]> git.saurik.com Git - wxWidgets.git/blob - src/tiff/tif_fax3.c
more woodoo in DoGetBestSize() to get rid of tree borders for default-sizes controls
[wxWidgets.git] / src / tiff / tif_fax3.c
1 /* $Header$ */
2
3 /*
4 * Copyright (c) 1990-1997 Sam Leffler
5 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef CCITT_SUPPORT
29 /*
30 * TIFF Library.
31 *
32 * CCITT Group 3 (T.4) and Group 4 (T.6) Compression Support.
33 *
34 * This file contains support for decoding and encoding TIFF
35 * compression algorithms 2, 3, 4, and 32771.
36 *
37 * Decoder support is derived, with permission, from the code
38 * in Frank Cringle's viewfax program;
39 * Copyright (C) 1990, 1995 Frank D. Cringle.
40 */
41 #include "tif_fax3.h"
42 #define G3CODES
43 #include "t4.h"
44 #include <assert.h>
45 #include <stdio.h>
46
47 /*
48 * Compression+decompression state blocks are
49 * derived from this ``base state'' block.
50 */
51 typedef struct {
52 int rw_mode; /* O_RDONLY for decode, else encode */
53 int mode; /* operating mode */
54 uint32 rowbytes; /* bytes in a decoded scanline */
55 uint32 rowpixels; /* pixels in a scanline */
56
57 uint16 cleanfaxdata; /* CleanFaxData tag */
58 uint32 badfaxrun; /* BadFaxRun tag */
59 uint32 badfaxlines; /* BadFaxLines tag */
60 uint32 groupoptions; /* Group 3/4 options tag */
61 uint32 recvparams; /* encoded Class 2 session params */
62 char* subaddress; /* subaddress string */
63 uint32 recvtime; /* time spent receiving (secs) */
64 TIFFVGetMethod vgetparent; /* super-class method */
65 TIFFVSetMethod vsetparent; /* super-class method */
66 } Fax3BaseState;
67 #define Fax3State(tif) ((Fax3BaseState*) (tif)->tif_data)
68
69 typedef enum { G3_1D, G3_2D } Ttag;
70 typedef struct {
71 Fax3BaseState b;
72
73 /* Decoder state info */
74 const u_char* bitmap; /* bit reversal table */
75 uint32 data; /* current i/o byte/word */
76 int bit; /* current i/o bit in byte */
77 int EOLcnt; /* count of EOL codes recognized */
78 TIFFFaxFillFunc fill; /* fill routine */
79 uint32* runs; /* b&w runs for current/previous row */
80 uint32* refruns; /* runs for reference line */
81 uint32* curruns; /* runs for current line */
82
83 /* Encoder state info */
84 Ttag tag; /* encoding state */
85 u_char* refline; /* reference line for 2d decoding */
86 int k; /* #rows left that can be 2d encoded */
87 int maxk; /* max #rows that can be 2d encoded */
88 } Fax3CodecState;
89 #define DecoderState(tif) ((Fax3CodecState*) Fax3State(tif))
90 #define EncoderState(tif) ((Fax3CodecState*) Fax3State(tif))
91
92 #define is2DEncoding(sp) \
93 (sp->b.groupoptions & GROUP3OPT_2DENCODING)
94 #define isAligned(p,t) ((((u_long)(p)) & (sizeof (t)-1)) == 0)
95
96 /*
97 * Group 3 and Group 4 Decoding.
98 */
99
100 /*
101 * These macros glue the TIFF library state to
102 * the state expected by Frank's decoder.
103 */
104 #define DECLARE_STATE(tif, sp, mod) \
105 static const char module[] = mod; \
106 Fax3CodecState* sp = DecoderState(tif); \
107 int a0; /* reference element */ \
108 int lastx = sp->b.rowpixels; /* last element in row */ \
109 uint32 BitAcc; /* bit accumulator */ \
110 int BitsAvail; /* # valid bits in BitAcc */ \
111 int RunLength; /* length of current run */ \
112 u_char* cp; /* next byte of input data */ \
113 u_char* ep; /* end of input data */ \
114 uint32* pa; /* place to stuff next run */ \
115 uint32* thisrun; /* current row's run array */ \
116 int EOLcnt; /* # EOL codes recognized */ \
117 const u_char* bitmap = sp->bitmap; /* input data bit reverser */ \
118 const TIFFFaxTabEnt* TabEnt
119 #define DECLARE_STATE_2D(tif, sp, mod) \
120 DECLARE_STATE(tif, sp, mod); \
121 int b1; /* next change on prev line */ \
122 uint32* pb /* next run in reference line */\
123 /*
124 * Load any state that may be changed during decoding.
125 */
126 #define CACHE_STATE(tif, sp) do { \
127 BitAcc = sp->data; \
128 BitsAvail = sp->bit; \
129 EOLcnt = sp->EOLcnt; \
130 cp = (unsigned char*) tif->tif_rawcp; \
131 ep = cp + tif->tif_rawcc; \
132 } while (0)
133 /*
134 * Save state possibly changed during decoding.
135 */
136 #define UNCACHE_STATE(tif, sp) do { \
137 sp->bit = BitsAvail; \
138 sp->data = BitAcc; \
139 sp->EOLcnt = EOLcnt; \
140 tif->tif_rawcc -= (tidata_t) cp - tif->tif_rawcp; \
141 tif->tif_rawcp = (tidata_t) cp; \
142 } while (0)
143
144 /*
145 * Setup state for decoding a strip.
146 */
147 static int
148 Fax3PreDecode(TIFF* tif, tsample_t s)
149 {
150 Fax3CodecState* sp = DecoderState(tif);
151
152 (void) s;
153 assert(sp != NULL);
154 sp->bit = 0; /* force initial read */
155 sp->data = 0;
156 sp->EOLcnt = 0; /* force initial scan for EOL */
157 /*
158 * Decoder assumes lsb-to-msb bit order. Note that we select
159 * this here rather than in Fax3SetupState so that viewers can
160 * hold the image open, fiddle with the FillOrder tag value,
161 * and then re-decode the image. Otherwise they'd need to close
162 * and open the image to get the state reset.
163 */
164 sp->bitmap =
165 TIFFGetBitRevTable(tif->tif_dir.td_fillorder != FILLORDER_LSB2MSB);
166 if (sp->refruns) { /* init reference line to white */
167 sp->refruns[0] = (uint32) sp->b.rowpixels;
168 sp->refruns[1] = 0;
169 }
170 return (1);
171 }
172
173 /*
174 * Routine for handling various errors/conditions.
175 * Note how they are "glued into the decoder" by
176 * overriding the definitions used by the decoder.
177 */
178
179 static void
180 Fax3Unexpected(const char* module, TIFF* tif, uint32 a0)
181 {
182 TIFFError(module, "%s: Bad code word at scanline %d (x %lu)",
183 tif->tif_name, tif->tif_row, (u_long) a0);
184 }
185 #define unexpected(table, a0) Fax3Unexpected(module, tif, a0)
186
187 static void
188 Fax3Extension(const char* module, TIFF* tif, uint32 a0)
189 {
190 TIFFError(module,
191 "%s: Uncompressed data (not supported) at scanline %d (x %lu)",
192 tif->tif_name, tif->tif_row, (u_long) a0);
193 }
194 #define extension(a0) Fax3Extension(module, tif, a0)
195
196 static void
197 Fax3BadLength(const char* module, TIFF* tif, uint32 a0, uint32 lastx)
198 {
199 TIFFWarning(module, "%s: %s at scanline %d (got %lu, expected %lu)",
200 tif->tif_name,
201 a0 < lastx ? "Premature EOL" : "Line length mismatch",
202 tif->tif_row, (u_long) a0, (u_long) lastx);
203 }
204 #define badlength(a0,lastx) Fax3BadLength(module, tif, a0, lastx)
205
206 static void
207 Fax3PrematureEOF(const char* module, TIFF* tif, uint32 a0)
208 {
209 TIFFWarning(module, "%s: Premature EOF at scanline %d (x %lu)",
210 tif->tif_name, tif->tif_row, (u_long) a0);
211 }
212 #define prematureEOF(a0) Fax3PrematureEOF(module, tif, a0)
213
214 #define Nop
215
216 /*
217 * Decode the requested amount of G3 1D-encoded data.
