4 * Copyright (c) 1990-1997 Sam Leffler
5 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Sam Leffler and Silicon Graphics.
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
19 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
32 * CCITT Group 3 (T.4) and Group 4 (T.6) Compression Support.
34 * This file contains support for decoding and encoding TIFF
35 * compression algorithms 2, 3, 4, and 32771.
37 * Decoder support is derived, with permission, from the code
38 * in Frank Cringle's viewfax program;
39 * Copyright (C) 1990, 1995 Frank D. Cringle.
48 * NB: define PURIFY if you're using purify and you want
49 * to avoid some harmless array bounds complaints that
50 * can happen in the _TIFFFax3fillruns routine.
54 * Compression+decompression state blocks are
55 * derived from this ``base state'' block.
58 int mode
; /* operating mode */
59 uint32 rowbytes
; /* bytes in a decoded scanline */
60 uint32 rowpixels
; /* pixels in a scanline */
62 uint16 cleanfaxdata
; /* CleanFaxData tag */
63 uint32 badfaxrun
; /* BadFaxRun tag */
64 uint32 badfaxlines
; /* BadFaxLines tag */
65 uint32 groupoptions
; /* Group 3/4 options tag */
66 uint32 recvparams
; /* encoded Class 2 session params */
67 char* subaddress
; /* subaddress string */
68 uint32 recvtime
; /* time spent receiving (secs) */
69 TIFFVGetMethod vgetparent
; /* super-class method */
70 TIFFVSetMethod vsetparent
; /* super-class method */
72 #define Fax3State(tif) ((Fax3BaseState*) (tif)->tif_data)
76 const u_char
* bitmap
; /* bit reversal table */
77 uint32 data
; /* current i/o byte/word */
78 int bit
; /* current i/o bit in byte */
79 int EOLcnt
; /* count of EOL codes recognized */
80 TIFFFaxFillFunc fill
; /* fill routine */
81 uint32
* runs
; /* b&w runs for current/previous row */
82 uint32
* refruns
; /* runs for reference line */
83 uint32
* curruns
; /* runs for current line */
85 #define DecoderState(tif) ((Fax3DecodeState*) Fax3State(tif))
89 int data
; /* current i/o byte */
90 int bit
; /* current i/o bit in byte */
91 enum { G3_1D
, G3_2D
} tag
; /* encoding state */
92 u_char
* refline
; /* reference line for 2d decoding */
93 int k
; /* #rows left that can be 2d encoded */
94 int maxk
; /* max #rows that can be 2d encoded */
96 #define EncoderState(tif) ((Fax3EncodeState*) Fax3State(tif))
98 #define is2DEncoding(sp) \
99 (sp->b.groupoptions & GROUP3OPT_2DENCODING)
100 #define isAligned(p,t) ((((u_long)(p)) & (sizeof (t)-1)) == 0)
103 * Group 3 and Group 4 Decoding.
107 * These macros glue the TIFF library state to
108 * the state expected by Frank's decoder.
110 #define DECLARE_STATE(tif, sp, mod) \
111 static const char module[] = mod; \
112 Fax3DecodeState* sp = DecoderState(tif); \
113 int a0; /* reference element */ \
114 int lastx = sp->b.rowpixels; /* last element in row */ \
115 uint32 BitAcc; /* bit accumulator */ \
116 int BitsAvail; /* # valid bits in BitAcc */ \
117 int RunLength; /* length of current run */ \
118 u_char* cp; /* next byte of input data */ \
119 u_char* ep; /* end of input data */ \
120 uint32* pa; /* place to stuff next run */ \
121 uint32* thisrun; /* current row's run array */ \
122 int EOLcnt; /* # EOL codes recognized */ \
123 const u_char* bitmap = sp->bitmap; /* input data bit reverser */ \
124 const TIFFFaxTabEnt* TabEnt
125 #define DECLARE_STATE_2D(tif, sp, mod) \
126 DECLARE_STATE(tif, sp, mod); \
127 int b1; /* next change on prev line */ \
128 uint32* pb /* next run in reference line */\
130 * Load any state that may be changed during decoding.
