401 op[3] = t3;
402 n -= 3;
403 while (n > 0) {
404 n -= 3;
405 wp += 3;
406 op += 4;
407 op[0] = 0;
408 t1 = ToLinear8[(cb += wp[2]) & mask];
409 t2 = ToLinear8[(cg += wp[1]) & mask];
410 t3 = ToLinear8[(cr += wp[0]) & mask];
411 op[1] = t1;
412 op[2] = t2;
413 op[3] = t3;
414 }
415 } else if (stride == 4) {
416 t0 = ToLinear8[ca = wp[3]];
417 t1 = ToLinear8[cb = wp[2]];
418 t2 = ToLinear8[cg = wp[1]];
419 t3 = ToLinear8[cr = wp[0]];
420 op[0] = t0;
421 op[1] = t1;
422 op[2] = t2;
423 op[3] = t3;
424 n -= 4;
425 while (n > 0) {
426 n -= 4;
427 wp += 4;
428 op += 4;
429 t0 = ToLinear8[(ca += wp[3]) & mask];
430 t1 = ToLinear8[(cb += wp[2]) & mask];
431 t2 = ToLinear8[(cg += wp[1]) & mask];
432 t3 = ToLinear8[(cr += wp[0]) & mask];
433 op[0] = t0;
434 op[1] = t1;
435 op[2] = t2;
436 op[3] = t3;
437 }
438 } else {
439 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
440 n -= stride;
441 while (n > 0) {
442 REPEAT(stride,
443 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
444 n -= stride;
445 }
446 }
447 }
448 }
449
450 /*
451 * State block for each open TIFF
452 * file using PixarLog compression/decompression.
453 */
454 typedef struct {
455 TIFFPredictorState predict;
456 z_stream stream;
457 uint16 *tbuf;
458 uint16 stride;
459 int state;
460 int user_datafmt;
461 int quality;
462 #define PLSTATE_INIT 1
463
464 TIFFVSetMethod vgetparent; /* super-class method */
465 TIFFVSetMethod vsetparent; /* super-class method */
466
467 float *ToLinearF;
468 uint16 *ToLinear16;
469 unsigned char *ToLinear8;
470 uint16 *FromLT2;
471 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
472 uint16 *From8;
473
474 } PixarLogState;
475
476 static int
477 PixarLogMakeTables(PixarLogState *sp)
478 {
479
480 /*
481 * We make several tables here to convert between various external
482 * representations (float, 16-bit, and 8-bit) and the internal
483 * 11-bit companded representation. The 11-bit representation has two
484 * distinct regions. A linear bottom end up through .018316 in steps
485 * of about .000073, and a region of constant ratio up to about 25.
486 * These floating point numbers are stored in the main table ToLinearF.
487 * All other tables are derived from this one. The tables (and the
488 * ratios) are continuous at the internal seam.
489 */
490
491 int nlin, lt2size;
492 int i, j;
493 double b, c, linstep, v;
494 float *ToLinearF;
495 uint16 *ToLinear16;
496 unsigned char *ToLinear8;
497 uint16 *FromLT2;
498 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
499 uint16 *From8;
500
501 c = log(RATIO);
502 nlin = (int)(1./c); /* nlin must be an integer */
503 c = 1./nlin;
504 b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
505 linstep = b*c*exp(1.);
506
507 LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */
508 LogK2 = (float)(1./b);
509 lt2size = (int)(2./linstep) + 1;
510 FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
511 From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
512 From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
513 ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
514 ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
515 ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
516 if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
517 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
518 if (FromLT2) _TIFFfree(FromLT2);
519 if (From14) _TIFFfree(From14);
520 if (From8) _TIFFfree(From8);
521 if (ToLinearF) _TIFFfree(ToLinearF);
522 if (ToLinear16) _TIFFfree(ToLinear16);
523 if (ToLinear8) _TIFFfree(ToLinear8);
524 sp->FromLT2 = NULL;
525 sp->From14 = NULL;
526 sp->From8 = NULL;
527 sp->ToLinearF = NULL;
528 sp->ToLinear16 = NULL;
529 sp->ToLinear8 = NULL;
530 return 0;
531 }
532
533 j = 0;
534
535 for (i = 0; i < nlin; i++) {
536 v = i * linstep;
537 ToLinearF[j++] = (float)v;
538 }
539
540 for (i = nlin; i < TSIZE; i++)
541 ToLinearF[j++] = (float)(b*exp(c*i));
542
543 ToLinearF[2048] = ToLinearF[2047];
544
545 for (i = 0; i < TSIZEP1; i++) {
546 v = ToLinearF[i]*65535.0 + 0.5;
547 ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
548 v = ToLinearF[i]*255.0 + 0.5;
549 ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
550 }
551
552 j = 0;
553 for (i = 0; i < lt2size; i++) {
554 if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
555 j++;
556 FromLT2[i] = j;
557 }
558
559 /*
560 * Since we lose info anyway on 16-bit data, we set up a 14-bit
561 * table and shift 16-bit values down two bits on input.