218 */
219 static int
220 Fax3Decode1D(TIFF* tif, tidata_t buf, tsize_t occ, tsample_t s)
221 {
222 DECLARE_STATE(tif, sp, "Fax3Decode1D");
223
224 (void) s;
225 CACHE_STATE(tif, sp);
226 thisrun = sp->curruns;
227 while ((long)occ > 0) {
228 a0 = 0;
229 RunLength = 0;
230 pa = thisrun;
231 #ifdef FAX3_DEBUG
232 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail);
233 printf("-------------------- %d\n", tif->tif_row);
234 fflush(stdout);
235 #endif
236 SYNC_EOL(EOF1D);
237 EXPAND1D(EOF1Da);
238 (*sp->fill)(buf, thisrun, pa, lastx);
239 buf += sp->b.rowbytes;
240 occ -= sp->b.rowbytes;
241 continue;
242 EOF1D: /* premature EOF */
243 CLEANUP_RUNS();
244 EOF1Da: /* premature EOF */
245 (*sp->fill)(buf, thisrun, pa, lastx);
246 UNCACHE_STATE(tif, sp);
247 return (-1);
248 }
249 UNCACHE_STATE(tif, sp);
250 return (1);
251 }
252
253 #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; }
254 /*
255 * Decode the requested amount of G3 2D-encoded data.
256 */
257 static int
258 Fax3Decode2D(TIFF* tif, tidata_t buf, tsize_t occ, tsample_t s)
259 {
260 DECLARE_STATE_2D(tif, sp, "Fax3Decode2D");
261 int is1D; /* current line is 1d/2d-encoded */
262
263 (void) s;
264 CACHE_STATE(tif, sp);
265 while ((long)occ > 0) {
266 a0 = 0;
267 RunLength = 0;
268 pa = thisrun = sp->curruns;
269 #ifdef FAX3_DEBUG
270 printf("\nBitAcc=%08X, BitsAvail = %d EOLcnt = %d",
271 BitAcc, BitsAvail, EOLcnt);
272 #endif
273 SYNC_EOL(EOF2D);
274 NeedBits8(1, EOF2D);
275 is1D = GetBits(1); /* 1D/2D-encoding tag bit */
276 ClrBits(1);
277 #ifdef FAX3_DEBUG
278 printf(" %s\n-------------------- %d\n",
279 is1D ? "1D" : "2D", tif->tif_row);
280 fflush(stdout);
281 #endif
282 pb = sp->refruns;
283 b1 = *pb++;
284 if (is1D)
285 EXPAND1D(EOF2Da);
286 else
287 EXPAND2D(EOF2Da);
288 (*sp->fill)(buf, thisrun, pa, lastx);
289 SETVAL(0); /* imaginary change for reference */
290 SWAP(uint32*, sp->curruns, sp->refruns);
291 buf += sp->b.rowbytes;
292 occ -= sp->b.rowbytes;
293 continue;
294 EOF2D: /* premature EOF */
295 CLEANUP_RUNS();
296 EOF2Da: /* premature EOF */
297 (*sp->fill)(buf, thisrun, pa, lastx);
298 UNCACHE_STATE(tif, sp);
299 return (-1);
300 }
301 UNCACHE_STATE(tif, sp);
302 return (1);
303 }
304 #undef SWAP
305
306 /*
307 * The ZERO & FILL macros must handle spans < 2*sizeof(long) bytes.
308 * For machines with 64-bit longs this is <16 bytes; otherwise
309 * this is <8 bytes. We optimize the code here to reflect the
310 * machine characteristics.
311 */
312 #if defined(__alpha) || (defined(_MIPS_SZLONG) && _MIPS_SZLONG == 64) || defined(__LP64__) || defined(__arch64__)
313 #define FILL(n, cp) \
314 switch (n) { \
315 case 15:(cp)[14] = 0xff; case 14:(cp)[13] = 0xff; case 13: (cp)[12] = 0xff;\
316 case 12:(cp)[11] = 0xff; case 11:(cp)[10] = 0xff; case 10: (cp)[9] = 0xff;\
317 case 9: (cp)[8] = 0xff; case 8: (cp)[7] = 0xff; case 7: (cp)[6] = 0xff;\
318 case 6: (cp)[5] = 0xff; case 5: (cp)[4] = 0xff; case 4: (cp)[3] = 0xff;\
319 case 3: (cp)[2] = 0xff; case 2: (cp)[1] = 0xff; \
320 case 1: (cp)[0] = 0xff; (cp) += (n); case 0: ; \
321 }
322 #define ZERO(n, cp) \
323 switch (n) { \
324 case 15:(cp)[14] = 0; case 14:(cp)[13] = 0; case 13: (cp)[12] = 0; \
325 case 12:(cp)[11] = 0; case 11:(cp)[10] = 0; case 10: (cp)[9] = 0; \
326 case 9: (cp)[8] = 0; case 8: (cp)[7] = 0; case 7: (cp)[6] = 0; \
327 case 6: (cp)[5] = 0; case 5: (cp)[4] = 0; case 4: (cp)[3] = 0; \
328 case 3: (cp)[2] = 0; case 2: (cp)[1] = 0; \
329 case 1: (cp)[0] = 0; (cp) += (n); case 0: ; \
330 }
331 #else
332 #define FILL(n, cp) \
333 switch (n) { \
334 case 7: (cp)[6] = 0xff; case 6: (cp)[5] = 0xff; case 5: (cp)[4] = 0xff; \
335 case 4: (cp)[3] = 0xff; case 3: (cp)[2] = 0xff; case 2: (cp)[1] = 0xff; \
336 case 1: (cp)[0] = 0xff; (cp) += (n); case 0: ; \
337 }
338 #define ZERO(n, cp) \
339 switch (n) { \
340 case 7: (cp)[6] = 0; case 6: (cp)[5] = 0; case 5: (cp)[4] = 0; \
341 case 4: (cp)[3] = 0; case 3: (cp)[2] = 0; case 2: (cp)[1] = 0; \
342 case 1: (cp)[0] = 0; (cp) += (n); case 0: ; \
343 }
344 #endif
345
346 /*
347 * Bit-fill a row according to the white/black
348 * runs generated during G3/G4 decoding.
