]> git.saurik.com Git - wxWidgets.git/blob - src/common/matrix.cpp
Don't delete model in views destructor as several
[wxWidgets.git] / src / common / matrix.cpp
1 ///////////////////////////////////////////////////////////////////////////////
2 // Name: matrix.cpp
3 // Purpose: wxTransformMatrix class
4 // Author: Chris Breeze, Julian Smart
5 // Modified by: Klaas Holwerda
6 // Created: 01/02/97
7 // RCS-ID: $Id$
8 // Copyright: (c) Julian Smart
9 // Licence: wxWindows licence
10 ///////////////////////////////////////////////////////////////////////////////
11
12 // Note: this is intended to be used in wxDC at some point to replace
13 // the current system of scaling/translation. It is not yet used.
14
15 // For compilers that support precompilation, includes "wx.h".
16 #include "wx/wxprec.h"
17
18 #ifdef __BORLANDC__
19 #pragma hdrstop
20 #endif
21
22 #ifndef WX_PRECOMP
23 #include "wx/defs.h"
24 #include "wx/math.h"
25 #endif
26
27 #include "wx/matrix.h"
28
29 static const double pi = M_PI;
30
31 wxTransformMatrix::wxTransformMatrix(void)
32 {
33 m_isIdentity = false;
34
35 Identity();
36 }
37
38 wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat)
39 : wxObject()
40 {
41 (*this) = mat;
42 }
43
44 double wxTransformMatrix::GetValue(int col, int row) const
45 {
46 if (row < 0 || row > 2 || col < 0 || col > 2)
47 return 0.0;
48
49 return m_matrix[col][row];
50 }
51
52 void wxTransformMatrix::SetValue(int col, int row, double value)
53 {
54 if (row < 0 || row > 2 || col < 0 || col > 2)
55 return;
56
57 m_matrix[col][row] = value;
58 m_isIdentity = IsIdentity1();
59 }
60
61 void wxTransformMatrix::operator = (const wxTransformMatrix& mat)
62 {
63 int i, j;
64 for (i = 0; i < 3; i++)
65 {
66 for (j = 0; j < 3; j++)
67 {
68 m_matrix[i][j] = mat.m_matrix[i][j];
69 }
70 }
71 m_isIdentity = mat.m_isIdentity;
72 }
73
74 bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const
75 {
76 if (m_isIdentity && mat.m_isIdentity)
77 return true;
78
79 int i, j;
80 for (i = 0; i < 3; i++)
81 {
82 for (j = 0; j < 3; j++)
83 {
84 if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) )
85 return false;
86 }
87 }
88 return true;
89 }
90
91 bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const
92 {
93 return (! ((*this) == mat));
94 }
95
96 double& wxTransformMatrix::operator()(int col, int row)
97 {
98 if (row < 0 || row > 2 || col < 0 || col > 2)
99 return m_matrix[0][0];
100
101 return m_matrix[col][row];
102 }
103
104 double wxTransformMatrix::operator()(int col, int row) const
105 {
106 if (row < 0 || row > 2 || col < 0 || col > 2)
107 return 0.0;
108
109 return m_matrix[col][row];
110 }
111
112 // Invert matrix
113 bool wxTransformMatrix::Invert(void)
114 {
115 double inverseMatrix[3][3];
116
117 // calculate the adjoint
118 inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
119 inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
120 inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
121
122 inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
123 inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
124 inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
125
126 inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
127 inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