562 * saves a little table space.
563 */
564 j = 0;
565 for (i = 0; i < 16384; i++) {
566 while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
567 j++;
568 From14[i] = j;
569 }
570
571 j = 0;
572 for (i = 0; i < 256; i++) {
573 while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
574 j++;
575 From8[i] = j;
576 }
577
578 Fltsize = (float)(lt2size/2);
579
580 sp->ToLinearF = ToLinearF;
581 sp->ToLinear16 = ToLinear16;
582 sp->ToLinear8 = ToLinear8;
583 sp->FromLT2 = FromLT2;
584 sp->From14 = From14;
585 sp->From8 = From8;
586
587 return 1;
588 }
589
590 #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data)
591 #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data)
592
593 static int PixarLogEncode(TIFF*, tidata_t, tsize_t, tsample_t);
594 static int PixarLogDecode(TIFF*, tidata_t, tsize_t, tsample_t);
595
596 #define N(a) (sizeof(a)/sizeof(a[0]))
597 #define PIXARLOGDATAFMT_UNKNOWN -1
598
599 static int
600 PixarLogGuessDataFmt(TIFFDirectory *td)
601 {
602 int guess = PIXARLOGDATAFMT_UNKNOWN;
603 int format = td->td_sampleformat;
604
605 /* If the user didn't tell us his datafmt,
606 * take our best guess from the bitspersample.
607 */
608 switch (td->td_bitspersample) {
609 case 32:
610 if (format == SAMPLEFORMAT_IEEEFP)
611 guess = PIXARLOGDATAFMT_FLOAT;
612 break;
613 case 16:
614 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
615 guess = PIXARLOGDATAFMT_16BIT;
616 break;
617 case 12:
618 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
619 guess = PIXARLOGDATAFMT_12BITPICIO;
620 break;
621 case 11:
622 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
623 guess = PIXARLOGDATAFMT_11BITLOG;
624 break;
625 case 8:
626 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
627 guess = PIXARLOGDATAFMT_8BIT;
628 break;
629 }
630
631 return guess;
632 }
633
634 static uint32
635 multiply(size_t m1, size_t m2)
636 {
637 uint32 bytes = m1 * m2;
638
639 if (m1 && bytes / m1 != m2)
640 bytes = 0;
641
642 return bytes;
643 }
644
645 static int
646 PixarLogSetupDecode(TIFF* tif)
647 {
648 TIFFDirectory *td = &tif->tif_dir;
649 PixarLogState* sp = DecoderState(tif);
650 tsize_t tbuf_size;
651 static const char module[] = "PixarLogSetupDecode";
652
653 assert(sp != NULL);
654
655 /* Make sure no byte swapping happens on the data
656 * after decompression. */
657 tif->tif_postdecode = _TIFFNoPostDecode;
658
659 /* for some reason, we can't do this in TIFFInitPixarLog */
660
661 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
662 td->td_samplesperpixel : 1);
663 tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
664 td->td_rowsperstrip), sizeof(uint16));
665 if (tbuf_size == 0)
666 return (0);
667 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
668 if (sp->tbuf == NULL)
669 return (0);
670 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
671 sp->user_datafmt = PixarLogGuessDataFmt(td);
672 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
673 TIFFErrorExt(tif->tif_clientdata, module,
674 "PixarLog compression can't handle bits depth/data format combination (depth: %d)",
675 td->td_bitspersample);
676 return (0);
677 }
678
679 if (inflateInit(&sp->stream) != Z_OK) {
680 TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
681 return (0);
682 } else {
683 sp->state |= PLSTATE_INIT;
684 return (1);
685 }
686 }
687
688 /*
689 * Setup state for decoding a strip.