349 */
350 void
351 _TIFFFax3fillruns(u_char* buf, uint32* runs, uint32* erun, uint32 lastx)
352 {
353 static const unsigned char _fillmasks[] =
354 { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff };
355 u_char* cp;
356 uint32 x, bx, run;
357 int32 n, nw;
358 long* lp;
359
360 if ((erun-runs)&1)
361 *erun++ = 0;
362 x = 0;
363 for (; runs < erun; runs += 2) {
364 run = runs[0];
365 if (x+run > lastx || run > lastx )
366 run = runs[0] = (uint32) (lastx - x);
367 if (run) {
368 cp = buf + (x>>3);
369 bx = x&7;
370 if (run > 8-bx) {
371 if (bx) { /* align to byte boundary */
372 *cp++ &= 0xff << (8-bx);
373 run -= 8-bx;
374 }
375 if( (n = run >> 3) != 0 ) { /* multiple bytes to fill */
376 if ((n/sizeof (long)) > 1) {
377 /*
378 * Align to longword boundary and fill.
379 */
380 for (; n && !isAligned(cp, long); n--)
381 *cp++ = 0x00;
382 lp = (long*) cp;
383 nw = (int32)(n / sizeof (long));
384 n -= nw * sizeof (long);
385 do {
386 *lp++ = 0L;
387 } while (--nw);
388 cp = (u_char*) lp;
389 }
390 ZERO(n, cp);
391 run &= 7;
392 }
393 if (run)
394 cp[0] &= 0xff >> run;
395 } else
396 cp[0] &= ~(_fillmasks[run]>>bx);
397 x += runs[0];
398 }
399 run = runs[1];
400 if (x+run > lastx || run > lastx )
401 run = runs[1] = lastx - x;
402 if (run) {
403 cp = buf + (x>>3);
404 bx = x&7;
405 if (run > 8-bx) {
406 if (bx) { /* align to byte boundary */
407 *cp++ |= 0xff >> bx;
408 run -= 8-bx;
409 }
410 if( (n = run>>3) != 0 ) { /* multiple bytes to fill */
411 if ((n/sizeof (long)) > 1) {
412 /*
413 * Align to longword boundary and fill.
414 */
415 for (; n && !isAligned(cp, long); n--)
416 *cp++ = 0xff;
417 lp = (long*) cp;
418 nw = (int32)(n / sizeof (long));
419 n -= nw * sizeof (long);
420 do {
421 *lp++ = -1L;
422 } while (--nw);
423 cp = (u_char*) lp;
424 }
425 FILL(n, cp);
426 run &= 7;
427 }
428 if (run)
429 cp[0] |= 0xff00 >> run;
430 } else
431 cp[0] |= _fillmasks[run]>>bx;
432 x += runs[1];
433 }
434 }
435 assert(x == lastx);
436 }
437 #undef ZERO
438 #undef FILL
439
440 static char *
441 CheckMalloc(TIFF* tif, size_t nmemb, size_t elem_size, const char* what)
442 {
443 char *cp = NULL;
444 tsize_t bytes = nmemb * elem_size;
445
446 if (nmemb && elem_size && bytes / elem_size == nmemb)
447 cp = (char*) _TIFFmalloc(bytes);
448
449 if (cp == NULL)
450 TIFFError(tif->tif_name, "No space %s", what);
451
452 return (cp);
453 }
454
455 /*
456 * Setup G3/G4-related compression/decompression state
457 * before data is processed. This routine is called once
458 * per image -- it sets up different state based on whether
459 * or not decoding or encoding is being done and whether
460 * 1D- or 2D-encoded data is involved.
461 */
462 static int
463 Fax3SetupState(TIFF* tif)
464 {
465 TIFFDirectory* td = &tif->tif_dir;
466 Fax3BaseState* sp = Fax3State(tif);
467 long rowbytes, rowpixels;
468 int needsRefLine;
469 Fax3CodecState* dsp = DecoderState(tif);
470 uint32 nruns;
471
472 if (td->td_bitspersample != 1) {
473 TIFFError(tif->tif_name,
474 "Bits/sample must be 1 for Group 3/4 encoding/decoding");
475 return (0);
476 }
477 /*
478 * Calculate the scanline/tile widths.
479 */
480 if (isTiled(tif)) {
481 rowbytes = TIFFTileRowSize(tif);
482 rowpixels = td->td_tilewidth;
483 } else {
484 rowbytes = TIFFScanlineSize(tif);
485 rowpixels = td->td_imagewidth;
486 }
487 sp->rowbytes = (uint32) rowbytes;
488 sp->rowpixels = (uint32) rowpixels;
489 /*
490 * Allocate any additional space required for decoding/encoding.
491 */
492 needsRefLine = (
493 (sp->groupoptions & GROUP3OPT_2DENCODING) ||
494 td->td_compression == COMPRESSION_CCITTFAX4
495 );
496
497 nruns = needsRefLine ? 2*TIFFroundup(rowpixels,32) : rowpixels;
498
499 dsp->runs = (uint32*) CheckMalloc(tif, 2*nruns+3, sizeof (uint32),
500 "for Group 3/4 run arrays");
501 if (dsp->runs == NULL)
502 return (0);
503 dsp->curruns = dsp->runs;
504 if (needsRefLine)
505 dsp->refruns = dsp->runs + (nruns>>1);
506 else
507 dsp->refruns = NULL;
508 if (is2DEncoding(dsp)) { /* NB: default is 1D routine */
509 tif->tif_decoderow = Fax3Decode2D;
510 tif->tif_decodestrip = Fax3Decode2D;
511 tif->tif_decodetile = Fax3Decode2D;
512 }
513
514 if (needsRefLine) { /* 2d encoding */
515 Fax3CodecState* esp = EncoderState(tif);
516 /*
517 * 2d encoding requires a scanline
518 * buffer for the ``reference line''; the
519 * scanline against which delta encoding
520 * is referenced. The reference line must
521 * be initialized to be ``white'' (done elsewhere).
522 */
523 esp->refline = (u_char*) _TIFFmalloc(rowbytes);
524 if (esp->refline == NULL) {
525 TIFFError("Fax3SetupState",
526 "%s: No space for Group 3/4 reference line",
527 tif->tif_name);
528 return (0);
529 }
530 } else /* 1d encoding */
531 EncoderState(tif)->refline = NULL;
532 return (1);
533 }
534
535 /*
536 * CCITT Group 3 FAX Encoding.
537 */
538
539 #define Fax3FlushBits(tif, sp) { \
540 if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) \
541 (void) TIFFFlushData1(tif); \
542 *(tif)->tif_rawcp++ = (tidataval_t) (sp)->data; \
543 (tif)->tif_rawcc++; \
544 (sp)->data = 0, (sp)->bit = 8; \
545 }
546 #define _FlushBits(tif) { \
547 if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) \
548 (void) TIFFFlushData1(tif); \
549 *(tif)->tif_rawcp++ = (tidataval_t) data; \
550 (tif)->tif_rawcc++; \
551 data = 0, bit = 8; \
552 }
553 static const int _msbmask[9] =
554 { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
555 #define _PutBits(tif, bits, length) { \
556 while (length > bit) { \
557 data |= bits >> (length - bit); \
558 length -= bit; \
559 _FlushBits(tif); \
560 } \
561 data |= (bits & _msbmask[length]) << (bit - length); \
562 bit -= length; \
563 if (bit == 0) \
564 _FlushBits(tif); \
565 }
566
567 /*
568 * Write a variable-length bit-value to
569 * the output stream. Values are
570 * assumed to be at most 16 bits.
571 */
572 static void
573 Fax3PutBits(TIFF* tif, u_int bits, u_int length)
574 {
575 Fax3CodecState* sp = EncoderState(tif);
576 u_int bit = sp->bit;
577 int data = sp->data;
578
579 _PutBits(tif, bits, length);
580
581 sp->data = data;
582 sp->bit = bit;
583 }
584
585 /*
586 * Write a code to the output stream.