132 #define CACHE_STATE(tif, sp) do { \
134 BitsAvail = sp->bit; \
135 EOLcnt = sp->EOLcnt; \
136 cp = (unsigned char*) tif->tif_rawcp; \
137 ep = cp + tif->tif_rawcc; \
140 * Save state possibly changed during decoding.
142 #define UNCACHE_STATE(tif, sp) do { \
143 sp->bit = BitsAvail; \
145 sp->EOLcnt = EOLcnt; \
146 tif->tif_rawcc -= (tidata_t) cp - tif->tif_rawcp; \
147 tif->tif_rawcp = (tidata_t) cp; \
151 * Setup state for decoding a strip.
154 Fax3PreDecode(TIFF
* tif
, tsample_t s
)
156 Fax3DecodeState
* sp
= DecoderState(tif
);
160 sp
->bit
= 0; /* force initial read */
162 sp
->EOLcnt
= 0; /* force initial scan for EOL */
164 * Decoder assumes lsb-to-msb bit order. Note that we select
165 * this here rather than in Fax3SetupState so that viewers can
166 * hold the image open, fiddle with the FillOrder tag value,
167 * and then re-decode the image. Otherwise they'd need to close
168 * and open the image to get the state reset.
171 TIFFGetBitRevTable(tif
->tif_dir
.td_fillorder
!= FILLORDER_LSB2MSB
);
172 if (sp
->refruns
) { /* init reference line to white */
173 sp
->refruns
[0] = sp
->b
.rowpixels
;
180 * Routine for handling various errors/conditions.
181 * Note how they are "glued into the decoder" by
182 * overriding the definitions used by the decoder.
186 Fax3Unexpected(const char* module, TIFF
* tif
, uint32 a0
)
188 TIFFError(module, "%s: Bad code word at scanline %d (x %lu)",
189 tif
->tif_name
, tif
->tif_row
, (u_long
) a0
);
191 #define unexpected(table, a0) Fax3Unexpected(module, tif, a0)
194 Fax3Extension(const char* module, TIFF
* tif
, uint32 a0
)
197 "%s: Uncompressed data (not supported) at scanline %d (x %lu)",
198 tif
->tif_name
, tif
->tif_row
, (u_long
) a0
);
200 #define extension(a0) Fax3Extension(module, tif, a0)
203 Fax3BadLength(const char* module, TIFF
* tif
, uint32 a0
, uint32 lastx
)
205 TIFFWarning(module, "%s: %s at scanline %d (got %lu, expected %lu)",
207 a0
< lastx
? "Premature EOL" : "Line length mismatch",
208 tif
->tif_row
, (u_long
) a0
, (u_long
) lastx
);
210 #define badlength(a0,lastx) Fax3BadLength(module, tif, a0, lastx)
213 Fax3PrematureEOF(const char* module, TIFF
* tif
, uint32 a0
)
215 TIFFWarning(module, "%s: Premature EOF at scanline %d (x %lu)",
216 tif
->tif_name
, tif
->tif_row
, (u_long
) a0
);
218 #define prematureEOF(a0) Fax3PrematureEOF(module, tif, a0)
223 * Decode the requested amount of G3 1D-encoded data.
226 Fax3Decode1D(TIFF
* tif
, tidata_t buf
, tsize_t occ
, tsample_t s
)
228 DECLARE_STATE(tif
, sp
, "Fax3Decode1D");
231 CACHE_STATE(tif
, sp
);
232 thisrun
= sp
->curruns
;
233 while ((long)occ
> 0) {
238 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc
, BitsAvail
);
239 printf("-------------------- %d\n", tif
->tif_row
);
244 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
245 buf
+= sp
->b
.rowbytes
;
246 occ
-= sp
->b
.rowbytes
;
250 EOF1D
: /* premature EOF */
252 EOF1Da
: /* premature EOF */
253 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
254 UNCACHE_STATE(tif
, sp
);
257 UNCACHE_STATE(tif
, sp
);
261 #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; }
263 * Decode the requested amount of G3 2D-encoded data.