690 */
691 static int
692 PixarLogPreDecode(TIFF* tif, tsample_t s)
693 {
694 PixarLogState* sp = DecoderState(tif);
695
696 (void) s;
697 assert(sp != NULL);
698 sp->stream.next_in = tif->tif_rawdata;
699 sp->stream.avail_in = tif->tif_rawcc;
700 return (inflateReset(&sp->stream) == Z_OK);
701 }
702
703 static int
704 PixarLogDecode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
705 {
706 TIFFDirectory *td = &tif->tif_dir;
707 PixarLogState* sp = DecoderState(tif);
708 static const char module[] = "PixarLogDecode";
709 int i, nsamples, llen;
710 uint16 *up;
711
712 switch (sp->user_datafmt) {
713 case PIXARLOGDATAFMT_FLOAT:
714 nsamples = occ / sizeof(float); /* XXX float == 32 bits */
715 break;
716 case PIXARLOGDATAFMT_16BIT:
717 case PIXARLOGDATAFMT_12BITPICIO:
718 case PIXARLOGDATAFMT_11BITLOG:
719 nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
720 break;
721 case PIXARLOGDATAFMT_8BIT:
722 case PIXARLOGDATAFMT_8BITABGR:
723 nsamples = occ;
724 break;
725 default:
726 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
727 "%d bit input not supported in PixarLog",
728 td->td_bitspersample);
729 return 0;
730 }
731
732 llen = sp->stride * td->td_imagewidth;
733
734 (void) s;
735 assert(sp != NULL);
736 sp->stream.next_out = (unsigned char *) sp->tbuf;
737 sp->stream.avail_out = nsamples * sizeof(uint16);
738 do {
739 int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
740 if (state == Z_STREAM_END) {
741 break; /* XXX */
742 }
743 if (state == Z_DATA_ERROR) {
744 TIFFErrorExt(tif->tif_clientdata, module,
745 "%s: Decoding error at scanline %d, %s",
746 tif->tif_name, tif->tif_row, sp->stream.msg);
747 if (inflateSync(&sp->stream) != Z_OK)
748 return (0);
749 continue;
750 }
751 if (state != Z_OK) {
752 TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
753 tif->tif_name, sp->stream.msg);
754 return (0);
755 }
756 } while (sp->stream.avail_out > 0);
757
758 /* hopefully, we got all the bytes we needed */
759 if (sp->stream.avail_out != 0) {
760 TIFFErrorExt(tif->tif_clientdata, module,
761 "%s: Not enough data at scanline %d (short %d bytes)",
762 tif->tif_name, tif->tif_row, sp->stream.avail_out);
763 return (0);
764 }
765
766 up = sp->tbuf;
767 /* Swap bytes in the data if from a different endian machine. */
768 if (tif->tif_flags & TIFF_SWAB)
769 TIFFSwabArrayOfShort(up, nsamples);
770
771 for (i = 0; i < nsamples; i += llen, up += llen) {
772 switch (sp->user_datafmt) {
773 case PIXARLOGDATAFMT_FLOAT:
774 horizontalAccumulateF(up, llen, sp->stride,
775 (float *)op, sp->ToLinearF);
776 op += llen * sizeof(float);
777 break;
778 case PIXARLOGDATAFMT_16BIT:
779 horizontalAccumulate16(up, llen, sp->stride,
780 (uint16 *)op, sp->ToLinear16);
781 op += llen * sizeof(uint16);
782 break;
783 case PIXARLOGDATAFMT_12BITPICIO:
784 horizontalAccumulate12(up, llen, sp->stride,
785 (int16 *)op, sp->ToLinearF);
786 op += llen * sizeof(int16);
787 break;
788 case PIXARLOGDATAFMT_11BITLOG:
789 horizontalAccumulate11(up, llen, sp->stride,
790 (uint16 *)op);
791 op += llen * sizeof(uint16);
792 break;
793 case PIXARLOGDATAFMT_8BIT:
794 horizontalAccumulate8(up, llen, sp->stride,
795 (unsigned char *)op, sp->ToLinear8);
796 op += llen * sizeof(unsigned char);
797 break;
798 case PIXARLOGDATAFMT_8BITABGR:
799 horizontalAccumulate8abgr(up, llen, sp->stride,
800 (unsigned char *)op, sp->ToLinear8);
801 op += llen * sizeof(unsigned char);
802 break;
803 default:
804 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
805 "PixarLogDecode: unsupported bits/sample: %d",
806 td->td_bitspersample);
807 return (0);
808 }
809 }
810
811 return (1);
812 }
813
814 static int
815 PixarLogSetupEncode(TIFF* tif)
816 {
817 TIFFDirectory *td = &tif->tif_dir;
818 PixarLogState* sp = EncoderState(tif);
819 tsize_t tbuf_size;
820 static const char module[] = "PixarLogSetupEncode";
821
822 assert(sp != NULL);
823
824 /* for some reason, we can't do this in TIFFInitPixarLog */
825
826 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
827 td->td_samplesperpixel : 1);
828 tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