587 */
588 #define putcode(tif, te) Fax3PutBits(tif, (te)->code, (te)->length)
589
590 #ifdef FAX3_DEBUG
591 #define DEBUG_COLOR(w) (tab == TIFFFaxWhiteCodes ? w "W" : w "B")
592 #define DEBUG_PRINT(what,len) { \
593 int t; \
594 printf("%08X/%-2d: %s%5d\t", data, bit, DEBUG_COLOR(what), len); \
595 for (t = length-1; t >= 0; t--) \
596 putchar(code & (1<<t) ? '1' : '0'); \
597 putchar('\n'); \
598 }
599 #endif
600
601 /*
602 * Write the sequence of codes that describes
603 * the specified span of zero's or one's. The
604 * appropriate table that holds the make-up and
605 * terminating codes is supplied.
606 */
607 static void
608 putspan(TIFF* tif, int32 span, const tableentry* tab)
609 {
610 Fax3CodecState* sp = EncoderState(tif);
611 u_int bit = sp->bit;
612 int data = sp->data;
613 u_int code, length;
614
615 while (span >= 2624) {
616 const tableentry* te = &tab[63 + (2560>>6)];
617 code = te->code, length = te->length;
618 #ifdef FAX3_DEBUG
619 DEBUG_PRINT("MakeUp", te->runlen);
620 #endif
621 _PutBits(tif, code, length);
622 span -= te->runlen;
623 }
624 if (span >= 64) {
625 const tableentry* te = &tab[63 + (span>>6)];
626 assert(te->runlen == 64*(span>>6));
627 code = te->code, length = te->length;
628 #ifdef FAX3_DEBUG
629 DEBUG_PRINT("MakeUp", te->runlen);
630 #endif
631 _PutBits(tif, code, length);
632 span -= te->runlen;
633 }
634 code = tab[span].code, length = tab[span].length;
635 #ifdef FAX3_DEBUG
636 DEBUG_PRINT(" Term", tab[span].runlen);
637 #endif
638 _PutBits(tif, code, length);
639
640 sp->data = data;
641 sp->bit = bit;
642 }
643
644 /*
645 * Write an EOL code to the output stream. The zero-fill
646 * logic for byte-aligning encoded scanlines is handled
647 * here. We also handle writing the tag bit for the next
648 * scanline when doing 2d encoding.
649 */
650 static void
651 Fax3PutEOL(TIFF* tif)
652 {
653 Fax3CodecState* sp = EncoderState(tif);
654 u_int bit = sp->bit;
655 int data = sp->data;
656 u_int code, length, tparm;
657
658 if (sp->b.groupoptions & GROUP3OPT_FILLBITS) {
659 /*
660 * Force bit alignment so EOL will terminate on
661 * a byte boundary. That is, force the bit alignment
662 * to 16-12 = 4 before putting out the EOL code.
663 */
664 int align = 8 - 4;
665 if (align != sp->bit) {
666 if (align > sp->bit)
667 align = sp->bit + (8 - align);
668 else
669 align = sp->bit - align;
670 code = 0;
671 tparm=align;
672 _PutBits(tif, 0, tparm);
673 }
674 }
675 code = EOL, length = 12;
676 if (is2DEncoding(sp))
677 code = (code<<1) | (sp->tag == G3_1D), length++;
678 _PutBits(tif, code, length);
679
680 sp->data = data;
681 sp->bit = bit;
682 }
683
684 /*
685 * Reset encoding state at the start of a strip.
686 */
687 static int
688 Fax3PreEncode(TIFF* tif, tsample_t s)
689 {
690 Fax3CodecState* sp = EncoderState(tif);
691
692 (void) s;
693 assert(sp != NULL);
694 sp->bit = 8;
695 sp->data = 0;
696 sp->tag = G3_1D;
697 /*
698 * This is necessary for Group 4; otherwise it isn't
699 * needed because the first scanline of each strip ends
700 * up being copied into the refline.
701 */
702 if (sp->refline)
703 _TIFFmemset(sp->refline, 0x00, sp->b.rowbytes);
704 if (is2DEncoding(sp)) {
705 float res = tif->tif_dir.td_yresolution;
706 /*
707 * The CCITT spec says that when doing 2d encoding, you
708 * should only do it on K consecutive scanlines, where K
709 * depends on the resolution of the image being encoded
710 * (2 for <= 200 lpi, 4 for > 200 lpi). Since the directory
711 * code initializes td_yresolution to 0, this code will
712 * select a K of 2 unless the YResolution tag is set
713 * appropriately. (Note also that we fudge a little here
714 * and use 150 lpi to avoid problems with units conversion.)
715 */
716 if (tif->tif_dir.td_resolutionunit == RESUNIT_CENTIMETER)
717 res *= 2.54f; /* convert to inches */
718 sp->maxk = (res > 150 ? 4 : 2);
719 sp->k = sp->maxk-1;
720 } else
721 sp->k = sp->maxk = 0;
722 return (1);
723 }
724
725 static const u_char zeroruns[256] = {
726 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, /* 0x00 - 0x0f */
727 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0x10 - 0x1f */
728 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x20 - 0x2f */
729 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x30 - 0x3f */
730 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x4f */
731 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x5f */
732 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x6f */
733 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x7f */
734 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 - 0x8f */
735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x90 - 0x9f */
736 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xa0 - 0xaf */
737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xb0 - 0xbf */
738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc0 - 0xcf */
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd0 - 0xdf */
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe0 - 0xef */
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf0 - 0xff */
742 };
743 static const u_char oneruns[256] = {
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x0f */
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x1f */
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 - 0x2f */
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 - 0x3f */
748 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 - 0x4f */
749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x50 - 0x5f */
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 - 0x6f */
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 - 0x7f */
752 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x80 - 0x8f */
753 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x90 - 0x9f */
754 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xa0 - 0xaf */
755 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xb0 - 0xbf */
756 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xc0 - 0xcf */
757 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xd0 - 0xdf */
758 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0xe0 - 0xef */
759 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, /* 0xf0 - 0xff */
760 };
761
762 /*
763 * On certain systems it pays to inline
764 * the routines that find pixel spans.
765 */
766 #ifdef VAXC
767 static int32 find0span(u_char*, int32, int32);
768 static int32 find1span(u_char*, int32, int32);
769 #pragma inline(find0span,find1span)
770 #endif
771
772 /*
773 * Find a span of ones or zeros using the supplied
774 * table. The ``base'' of the bit string is supplied
775 * along with the start+end bit indices.
776 */
777 INLINE static int32
778 find0span(u_char* bp, int32 bs, int32 be)
779 {
780 int32 bits = be - bs;
781 int32 n, span;
782
783 bp += bs>>3;
784 /*
785 * Check partial byte on lhs.
786 */
787 if (bits > 0 && (n = (bs & 7))) {
788 span = zeroruns[(*bp << n) & 0xff];
789 if (span > 8-n) /* table value too generous */
790 span = 8-n;
791 if (span > bits) /* constrain span to bit range */
792 span = bits;
793 if (n+span < 8) /* doesn't extend to edge of byte */
794 return (span);
795 bits -= span;
796 bp++;
797 } else
798 span = 0;
799 if (bits >= 2*8*sizeof (long)) {
800 long* lp;
801 /*
802 * Align to longword boundary and check longwords.