128 inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
129
130 // now divide by the determinant
131 double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
132 if ( wxIsNullDouble(det) )
133 return false;
134
135 inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
136 inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
137 inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
138
139 for (int i = 0; i < 3; i++)
140 {
141 for (int j = 0; j < 3; j++)
142 {
143 m_matrix[i][j] = inverseMatrix[i][j];
144 }
145 }
146 m_isIdentity = IsIdentity1();
147 return true;
148 }
149
150 // Make into identity matrix
151 bool wxTransformMatrix::Identity(void)
152 {
153 m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
154 m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
155 m_isIdentity = true;
156
157 return true;
158 }
159
160 // Scale by scale (isotropic scaling i.e. the same in x and y):
161 // | scale 0 0 |
162 // matrix' = | 0 scale 0 | x matrix
163 // | 0 0 scale |
164 //
165 bool wxTransformMatrix::Scale(double scale)
166 {
167 int i, j;
168 for (i = 0; i < 3; i++)
169 {
170 for (j = 0; j < 3; j++)
171 {
172 m_matrix[i][j] *= scale;
173 }
174 }
175 m_isIdentity = IsIdentity1();
176
177 return true;
178 }
179
180
181 // scale a matrix in 2D
182 //
183 // xs 0 xc(1-xs)
184 // 0 ys yc(1-ys)
185 // 0 0 1
186 //
187 wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc)
188 {
189 double r00,r10,r20,r01,r11,r21;
190
191 if (m_isIdentity)
192 {
193 double tx = xc*(1-xs);
194 double ty = yc*(1-ys);
195 r00 = xs;
196 r10 = 0;
197 r20 = tx;
198 r01 = 0;
199 r11 = ys;
200 r21 = ty;
201 }
202 else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) )
203 {
204 double tx = xc*(1-xs);
205 double ty = yc*(1-ys);
206 r00 = xs * m_matrix[0][0];
207 r10 = xs * m_matrix[1][0];
208 r20 = xs * m_matrix[2][0] + tx;
209 r01 = ys * m_matrix[0][1];
210 r11 = ys * m_matrix[1][1];
211 r21 = ys * m_matrix[2][1] + ty;
212 }
213 else
214 {
215 r00 = xs * m_matrix[0][0];
216 r10 = xs * m_matrix[1][0];
217 r20 = xs * m_matrix[2][0];
218 r01 = ys * m_matrix[0][1];
219 r11 = ys * m_matrix[1][1];
220 r21 = ys * m_matrix[2][1];
221 }
222
223 m_matrix[0][0] = r00;
224 m_matrix[1][0] = r10;
225 m_matrix[2][0] = r20;
226 m_matrix[0][1] = r01;
227 m_matrix[1][1] = r11;
228 m_matrix[2][1] = r21;
229
230 /* or like this
231 // first translate to origin O
232 (*this).Translate(-x_cen, -y_cen);
233
234 // now do the scaling
235 wxTransformMatrix scale;
236 scale.m_matrix[0][0] = x_fac;
237 scale.m_matrix[1][1] = y_fac;
238 scale.m_isIdentity = IsIdentity1();
239
240 *this = scale * (*this);
241
242 // translate back from origin to x_cen, y_cen
243 (*this).Translate(x_cen, y_cen);
244 */
245
246 m_isIdentity = IsIdentity1();
247
248 return *this;
249 }
250
251
252 // mirror a matrix in x, y
253 //
254 // -1 0 0 Y-mirror
255 // 0 -1 0 X-mirror
256 // 0 0 -1 Z-mirror
257 wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y)
258 {
259 wxTransformMatrix temp;
260 if (x)
261 {
262 temp.m_matrix[1][1] = -1;
263 temp.m_isIdentity=false;
264 }
265 if (y)
266 {
267 temp.m_matrix[0][0] = -1;
268 temp.m_isIdentity=false;
269 }
270
271 *this = temp * (*this);
272 m_isIdentity = IsIdentity1();
273 return *this;
274 }
275
276 // Translate by dx, dy:
277 // | 1 0 dx |
278 // matrix' = | 0 1 dy | x matrix