829 td->td_rowsperstrip), sizeof(uint16));
830 if (tbuf_size == 0)
831 return (0);
832 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
833 if (sp->tbuf == NULL)
834 return (0);
835 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
836 sp->user_datafmt = PixarLogGuessDataFmt(td);
837 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
838 TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
839 return (0);
840 }
841
842 if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
843 TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
844 return (0);
845 } else {
846 sp->state |= PLSTATE_INIT;
847 return (1);
848 }
849 }
850
851 /*
852 * Reset encoding state at the start of a strip.
853 */
854 static int
855 PixarLogPreEncode(TIFF* tif, tsample_t s)
856 {
857 PixarLogState *sp = EncoderState(tif);
858
859 (void) s;
860 assert(sp != NULL);
861 sp->stream.next_out = tif->tif_rawdata;
862 sp->stream.avail_out = tif->tif_rawdatasize;
863 return (deflateReset(&sp->stream) == Z_OK);
864 }
865
866 static void
867 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
868 {
869
870 int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
871 float fltsize = Fltsize;
872
873 #define CLAMP(v) ( (v<(float)0.) ? 0 \
874 : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
875 : (v>(float)24.2) ? 2047 \
876 : LogK1*log(v*LogK2) + 0.5 )
877
878 mask = CODE_MASK;
879 if (n >= stride) {
880 if (stride == 3) {
881 r2 = wp[0] = (uint16) CLAMP(ip[0]);
882 g2 = wp[1] = (uint16) CLAMP(ip[1]);
883 b2 = wp[2] = (uint16) CLAMP(ip[2]);
884 n -= 3;
885 while (n > 0) {
886 n -= 3;
887 wp += 3;
888 ip += 3;
889 r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
890 g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
891 b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
892 }
893 } else if (stride == 4) {
894 r2 = wp[0] = (uint16) CLAMP(ip[0]);
895 g2 = wp[1] = (uint16) CLAMP(ip[1]);
896 b2 = wp[2] = (uint16) CLAMP(ip[2]);
897 a2 = wp[3] = (uint16) CLAMP(ip[3]);
898 n -= 4;
899 while (n > 0) {
900 n -= 4;
901 wp += 4;
902 ip += 4;
903 r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
904 g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
905 b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
906 a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
907 }
908 } else {
909 ip += n - 1; /* point to last one */
910 wp += n - 1; /* point to last one */
911 n -= stride;
912 while (n > 0) {
913 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
914 wp[stride] -= wp[0];
915 wp[stride] &= mask;
916 wp--; ip--)
917 n -= stride;
918 }
919 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
920 }
921 }
922 }
923
924 static void
925 horizontalDifference16(unsigned short *ip, int n, int stride,
926 unsigned short *wp, uint16 *From14)
927 {
928 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
929
930 /* assumption is unsigned pixel values */
931 #undef CLAMP
932 #define CLAMP(v) From14[(v) >> 2]
933
934 mask = CODE_MASK;
935 if (n >= stride) {
936 if (stride == 3) {
937 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
938 b2 = wp[2] = CLAMP(ip[2]);
939 n -= 3;
940 while (n > 0) {
941 n -= 3;
942 wp += 3;
943 ip += 3;
944 r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
945 g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
946 b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
947 }
948 } else if (stride == 4) {
949 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
950 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
951 n -= 4;
952 while (n > 0) {
953 n -= 4;
954 wp += 4;
955 ip += 4;
956 r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
957 g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
958 b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
959 a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
960 }
961 } else {
962 ip += n - 1; /* point to last one */
963 wp += n - 1; /* point to last one */
964 n -= stride;
965 while (n > 0) {
966 REPEAT(stride, wp[0] = CLAMP(ip[0]);
967 wp[stride] -= wp[0];
968 wp[stride] &= mask;