803 */
804 while (!isAligned(bp, long)) {
805 if (*bp != 0x00)
806 return (span + zeroruns[*bp]);
807 span += 8, bits -= 8;
808 bp++;
809 }
810 lp = (long*) bp;
811 while (bits >= 8*sizeof (long) && *lp == 0) {
812 span += 8*sizeof (long), bits -= 8*sizeof (long);
813 lp++;
814 }
815 bp = (u_char*) lp;
816 }
817 /*
818 * Scan full bytes for all 0's.
819 */
820 while (bits >= 8) {
821 if (*bp != 0x00) /* end of run */
822 return (span + zeroruns[*bp]);
823 span += 8, bits -= 8;
824 bp++;
825 }
826 /*
827 * Check partial byte on rhs.
828 */
829 if (bits > 0) {
830 n = zeroruns[*bp];
831 span += (n > bits ? bits : n);
832 }
833 return (span);
834 }
835
836 INLINE static int32
837 find1span(u_char* bp, int32 bs, int32 be)
838 {
839 int32 bits = be - bs;
840 int32 n, span;
841
842 bp += bs>>3;
843 /*
844 * Check partial byte on lhs.
845 */
846 if (bits > 0 && (n = (bs & 7))) {
847 span = oneruns[(*bp << n) & 0xff];
848 if (span > 8-n) /* table value too generous */
849 span = 8-n;
850 if (span > bits) /* constrain span to bit range */
851 span = bits;
852 if (n+span < 8) /* doesn't extend to edge of byte */
853 return (span);
854 bits -= span;
855 bp++;
856 } else
857 span = 0;
858 if (bits >= 2*8*sizeof (long)) {
859 long* lp;
860 /*
861 * Align to longword boundary and check longwords.
862 */
863 while (!isAligned(bp, long)) {
864 if (*bp != 0xff)
865 return (span + oneruns[*bp]);
866 span += 8, bits -= 8;
867 bp++;
868 }
869 lp = (long*) bp;
870 while (bits >= 8*sizeof (long) && *lp == ~0) {
871 span += 8*sizeof (long), bits -= 8*sizeof (long);
872 lp++;
873 }
874 bp = (u_char*) lp;
875 }
876 /*
877 * Scan full bytes for all 1's.
878 */
879 while (bits >= 8) {
880 if (*bp != 0xff) /* end of run */
881 return (span + oneruns[*bp]);
882 span += 8, bits -= 8;
883 bp++;
884 }
885 /*
886 * Check partial byte on rhs.
887 */
888 if (bits > 0) {
889 n = oneruns[*bp];
890 span += (n > bits ? bits : n);
891 }
892 return (span);
893 }
894
895 /*
896 * Return the offset of the next bit in the range
897 * [bs..be] that is different from the specified
898 * color. The end, be, is returned if no such bit
899 * exists.
900 */
901 #define finddiff(_cp, _bs, _be, _color) \
902 (_bs + (_color ? find1span(_cp,_bs,_be) : find0span(_cp,_bs,_be)))
903 /*
904 * Like finddiff, but also check the starting bit
905 * against the end in case start > end.
906 */
907 #define finddiff2(_cp, _bs, _be, _color) \
908 (_bs < _be ? finddiff(_cp,_bs,_be,_color) : _be)
909
910 /*
911 * 1d-encode a row of pixels. The encoding is
912 * a sequence of all-white or all-black spans
913 * of pixels encoded with Huffman codes.
914 */
915 static int
916 Fax3Encode1DRow(TIFF* tif, u_char* bp, uint32 bits)
917 {
918 Fax3CodecState* sp = EncoderState(tif);
919 int32 span;
920 uint32 bs = 0;
921
922 for (;;) {
923 span = find0span(bp, bs, bits); /* white span */
924 putspan(tif, span, TIFFFaxWhiteCodes);
925 bs += span;
926 if (bs >= bits)
927 break;
928 span = find1span(bp, bs, bits); /* black span */
929 putspan(tif, span, TIFFFaxBlackCodes);
930 bs += span;
931 if (bs >= bits)
932 break;
933 }
934 if (sp->b.mode & (FAXMODE_BYTEALIGN|FAXMODE_WORDALIGN)) {
935 if (sp->bit != 8) /* byte-align */
936 Fax3FlushBits(tif, sp);
937 if ((sp->b.mode&FAXMODE_WORDALIGN) &&
938 !isAligned(tif->tif_rawcp, uint16))
939 Fax3FlushBits(tif, sp);
940 }
941 return (1);
942 }
943
944 static const tableentry horizcode =
945 { 3, 0x1 }; /* 001 */
946 static const tableentry passcode =
947 { 4, 0x1 }; /* 0001 */
948 static const tableentry vcodes[7] = {
949 { 7, 0x03 }, /* 0000 011 */
950 { 6, 0x03 }, /* 0000 11 */
951 { 3, 0x03 }, /* 011 */
952 { 1, 0x1 }, /* 1 */
953 { 3, 0x2 }, /* 010 */
954 { 6, 0x02 }, /* 0000 10 */
955 { 7, 0x02 } /* 0000 010 */
956 };
957
958 /*
959 * 2d-encode a row of pixels. Consult the CCITT
960 * documentation for the algorithm.
961 */
962 static int
963 Fax3Encode2DRow(TIFF* tif, u_char* bp, u_char* rp, uint32 bits)
964 {
965 #define PIXEL(buf,ix) ((((buf)[(ix)>>3]) >> (7-((ix)&7))) & 1)
966 uint32 a0 = 0;
967 uint32 a1 = (PIXEL(bp, 0) != 0 ? 0 : finddiff(bp, 0, bits, 0));
968 uint32 b1 = (PIXEL(rp, 0) != 0 ? 0 : finddiff(rp, 0, bits, 0));
969 uint32 a2, b2;
970
971 for (;;) {
972 b2 = finddiff2(rp, b1, bits, PIXEL(rp,b1));
973 if (b2 >= a1) {
974 int32 d = b1 - a1;
975 if (!(-3 <= d && d <= 3)) { /* horizontal mode */
976 a2 = finddiff2(bp, a1, bits, PIXEL(bp,a1));
977 putcode(tif, &horizcode);
978 if (a0+a1 == 0 || PIXEL(bp, a0) == 0) {
979 putspan(tif, a1-a0, TIFFFaxWhiteCodes);
980 putspan(tif, a2-a1, TIFFFaxBlackCodes);
981 } else {
982 putspan(tif, a1-a0, TIFFFaxBlackCodes);
983 putspan(tif, a2-a1, TIFFFaxWhiteCodes);
984 }
985 a0 = a2;
986 } else { /* vertical mode */
987 putcode(tif, &vcodes[d+3]);
988 a0 = a1;
989 }
990 } else { /* pass mode */
991 putcode(tif, &passcode);
992 a0 = b2;
993 }
994 if (a0 >= bits)
995 break;
996 a1 = finddiff(bp, a0, bits, PIXEL(bp,a0));
997 b1 = finddiff(rp, a0, bits, !PIXEL(bp,a0));
998 b1 = finddiff(rp, b1, bits, PIXEL(bp,a0));
999 }
1000 return (1);
1001 #undef PIXEL
1002 }
1003
1004 /*
1005 * Encode a buffer of pixels.