266 Fax3Decode2D(TIFF
* tif
, tidata_t buf
, tsize_t occ
, tsample_t s
)
268 DECLARE_STATE_2D(tif
, sp
, "Fax3Decode2D");
269 int is1D
; /* current line is 1d/2d-encoded */
272 CACHE_STATE(tif
, sp
);
273 while ((long)occ
> 0) {
276 pa
= thisrun
= sp
->curruns
;
278 printf("\nBitAcc=%08X, BitsAvail = %d EOLcnt = %d",
279 BitAcc
, BitsAvail
, EOLcnt
);
283 is1D
= GetBits(1); /* 1D/2D-encoding tag bit */
286 printf(" %s\n-------------------- %d\n",
287 is1D
? "1D" : "2D", tif
->tif_row
);
296 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
297 SETVAL(0); /* imaginary change for reference */
298 SWAP(uint32
*, sp
->curruns
, sp
->refruns
);
299 buf
+= sp
->b
.rowbytes
;
300 occ
-= sp
->b
.rowbytes
;
304 EOF2D
: /* premature EOF */
306 EOF2Da
: /* premature EOF */
307 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
308 UNCACHE_STATE(tif
, sp
);
311 UNCACHE_STATE(tif
, sp
);
317 * The ZERO & FILL macros must handle spans < 2*sizeof(long) bytes.
318 * For machines with 64-bit longs this is <16 bytes; otherwise
319 * this is <8 bytes. We optimize the code here to reflect the
320 * machine characteristics.
322 #if defined(__alpha) || _MIPS_SZLONG == 64
323 #define FILL(n, cp) \
325 case 15:(cp)[14] = 0xff; case 14:(cp)[13] = 0xff; case 13: (cp)[12] = 0xff;\
326 case 12:(cp)[11] = 0xff; case 11:(cp)[10] = 0xff; case 10: (cp)[9] = 0xff;\
327 case 9: (cp)[8] = 0xff; case 8: (cp)[7] = 0xff; case 7: (cp)[6] = 0xff;\
328 case 6: (cp)[5] = 0xff; case 5: (cp)[4] = 0xff; case 4: (cp)[3] = 0xff;\
329 case 3: (cp)[2] = 0xff; case 2: (cp)[1] = 0xff; \
330 case 1: (cp)[0] = 0xff; (cp) += (n); case 0: ; \
332 #define ZERO(n, cp) \
334 case 15:(cp)[14] = 0; case 14:(cp)[13] = 0; case 13: (cp)[12] = 0; \
335 case 12:(cp)[11] = 0; case 11:(cp)[10] = 0; case 10: (cp)[9] = 0; \
336 case 9: (cp)[8] = 0; case 8: (cp)[7] = 0; case 7: (cp)[6] = 0; \
337 case 6: (cp)[5] = 0; case 5: (cp)[4] = 0; case 4: (cp)[3] = 0; \
338 case 3: (cp)[2] = 0; case 2: (cp)[1] = 0; \
339 case 1: (cp)[0] = 0; (cp) += (n); case 0: ; \
342 #define FILL(n, cp) \
344 case 7: (cp)[6] = 0xff; case 6: (cp)[5] = 0xff; case 5: (cp)[4] = 0xff; \
345 case 4: (cp)[3] = 0xff; case 3: (cp)[2] = 0xff; case 2: (cp)[1] = 0xff; \
346 case 1: (cp)[0] = 0xff; (cp) += (n); case 0: ; \
348 #define ZERO(n, cp) \
350 case 7: (cp)[6] = 0; case 6: (cp)[5] = 0; case 5: (cp)[4] = 0; \
351 case 4: (cp)[3] = 0; case 3: (cp)[2] = 0; case 2: (cp)[1] = 0; \
352 case 1: (cp)[0] = 0; (cp) += (n); case 0: ; \
357 * Bit-fill a row according to the white/black
358 * runs generated during G3/G4 decoding.