969 wp--; ip--)
970 n -= stride;
971 }
972 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
973 }
974 }
975 }
976
977
978 static void
979 horizontalDifference8(unsigned char *ip, int n, int stride,
980 unsigned short *wp, uint16 *From8)
981 {
982 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
983
984 #undef CLAMP
985 #define CLAMP(v) (From8[(v)])
986
987 mask = CODE_MASK;
988 if (n >= stride) {
989 if (stride == 3) {
990 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
991 b2 = wp[2] = CLAMP(ip[2]);
992 n -= 3;
993 while (n > 0) {
994 n -= 3;
995 r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
996 g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
997 b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
998 wp += 3;
999 ip += 3;
1000 }
1001 } else if (stride == 4) {
1002 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1003 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1004 n -= 4;
1005 while (n > 0) {
1006 n -= 4;
1007 r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1008 g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1009 b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1010 a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1011 wp += 4;
1012 ip += 4;
1013 }
1014 } else {
1015 wp += n + stride - 1; /* point to last one */
1016 ip += n + stride - 1; /* point to last one */
1017 n -= stride;
1018 while (n > 0) {
1019 REPEAT(stride, wp[0] = CLAMP(ip[0]);
1020 wp[stride] -= wp[0];
1021 wp[stride] &= mask;
1022 wp--; ip--)
1023 n -= stride;
1024 }
1025 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1026 }
1027 }
1028 }
1029
1030 /*
1031 * Encode a chunk of pixels.
1032 */
1033 static int
1034 PixarLogEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1035 {
1036 TIFFDirectory *td = &tif->tif_dir;
1037 PixarLogState *sp = EncoderState(tif);
1038 static const char module[] = "PixarLogEncode";
1039 int i, n, llen;
1040 unsigned short * up;
1041
1042 (void) s;
1043
1044 switch (sp->user_datafmt) {
1045 case PIXARLOGDATAFMT_FLOAT:
1046 n = cc / sizeof(float); /* XXX float == 32 bits */
1047 break;
1048 case PIXARLOGDATAFMT_16BIT:
1049 case PIXARLOGDATAFMT_12BITPICIO:
1050 case PIXARLOGDATAFMT_11BITLOG:
1051 n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */
1052 break;
1053 case PIXARLOGDATAFMT_8BIT:
1054 case PIXARLOGDATAFMT_8BITABGR:
1055 n = cc;
1056 break;
1057 default:
1058 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1059 "%d bit input not supported in PixarLog",
1060 td->td_bitspersample);
1061 return 0;
1062 }
1063
1064 llen = sp->stride * td->td_imagewidth;
1065
1066 for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1067 switch (sp->user_datafmt) {
1068 case PIXARLOGDATAFMT_FLOAT:
1069 horizontalDifferenceF((float *)bp, llen,
1070 sp->stride, up, sp->FromLT2);
1071 bp += llen * sizeof(float);
1072 break;
1073 case PIXARLOGDATAFMT_16BIT:
1074 horizontalDifference16((uint16 *)bp, llen,
1075 sp->stride, up, sp->From14);
1076 bp += llen * sizeof(uint16);
1077 break;
1078 case PIXARLOGDATAFMT_8BIT:
1079 horizontalDifference8((unsigned char *)bp, llen,
1080 sp->stride, up, sp->From8);
1081 bp += llen * sizeof(unsigned char);
1082 break;
1083 default:
1084 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1085 "%d bit input not supported in PixarLog",
1086 td->td_bitspersample);
1087 return 0;
1088 }
1089 }
1090
1091 sp->stream.next_in = (unsigned char *) sp->tbuf;
1092 sp->stream.avail_in = n * sizeof(uint16);
1093
1094 do {
1095 if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1096 TIFFErrorExt(tif->tif_clientdata, module, "%s: Encoder error: %s",
1097 tif->tif_name, sp->stream.msg);
1098 return (0);
1099 }
1100 if (sp->stream.avail_out == 0) {
1101 tif->tif_rawcc = tif->tif_rawdatasize;
1102 TIFFFlushData1(tif);
1103 sp->stream.next_out = tif->tif_rawdata;
1104 sp->stream.avail_out = tif->tif_rawdatasize;
1105 }
1106 } while (sp->stream.avail_in > 0);
1107 return (1);
1108 }
1109
1110 /*
1111 * Finish off an encoded strip by flushing the last
1112 * string and tacking on an End Of Information code.