1006 */
1007 static int
1008 Fax3Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1009 {
1010 Fax3CodecState* sp = EncoderState(tif);
1011
1012 (void) s;
1013 while ((long)cc > 0) {
1014 if ((sp->b.mode & FAXMODE_NOEOL) == 0)
1015 Fax3PutEOL(tif);
1016 if (is2DEncoding(sp)) {
1017 if (sp->tag == G3_1D) {
1018 if (!Fax3Encode1DRow(tif, bp, sp->b.rowpixels))
1019 return (0);
1020 sp->tag = G3_2D;
1021 } else {
1022 if (!Fax3Encode2DRow(tif, bp, sp->refline, sp->b.rowpixels))
1023 return (0);
1024 sp->k--;
1025 }
1026 if (sp->k == 0) {
1027 sp->tag = G3_1D;
1028 sp->k = sp->maxk-1;
1029 } else
1030 _TIFFmemcpy(sp->refline, bp, sp->b.rowbytes);
1031 } else {
1032 if (!Fax3Encode1DRow(tif, bp, sp->b.rowpixels))
1033 return (0);
1034 }
1035 bp += sp->b.rowbytes;
1036 cc -= sp->b.rowbytes;
1037 }
1038 return (1);
1039 }
1040
1041 static int
1042 Fax3PostEncode(TIFF* tif)
1043 {
1044 Fax3CodecState* sp = EncoderState(tif);
1045
1046 if (sp->bit != 8)
1047 Fax3FlushBits(tif, sp);
1048 return (1);
1049 }
1050
1051 static void
1052 Fax3Close(TIFF* tif)
1053 {
1054 if ((Fax3State(tif)->mode & FAXMODE_NORTC) == 0) {
1055 Fax3CodecState* sp = EncoderState(tif);
1056 u_int code = EOL;
1057 u_int length = 12;
1058 int i;
1059
1060 if (is2DEncoding(sp))
1061 code = (code<<1) | (sp->tag == G3_1D), length++;
1062 for (i = 0; i < 6; i++)
1063 Fax3PutBits(tif, code, length);
1064 Fax3FlushBits(tif, sp);
1065 }
1066 }
1067
1068 static void
1069 Fax3Cleanup(TIFF* tif)
1070 {
1071 if (tif->tif_data) {
1072 Fax3CodecState* sp = DecoderState(tif);
1073
1074 if (sp->runs)
1075 _TIFFfree(sp->runs);
1076 if (sp->refline)
1077 _TIFFfree(sp->refline);
1078
1079 if (Fax3State(tif)->subaddress)
1080 _TIFFfree(Fax3State(tif)->subaddress);
1081 _TIFFfree(tif->tif_data);
1082 tif->tif_data = NULL;
1083 }
1084 }
1085
1086 #define FIELD_BADFAXLINES (FIELD_CODEC+0)
1087 #define FIELD_CLEANFAXDATA (FIELD_CODEC+1)
1088 #define FIELD_BADFAXRUN (FIELD_CODEC+2)
1089 #define FIELD_RECVPARAMS (FIELD_CODEC+3)
1090 #define FIELD_SUBADDRESS (FIELD_CODEC+4)
1091 #define FIELD_RECVTIME (FIELD_CODEC+5)
1092
1093 #define FIELD_OPTIONS (FIELD_CODEC+6)
1094
1095 static const TIFFFieldInfo faxFieldInfo[] = {
1096 { TIFFTAG_FAXMODE, 0, 0, TIFF_ANY, FIELD_PSEUDO,
1097 FALSE, FALSE, "FaxMode" },
1098 { TIFFTAG_FAXFILLFUNC, 0, 0, TIFF_ANY, FIELD_PSEUDO,
1099 FALSE, FALSE, "FaxFillFunc" },
1100 { TIFFTAG_BADFAXLINES, 1, 1, TIFF_LONG, FIELD_BADFAXLINES,
1101 TRUE, FALSE, "BadFaxLines" },
1102 { TIFFTAG_BADFAXLINES, 1, 1, TIFF_SHORT, FIELD_BADFAXLINES,
1103 TRUE, FALSE, "BadFaxLines" },
1104 { TIFFTAG_CLEANFAXDATA, 1, 1, TIFF_SHORT, FIELD_CLEANFAXDATA,
1105 TRUE, FALSE, "CleanFaxData" },
1106 { TIFFTAG_CONSECUTIVEBADFAXLINES,1,1, TIFF_LONG, FIELD_BADFAXRUN,
1107 TRUE, FALSE, "ConsecutiveBadFaxLines" },
1108 { TIFFTAG_CONSECUTIVEBADFAXLINES,1,1, TIFF_SHORT, FIELD_BADFAXRUN,
1109 TRUE, FALSE, "ConsecutiveBadFaxLines" },
1110 { TIFFTAG_FAXRECVPARAMS, 1, 1, TIFF_LONG, FIELD_RECVPARAMS,
1111 TRUE, FALSE, "FaxRecvParams" },
1112 { TIFFTAG_FAXSUBADDRESS, -1,-1, TIFF_ASCII, FIELD_SUBADDRESS,
1113 TRUE, FALSE, "FaxSubAddress" },
1114 { TIFFTAG_FAXRECVTIME, 1, 1, TIFF_LONG, FIELD_RECVTIME,
1115 TRUE, FALSE, "FaxRecvTime" },
1116 };
1117 static const TIFFFieldInfo fax3FieldInfo[] = {
1118 { TIFFTAG_GROUP3OPTIONS, 1, 1, TIFF_LONG, FIELD_OPTIONS,
1119 FALSE, FALSE, "Group3Options" },
1120 };
1121 static const TIFFFieldInfo fax4FieldInfo[] = {
1122 { TIFFTAG_GROUP4OPTIONS, 1, 1, TIFF_LONG, FIELD_OPTIONS,
1123 FALSE, FALSE, "Group4Options" },
1124 };
1125 #define N(a) (sizeof (a) / sizeof (a[0]))
1126
1127 static int
1128 Fax3VSetField(TIFF* tif, ttag_t tag, va_list ap)
1129 {
1130 Fax3BaseState* sp = Fax3State(tif);
1131
1132 switch (tag) {
1133 case TIFFTAG_FAXMODE:
1134 sp->mode = va_arg(ap, int);
1135 return (1); /* NB: pseudo tag */
1136 case TIFFTAG_FAXFILLFUNC:
1137 DecoderState(tif)->fill = va_arg(ap, TIFFFaxFillFunc);
1138 return (1); /* NB: pseudo tag */
1139 case TIFFTAG_GROUP3OPTIONS:
1140 case TIFFTAG_GROUP4OPTIONS:
1141 sp->groupoptions = va_arg(ap, uint32);
1142 break;
1143 case TIFFTAG_BADFAXLINES:
1144 sp->badfaxlines = va_arg(ap, uint32);
1145 break;
1146 case TIFFTAG_CLEANFAXDATA:
1147 sp->cleanfaxdata = (uint16) va_arg(ap, int);
1148 break;
1149 case TIFFTAG_CONSECUTIVEBADFAXLINES:
1150 sp->badfaxrun = va_arg(ap, uint32);
1151 break;
1152 case TIFFTAG_FAXRECVPARAMS:
1153 sp->recvparams = va_arg(ap, uint32);
1154 break;
1155 case TIFFTAG_FAXSUBADDRESS:
1156 _TIFFsetString(&sp->subaddress, va_arg(ap, char*));
1157 break;
1158 case TIFFTAG_FAXRECVTIME:
1159 sp->recvtime = va_arg(ap, uint32);
1160 break;
1161 default:
1162 return (*sp->vsetparent)(tif, tag, ap);
1163 }
1164 TIFFSetFieldBit(tif, _TIFFFieldWithTag(tif, tag)->field_bit);
1165 tif->tif_flags |= TIFF_DIRTYDIRECT;
1166 return (1);
1167 }
1168
1169 static int
1170 Fax3VGetField(TIFF* tif, ttag_t tag, va_list ap)
1171 {
1172 Fax3BaseState* sp = Fax3State(tif);
1173
1174 switch (tag) {