279 // | 0 0 1 |
280 //
281 bool wxTransformMatrix::Translate(double dx, double dy)
282 {
283 int i;
284 for (i = 0; i < 3; i++)
285 m_matrix[i][0] += dx * m_matrix[i][2];
286 for (i = 0; i < 3; i++)
287 m_matrix[i][1] += dy * m_matrix[i][2];
288
289 m_isIdentity = IsIdentity1();
290
291 return true;
292 }
293
294 // Rotate clockwise by the given number of degrees:
295 // | cos sin 0 |
296 // matrix' = | -sin cos 0 | x matrix
297 // | 0 0 1 |
298 bool wxTransformMatrix::Rotate(double degrees)
299 {
300 Rotate(-degrees,0,0);
301 return true;
302 }
303
304 // counter clockwise rotate around a point
305 //
306 // cos(r) -sin(r) x(1-cos(r))+y(sin(r)
307 // sin(r) cos(r) y(1-cos(r))-x(sin(r)
308 // 0 0 1
309 wxTransformMatrix& wxTransformMatrix::Rotate(const double &degrees, const double &x, const double &y)
310 {
311 double angle = degrees * pi / 180.0;
312 double c = cos(angle);
313 double s = sin(angle);
314 double r00,r10,r20,r01,r11,r21;
315
316 if (m_isIdentity)
317 {
318 double tx = x*(1-c)+y*s;
319 double ty = y*(1-c)-x*s;
320 r00 = c ;
321 r10 = -s;
322 r20 = tx;
323 r01 = s;
324 r11 = c;
325 r21 = ty;
326 }
327 else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) )
328 {
329 double tx = x*(1-c)+y*s;
330 double ty = y*(1-c)-x*s;
331 r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2];
332 r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2];
333 r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2];
334 r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2];
335 r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2];
336 r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2];
337 }
338 else
339 {
340 r00 = c * m_matrix[0][0] - s * m_matrix[0][1];
341 r10 = c * m_matrix[1][0] - s * m_matrix[1][1];
342 r20 = c * m_matrix[2][0] - s * m_matrix[2][1];
343 r01 = c * m_matrix[0][1] + s * m_matrix[0][0];
344 r11 = c * m_matrix[1][1] + s * m_matrix[1][0];
345 r21 = c * m_matrix[2][1] + s * m_matrix[2][0];
346 }
347
348 m_matrix[0][0] = r00;
349 m_matrix[1][0] = r10;
350 m_matrix[2][0] = r20;
351 m_matrix[0][1] = r01;
352 m_matrix[1][1] = r11;
353 m_matrix[2][1] = r21;
354
355 /* or like this
356 wxTransformMatrix rotate;
357 rotate.m_matrix[2][0] = tx;
358 rotate.m_matrix[2][1] = ty;
359
360 rotate.m_matrix[0][0] = c;
361 rotate.m_matrix[0][1] = s;
362
363 rotate.m_matrix[1][0] = -s;
364 rotate.m_matrix[1][1] = c;
365
366 rotate.m_isIdentity=false;
367 *this = rotate * (*this);
368 */
369 m_isIdentity = IsIdentity1();
370
371 return *this;
372 }
373
374 // Transform a point from logical to device coordinates
375 bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const
376 {
377 if (IsIdentity())
378 {
379 tx = x; ty = y; return true;
380 }
381
382 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
383 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
384
385 return true;
386 }
387
388 // Transform a point from device to logical coordinates.
389
390 // Example of use:
391 // wxTransformMatrix mat = dc.GetTransformation();
392 // mat.Invert();
393 // mat.InverseTransformPoint(x, y, x1, y1);
394 // OR (shorthand:)
395 // dc.LogicalToDevice(x, y, x1, y1);
396 // The latter is slightly less efficient if we're doing several
397 // conversions, since the matrix is inverted several times.