1113 */
1114
1115 static int
1116 PixarLogPostEncode(TIFF* tif)
1117 {
1118 PixarLogState *sp = EncoderState(tif);
1119 static const char module[] = "PixarLogPostEncode";
1120 int state;
1121
1122 sp->stream.avail_in = 0;
1123
1124 do {
1125 state = deflate(&sp->stream, Z_FINISH);
1126 switch (state) {
1127 case Z_STREAM_END:
1128 case Z_OK:
1129 if (sp->stream.avail_out != (uint32)tif->tif_rawdatasize) {
1130 tif->tif_rawcc =
1131 tif->tif_rawdatasize - sp->stream.avail_out;
1132 TIFFFlushData1(tif);
1133 sp->stream.next_out = tif->tif_rawdata;
1134 sp->stream.avail_out = tif->tif_rawdatasize;
1135 }
1136 break;
1137 default:
1138 TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1139 tif->tif_name, sp->stream.msg);
1140 return (0);
1141 }
1142 } while (state != Z_STREAM_END);
1143 return (1);
1144 }
1145
1146 static void
1147 PixarLogClose(TIFF* tif)
1148 {
1149 TIFFDirectory *td = &tif->tif_dir;
1150
1151 /* In a really sneaky maneuver, on close, we covertly modify both
1152 * bitspersample and sampleformat in the directory to indicate
1153 * 8-bit linear. This way, the decode "just works" even for
1154 * readers that don't know about PixarLog, or how to set
1155 * the PIXARLOGDATFMT pseudo-tag.
1156 */
1157 td->td_bitspersample = 8;
1158 td->td_sampleformat = SAMPLEFORMAT_UINT;
1159 }
1160
1161 static void
1162 PixarLogCleanup(TIFF* tif)
1163 {
1164 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1165
1166 assert(sp != 0);
1167
1168 (void)TIFFPredictorCleanup(tif);
1169
1170 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1171 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1172
1173 if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1174 if (sp->From14) _TIFFfree(sp->From14);
1175 if (sp->From8) _TIFFfree(sp->From8);
1176 if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1177 if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1178 if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1179 if (sp->state&PLSTATE_INIT) {
1180 if (tif->tif_mode == O_RDONLY)
1181 inflateEnd(&sp->stream);
1182 else
1183 deflateEnd(&sp->stream);
1184 }
1185 if (sp->tbuf)
1186 _TIFFfree(sp->tbuf);
1187 _TIFFfree(sp);
1188 tif->tif_data = NULL;
1189
1190 _TIFFSetDefaultCompressionState(tif);
1191 }
1192
1193 static int
1194 PixarLogVSetField(TIFF* tif, ttag_t tag, va_list ap)
1195 {
1196 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1197 int result;
1198 static const char module[] = "PixarLogVSetField";
1199
1200 switch (tag) {
1201 case TIFFTAG_PIXARLOGQUALITY:
1202 sp->quality = va_arg(ap, int);
1203 if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1204 if (deflateParams(&sp->stream,
1205 sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1206 TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1207 tif->tif_name, sp->stream.msg);
1208 return (0);
1209 }
1210 }
1211 return (1);
1212 case TIFFTAG_PIXARLOGDATAFMT:
1213 sp->user_datafmt = va_arg(ap, int);
1214 /* Tweak the TIFF header so that the rest of libtiff knows what
1215 * size of data will be passed between app and library, and
1216 * assume that the app knows what it is doing and is not
1217 * confused by these header manipulations...