1175 case TIFFTAG_FAXMODE:
1176 *va_arg(ap, int*) = sp->mode;
1177 break;
1178 case TIFFTAG_FAXFILLFUNC:
1179 *va_arg(ap, TIFFFaxFillFunc*) = DecoderState(tif)->fill;
1180 break;
1181 case TIFFTAG_GROUP3OPTIONS:
1182 case TIFFTAG_GROUP4OPTIONS:
1183 *va_arg(ap, uint32*) = sp->groupoptions;
1184 break;
1185 case TIFFTAG_BADFAXLINES:
1186 *va_arg(ap, uint32*) = sp->badfaxlines;
1187 break;
1188 case TIFFTAG_CLEANFAXDATA:
1189 *va_arg(ap, uint16*) = sp->cleanfaxdata;
1190 break;
1191 case TIFFTAG_CONSECUTIVEBADFAXLINES:
1192 *va_arg(ap, uint32*) = sp->badfaxrun;
1193 break;
1194 case TIFFTAG_FAXRECVPARAMS:
1195 *va_arg(ap, uint32*) = sp->recvparams;
1196 break;
1197 case TIFFTAG_FAXSUBADDRESS:
1198 *va_arg(ap, char**) = sp->subaddress;
1199 break;
1200 case TIFFTAG_FAXRECVTIME:
1201 *va_arg(ap, uint32*) = sp->recvtime;
1202 break;
1203 default:
1204 return (*sp->vgetparent)(tif, tag, ap);
1205 }
1206 return (1);
1207 }
1208
1209 static void
1210 Fax3PrintDir(TIFF* tif, FILE* fd, long flags)
1211 {
1212 Fax3BaseState* sp = Fax3State(tif);
1213
1214 (void) flags;
1215 if (TIFFFieldSet(tif,FIELD_OPTIONS)) {
1216 const char* sep = " ";
1217 if (tif->tif_dir.td_compression == COMPRESSION_CCITTFAX4) {
1218 fprintf(fd, " Group 4 Options:");
1219 if (sp->groupoptions & GROUP4OPT_UNCOMPRESSED)
1220 fprintf(fd, "%suncompressed data", sep);
1221 } else {
1222
1223 fprintf(fd, " Group 3 Options:");
1224 if (sp->groupoptions & GROUP3OPT_2DENCODING)
1225 fprintf(fd, "%s2-d encoding", sep), sep = "+";
1226 if (sp->groupoptions & GROUP3OPT_FILLBITS)
1227 fprintf(fd, "%sEOL padding", sep), sep = "+";
1228 if (sp->groupoptions & GROUP3OPT_UNCOMPRESSED)
1229 fprintf(fd, "%suncompressed data", sep);
1230 }
1231 fprintf(fd, " (%lu = 0x%lx)\n",
1232 (u_long) sp->groupoptions, (u_long) sp->groupoptions);
1233 }
1234 if (TIFFFieldSet(tif,FIELD_CLEANFAXDATA)) {
1235 fprintf(fd, " Fax Data:");
1236 switch (sp->cleanfaxdata) {
1237 case CLEANFAXDATA_CLEAN:
1238 fprintf(fd, " clean");
1239 break;
1240 case CLEANFAXDATA_REGENERATED:
1241 fprintf(fd, " receiver regenerated");
1242 break;
1243 case CLEANFAXDATA_UNCLEAN:
1244 fprintf(fd, " uncorrected errors");
1245 break;
1246 }
1247 fprintf(fd, " (%u = 0x%x)\n",
1248 sp->cleanfaxdata, sp->cleanfaxdata);
1249 }
1250 if (TIFFFieldSet(tif,FIELD_BADFAXLINES))
1251 fprintf(fd, " Bad Fax Lines: %lu\n", (u_long) sp->badfaxlines);
1252 if (TIFFFieldSet(tif,FIELD_BADFAXRUN))
1253 fprintf(fd, " Consecutive Bad Fax Lines: %lu\n",
1254 (u_long) sp->badfaxrun);
1255 if (TIFFFieldSet(tif,FIELD_RECVPARAMS))
1256 fprintf(fd, " Fax Receive Parameters: %08lx\n",
1257 (u_long) sp->recvparams);
1258 if (TIFFFieldSet(tif,FIELD_SUBADDRESS))
1259 fprintf(fd, " Fax SubAddress: %s\n", sp->subaddress);
1260 if (TIFFFieldSet(tif,FIELD_RECVTIME))
1261 fprintf(fd, " Fax Receive Time: %lu secs\n",
1262 (u_long) sp->recvtime);
1263 }
1264
1265 static int
1266 InitCCITTFax3(TIFF* tif)
1267 {
1268 Fax3BaseState* sp;
1269
1270 /*
1271 * Allocate state block so tag methods have storage to record values.
1272 */
1273 tif->tif_data = (tidata_t)
1274 _TIFFmalloc(sizeof (Fax3CodecState));
1275
1276 if (tif->tif_data == NULL) {
1277 TIFFError("TIFFInitCCITTFax3",
1278 "%s: No space for state block", tif->tif_name);
1279 return (0);
1280 }
1281
1282 sp = Fax3State(tif);
1283 sp->rw_mode = tif->tif_mode;
1284
1285 /*
1286 * Merge codec-specific tag information and
1287 * override parent get/set field methods.
1288 */
1289 _TIFFMergeFieldInfo(tif, faxFieldInfo, N(faxFieldInfo));
1290 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1291 tif->tif_tagmethods.vgetfield = Fax3VGetField; /* hook for codec tags */
1292 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1293 tif->tif_tagmethods.vsetfield = Fax3VSetField; /* hook for codec tags */
1294 tif->tif_tagmethods.printdir = Fax3PrintDir; /* hook for codec tags */
1295 sp->groupoptions = 0;
1296 sp->recvparams = 0;
1297 sp->subaddress = NULL;
1298
1299 tif->tif_flags |= TIFF_NOBITREV; /* decoder does bit reversal */
1300 DecoderState(tif)->runs = NULL;
1301 TIFFSetField(tif, TIFFTAG_FAXFILLFUNC, _TIFFFax3fillruns);
1302 EncoderState(tif)->refline = NULL;
1303
1304 /*
1305 * Install codec methods.
1306 */
1307 tif->tif_setupdecode = Fax3SetupState;
1308 tif->tif_predecode = Fax3PreDecode;
1309 tif->tif_decoderow = Fax3Decode1D;
1310 tif->tif_decodestrip = Fax3Decode1D;
1311 tif->tif_decodetile = Fax3Decode1D;
1312 tif->tif_setupencode = Fax3SetupState;
1313 tif->tif_preencode = Fax3PreEncode;
1314 tif->tif_postencode = Fax3PostEncode;
1315 tif->tif_encoderow = Fax3Encode;
1316 tif->tif_encodestrip = Fax3Encode;
1317 tif->tif_encodetile = Fax3Encode;
1318 tif->tif_close = Fax3Close;
1319 tif->tif_cleanup = Fax3Cleanup;
1320
1321 return (1);
1322 }
1323
1324 int
1325 TIFFInitCCITTFax3(TIFF* tif, int scheme)
1326 {
1327 if (InitCCITTFax3(tif)) {
1328 _TIFFMergeFieldInfo(tif, fax3FieldInfo, N(fax3FieldInfo));
1329
1330 /*
1331 * The default format is Class/F-style w/o RTC.