398 bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const
399 {
400 if (IsIdentity())
401 {
402 tx = x;
403 ty = y;
404 return true;
405 }
406
407 const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
408 if ( wxIsNullDouble(z) )
409 return false;
410
411 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
412 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
413 return true;
414 }
415
416 wxTransformMatrix& wxTransformMatrix::operator*=(const double& t)
417 {
418 for (int i = 0; i < 3; i++)
419 for (int j = 0; j < 3; j++)
420 m_matrix[i][j]*= t;
421 m_isIdentity = IsIdentity1();
422 return *this;
423 }
424
425 wxTransformMatrix& wxTransformMatrix::operator/=(const double& t)
426 {
427 for (int i = 0; i < 3; i++)
428 for (int j = 0; j < 3; j++)
429 m_matrix[i][j]/= t;
430 m_isIdentity = IsIdentity1();
431 return *this;
432 }
433
434 wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat)
435 {
436 for (int i = 0; i < 3; i++)
437 for (int j = 0; j < 3; j++)
438 m_matrix[i][j] += mat.m_matrix[i][j];
439 m_isIdentity = IsIdentity1();
440 return *this;
441 }
442
443 wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat)
444 {
445 for (int i = 0; i < 3; i++)
446 for (int j = 0; j < 3; j++)
447 m_matrix[i][j] -= mat.m_matrix[i][j];
448 m_isIdentity = IsIdentity1();
449 return *this;
450 }
451
452 wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat)
453 {
454
455 if (mat.m_isIdentity)
456 return *this;
457 if (m_isIdentity)
458 {
459 *this = mat;
460 return *this;
461 }
462 else
463 {
464 wxTransformMatrix result;
465 for (int i = 0; i < 3; i++)
466 {
467 for (int j = 0; j < 3; j++)
468 {
469 double sum = 0;
470 for (int k = 0; k < 3; k++)
471 sum += m_matrix[k][i] * mat.m_matrix[j][k];
472 result.m_matrix[j][i] = sum;
473 }
474 }
475 *this = result;
476 }
477
478 m_isIdentity = IsIdentity1();
479 return *this;
480 }
481
482
483 // constant operators
484 wxTransformMatrix wxTransformMatrix::operator*(const double& t) const
485 {
486 wxTransformMatrix result = *this;
487 result *= t;
488 result.m_isIdentity = result.IsIdentity1();
489 return result;
490 }
491
492 wxTransformMatrix wxTransformMatrix::operator/(const double& t) const
493 {
494 wxTransformMatrix result = *this;
495 // wxASSERT(t!=0);
496 result /= t;
497 result.m_isIdentity = result.IsIdentity1();
498 return result;
499 }
500
501 wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const
502 {
503 wxTransformMatrix result = *this;
504 result += m;
505 result.m_isIdentity = result.IsIdentity1();
506 return result;
507 }
508
509 wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const
510 {
511 wxTransformMatrix result = *this;
512 result -= m;
513 result.m_isIdentity = result.IsIdentity1();
514 return result;
515 }
516
517
518 wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const
519 {
520 wxTransformMatrix result = *this;
521 result *= m;
522 result.m_isIdentity = result.IsIdentity1();
523 return result;
524 }
525
526
527 wxTransformMatrix wxTransformMatrix::operator-() const
528 {
529 wxTransformMatrix result = *this;
530 for (int i = 0; i < 3; i++)
531 for (int j = 0; j < 3; j++)
532 result.m_matrix[i][j] = -(this->m_matrix[i][j]);
533 result.m_isIdentity = result.IsIdentity1();
534 return result;
535 }
536
537 static double CheckInt(double getal)
538 {
539 // check if the number is very close to an integer
540 if ( (ceil(getal) - getal) < 0.0001)
541 return ceil(getal);
542
543 else if ( (getal - floor(getal)) < 0.0001)
544 return floor(getal);
545
546 return getal;
547
548 }
549
550 double wxTransformMatrix::Get_scaleX()
551 {
552 double scale_factor;
553 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
554 if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) )
555 scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi);
556 else
557 scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
558
559 scale_factor = CheckInt(scale_factor);
560 if (scale_factor < 0)
561 scale_factor = -scale_factor;
562
563 return scale_factor;
564 }
565
566 double wxTransformMatrix::Get_scaleY()
567 {
568 double scale_factor;
569 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
570 if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) )
571 scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi);
572 else
573 scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
574
575 scale_factor = CheckInt(scale_factor);
576 if (scale_factor < 0)
577
578 scale_factor = -scale_factor;
579
580 return scale_factor;
581
582 }
583
584 double wxTransformMatrix::GetRotation()
585 {
586 double temp1 = GetValue(0,0); // for angle calculation
587 double temp2 = GetValue(0,1); //
588
589 // Rotation
590 double rot_angle = atan2(temp2,temp1)*180/pi;
591
592 rot_angle = CheckInt(rot_angle);
593 return rot_angle;
594 }
595
596 void wxTransformMatrix::SetRotation(double rotation)
597 {
598 double x=GetValue(2,0);
599 double y=GetValue(2,1);
600 Rotate(-GetRotation(), x, y);
601 Rotate(rotation, x, y);
602 }
603