1218 */
1219 switch (sp->user_datafmt) {
1220 case PIXARLOGDATAFMT_8BIT:
1221 case PIXARLOGDATAFMT_8BITABGR:
1222 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1223 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1224 break;
1225 case PIXARLOGDATAFMT_11BITLOG:
1226 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1227 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1228 break;
1229 case PIXARLOGDATAFMT_12BITPICIO:
1230 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1231 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1232 break;
1233 case PIXARLOGDATAFMT_16BIT:
1234 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1235 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1236 break;
1237 case PIXARLOGDATAFMT_FLOAT:
1238 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1239 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1240 break;
1241 }
1242 /*
1243 * Must recalculate sizes should bits/sample change.
1244 */
1245 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tsize_t) -1;
1246 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1247 result = 1; /* NB: pseudo tag */
1248 break;
1249 default:
1250 result = (*sp->vsetparent)(tif, tag, ap);
1251 }
1252 return (result);
1253 }
1254
1255 static int
1256 PixarLogVGetField(TIFF* tif, ttag_t tag, va_list ap)
1257 {
1258 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1259
1260 switch (tag) {
1261 case TIFFTAG_PIXARLOGQUALITY:
1262 *va_arg(ap, int*) = sp->quality;
1263 break;
1264 case TIFFTAG_PIXARLOGDATAFMT:
1265 *va_arg(ap, int*) = sp->user_datafmt;
1266 break;
1267 default:
1268 return (*sp->vgetparent)(tif, tag, ap);
1269 }
1270 return (1);
1271 }
1272
1273 static const TIFFFieldInfo pixarlogFieldInfo[] = {
1274 {TIFFTAG_PIXARLOGDATAFMT,0,0,TIFF_ANY, FIELD_PSEUDO,FALSE,FALSE,""},
1275 {TIFFTAG_PIXARLOGQUALITY,0,0,TIFF_ANY, FIELD_PSEUDO,FALSE,FALSE,""}
1276 };
1277
1278 int
1279 TIFFInitPixarLog(TIFF* tif, int scheme)
1280 {
1281 PixarLogState* sp;
1282
1283 assert(scheme == COMPRESSION_PIXARLOG);
1284
1285 /*
1286 * Allocate state block so tag methods have storage to record values.
1287 */
1288 tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (PixarLogState));
1289 if (tif->tif_data == NULL)
1290 goto bad;
1291 sp = (PixarLogState*) tif->tif_data;
1292 _TIFFmemset(sp, 0, sizeof (*sp));
1293 sp->stream.data_type = Z_BINARY;
1294 sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1295
1296 /*
1297 * Install codec methods.
1298 */
1299 tif->tif_setupdecode = PixarLogSetupDecode;
1300 tif->tif_predecode = PixarLogPreDecode;
1301 tif->tif_decoderow = PixarLogDecode;
1302 tif->tif_decodestrip = PixarLogDecode;
1303 tif->tif_decodetile = PixarLogDecode;
1304 tif->tif_setupencode = PixarLogSetupEncode;
1305 tif->tif_preencode = PixarLogPreEncode;
1306 tif->tif_postencode = PixarLogPostEncode;
1307 tif->tif_encoderow = PixarLogEncode;
1308 tif->tif_encodestrip = PixarLogEncode;
1309 tif->tif_encodetile = PixarLogEncode;
1310 tif->tif_close = PixarLogClose;
1311 tif->tif_cleanup = PixarLogCleanup;
1312
1313 /* Override SetField so we can handle our private pseudo-tag */
1314 _TIFFMergeFieldInfo(tif, pixarlogFieldInfo, N(pixarlogFieldInfo));
1315 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1316 tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1317 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1318 tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1319
1320 /* Default values for codec-specific fields */
1321 sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1322 sp->state = 0;
1323
1324 /* we don't wish to use the predictor,
1325 * the default is none, which predictor value 1
1326 */
1327 (void) TIFFPredictorInit(tif);
1328
1329 /*
1330 * build the companding tables
1331 */
1332 PixarLogMakeTables(sp);
1333
1334 return (1);
1335 bad:
1336 TIFFErrorExt(tif->tif_clientdata, "TIFFInitPixarLog",
1337 "No space for PixarLog state block");
1338 return (0);
1339 }
1340 #endif /* PIXARLOG_SUPPORT */
1341
1342 /* vim: set ts=8 sts=8 sw=8 noet: */