1332 */
1333 return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_CLASSF);
1334 } else
1335 return (0);
1336 }
1337
1338 /*
1339 * CCITT Group 4 (T.6) Facsimile-compatible
1340 * Compression Scheme Support.
1341 */
1342
1343 #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; }
1344 /*
1345 * Decode the requested amount of G4-encoded data.
1346 */
1347 static int
1348 Fax4Decode(TIFF* tif, tidata_t buf, tsize_t occ, tsample_t s)
1349 {
1350 DECLARE_STATE_2D(tif, sp, "Fax4Decode");
1351
1352 (void) s;
1353 CACHE_STATE(tif, sp);
1354 while ((long)occ > 0) {
1355 a0 = 0;
1356 RunLength = 0;
1357 pa = thisrun = sp->curruns;
1358 pb = sp->refruns;
1359 b1 = *pb++;
1360 #ifdef FAX3_DEBUG
1361 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail);
1362 printf("-------------------- %d\n", tif->tif_row);
1363 fflush(stdout);
1364 #endif
1365 EXPAND2D(EOFG4);
1366 if (EOLcnt)
1367 goto EOFG4;
1368 (*sp->fill)(buf, thisrun, pa, lastx);
1369 SETVAL(0); /* imaginary change for reference */
1370 SWAP(uint32*, sp->curruns, sp->refruns);
1371 buf += sp->b.rowbytes;
1372 occ -= sp->b.rowbytes;
1373 continue;
1374 EOFG4:
1375 NeedBits16( 13, BADG4 );
1376 BADG4:
1377 #ifdef FAX3_DEBUG
1378 if( GetBits(13) != 0x1001 )
1379 fputs( "Bad RTC\n", stderr );
1380 #endif
1381 ClrBits( 13 );
1382 (*sp->fill)(buf, thisrun, pa, lastx);
1383 UNCACHE_STATE(tif, sp);
1384 return (-1);
1385 }
1386 UNCACHE_STATE(tif, sp);
1387 return (1);
1388 }
1389 #undef SWAP
1390
1391 /*
1392 * Encode the requested amount of data.
1393 */
1394 static int
1395 Fax4Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1396 {
1397 Fax3CodecState *sp = EncoderState(tif);
1398
1399 (void) s;
1400 while ((long)cc > 0) {
1401 if (!Fax3Encode2DRow(tif, bp, sp->refline, sp->b.rowpixels))
1402 return (0);
1403 _TIFFmemcpy(sp->refline, bp, sp->b.rowbytes);
1404 bp += sp->b.rowbytes;
1405 cc -= sp->b.rowbytes;
1406 }
1407 return (1);
1408 }
1409
1410 static int
1411 Fax4PostEncode(TIFF* tif)
1412 {
1413 Fax3CodecState *sp = EncoderState(tif);
1414
1415 /* terminate strip w/ EOFB */
1416 Fax3PutBits(tif, EOL, 12);
1417 Fax3PutBits(tif, EOL, 12);
1418 if (sp->bit != 8)
1419 Fax3FlushBits(tif, sp);
1420 return (1);
1421 }
1422
1423 int
1424 TIFFInitCCITTFax4(TIFF* tif, int scheme)
1425 {
1426 if (InitCCITTFax3(tif)) { /* reuse G3 support */
1427 _TIFFMergeFieldInfo(tif, fax4FieldInfo, N(fax4FieldInfo));
1428
1429 tif->tif_decoderow = Fax4Decode;
1430 tif->tif_decodestrip = Fax4Decode;
1431 tif->tif_decodetile = Fax4Decode;
1432 tif->tif_encoderow = Fax4Encode;
1433 tif->tif_encodestrip = Fax4Encode;
1434 tif->tif_encodetile = Fax4Encode;
1435 tif->tif_postencode = Fax4PostEncode;
1436 /*
1437 * Suppress RTC at the end of each strip.
1438 */
1439 return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_NORTC);
1440 } else
1441 return (0);
1442 }
1443
1444 /*
1445 * CCITT Group 3 1-D Modified Huffman RLE Compression Support.
1446 * (Compression algorithms 2 and 32771)
1447 */
1448
1449 /*
1450 * Decode the requested amount of RLE-encoded data.
1451 */
1452 static int
1453 Fax3DecodeRLE(TIFF* tif, tidata_t buf, tsize_t occ, tsample_t s)
1454 {
1455 DECLARE_STATE(tif, sp, "Fax3DecodeRLE");
1456 int mode = sp->b.mode;
1457
1458 (void) s;
1459 CACHE_STATE(tif, sp);
1460 thisrun = sp->curruns;
1461 while ((long)occ > 0) {
1462 a0 = 0;
1463 RunLength = 0;
1464 pa = thisrun;
1465 #ifdef FAX3_DEBUG
1466 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail);
1467 printf("-------------------- %d\n", tif->tif_row);
1468 fflush(stdout);
1469 #endif
1470 EXPAND1D(EOFRLE);
1471 (*sp->fill)(buf, thisrun, pa, lastx);
1472 /*
1473 * Cleanup at the end of the row.
1474 */
1475 if (mode & FAXMODE_BYTEALIGN) {
1476 int n = BitsAvail - (BitsAvail &~ 7);
1477 ClrBits(n);
1478 } else if (mode & FAXMODE_WORDALIGN) {
1479 int n = BitsAvail - (BitsAvail &~ 15);
1480 ClrBits(n);
1481 if (BitsAvail == 0 && !isAligned(cp, uint16))
1482 cp++;
1483 }
1484 buf += sp->b.rowbytes;
1485 occ -= sp->b.rowbytes;
1486 continue;
1487 EOFRLE: /* premature EOF */
1488 (*sp->fill)(buf, thisrun, pa, lastx);
1489 UNCACHE_STATE(tif, sp);
1490 return (-1);
1491 }
1492 UNCACHE_STATE(tif, sp);
1493 return (1);
1494 }
1495
1496 int
1497 TIFFInitCCITTRLE(TIFF* tif, int scheme)
1498 {
1499 if (InitCCITTFax3(tif)) { /* reuse G3 support */
1500 tif->tif_decoderow = Fax3DecodeRLE;
1501 tif->tif_decodestrip = Fax3DecodeRLE;
1502 tif->tif_decodetile = Fax3DecodeRLE;
1503 /*
1504 * Suppress RTC+EOLs when encoding and byte-align data.
1505 */
1506 return TIFFSetField(tif, TIFFTAG_FAXMODE,
1507 FAXMODE_NORTC|FAXMODE_NOEOL|FAXMODE_BYTEALIGN);
1508 } else
1509 return (0);
1510 }
1511
1512 int
1513 TIFFInitCCITTRLEW(TIFF* tif, int scheme)
1514 {
1515 if (InitCCITTFax3(tif)) { /* reuse G3 support */
1516 tif->tif_decoderow = Fax3DecodeRLE;
1517 tif->tif_decodestrip = Fax3DecodeRLE;
1518 tif->tif_decodetile = Fax3DecodeRLE;
1519 /*
1520 * Suppress RTC+EOLs when encoding and word-align data.
1521 */
1522 return TIFFSetField(tif, TIFFTAG_FAXMODE,
1523 FAXMODE_NORTC|FAXMODE_NOEOL|FAXMODE_WORDALIGN);
1524 } else
1525 return (0);
1526 }
1527 #endif /* CCITT_SUPPORT */