361 _TIFFFax3fillruns(u_char
* buf
, uint32
* runs
, uint32
* erun
, uint32 lastx
)
363 static const unsigned char _fillmasks
[] =
364 { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff };
373 for (; runs
< erun
; runs
+= 2) {
376 run
= runs
[0] = lastx
- x
;
381 if (bx
) { /* align to byte boundary */
382 *cp
++ &= 0xff << (8-bx
);
385 if( (n
= run
>> 3) != 0 ) { /* multiple bytes to fill */
386 if ((n
/sizeof (long)) > 1) {
388 * Align to longword boundary and fill.
390 for (; n
&& !isAligned(cp
, long); n
--)
393 nw
= (int32
)(n
/ sizeof (long));
394 n
-= nw
* sizeof (long);
405 cp
[0] &= 0xff >> run
;
407 cp
[0] &= 0xff >> run
;
410 cp
[0] &= ~(_fillmasks
[run
]>>bx
);
415 run
= runs
[1] = lastx
- x
;
420 if (bx
) { /* align to byte boundary */
424 if( (n
= run
>>3) != 0 ) { /* multiple bytes to fill */
425 if ((n
/sizeof (long)) > 1) {
427 * Align to longword boundary and fill.
429 for (; n
&& !isAligned(cp
, long); n
--)
432 nw
= (int32
)(n
/ sizeof (long));
433 n
-= nw
* sizeof (long);
444 cp
[0] |= 0xff00 >> run
;
446 cp
[0] |= 0xff00 >> run
;
449 cp
[0] |= _fillmasks
[run
]>>bx
;
459 * Setup G3/G4-related compression/decompression state
460 * before data is processed. This routine is called once
461 * per image -- it sets up different state based on whether
462 * or not decoding or encoding is being done and whether
463 * 1D- or 2D-encoded data is involved.
466 Fax3SetupState(TIFF
* tif
)
468 TIFFDirectory
* td
= &tif
->tif_dir
;
469 Fax3BaseState
* sp
= Fax3State(tif
);
470 long rowbytes
, rowpixels
;
473 if (td
->td_bitspersample
!= 1) {
474 TIFFError(tif
->tif_name
,
475 "Bits/sample must be 1 for Group 3/4 encoding/decoding");
479 * Calculate the scanline/tile widths.
482 rowbytes
= TIFFTileRowSize(tif
);
483 rowpixels
= td
->td_tilewidth
;
485 rowbytes
= TIFFScanlineSize(tif
);
486 rowpixels
= td
->td_imagewidth
;
488 sp
->rowbytes
= (uint32
) rowbytes
;
489 sp
->rowpixels
= (uint32
) rowpixels
;
491 * Allocate any additional space required for decoding/encoding.
494 (sp
->groupoptions
& GROUP3OPT_2DENCODING
) ||
495 td
->td_compression
== COMPRESSION_CCITTFAX4
497 if (tif
->tif_mode
== O_RDONLY
) { /* 1d/2d decoding */
498 Fax3DecodeState
* dsp
= DecoderState(tif
);
499 uint32 nruns
= needsRefLine
?
500 2*TIFFroundup(rowpixels
,32) : rowpixels
;
502 dsp
->runs
= (uint32
*) _TIFFmalloc(nruns
*sizeof (uint16
));
503 if (dsp
->runs
== NULL
) {
504 TIFFError("Fax3SetupState",
505 "%s: No space for Group 3/4 run arrays",
509 dsp
->curruns
= dsp
->runs
;
511 dsp
->refruns
= dsp
->runs
+ (nruns
>>1);
514 if (is2DEncoding(dsp
)) { /* NB: default is 1D routine */
515 tif
->tif_decoderow
= Fax3Decode2D
;
516 tif
->tif_decodestrip
= Fax3Decode2D
;
517 tif
->tif_decodetile
= Fax3Decode2D
;
519 } else if (needsRefLine
) { /* 2d encoding */
520 Fax3EncodeState
* esp
= EncoderState(tif
);
522 * 2d encoding requires a scanline
523 * buffer for the ``reference line''; the
524 * scanline against which delta encoding
525 * is referenced. The reference line must
526 * be initialized to be ``white'' (done elsewhere).
528 esp
->refline
= (u_char
*) _TIFFmalloc(rowbytes
);
529 if (esp
->refline
== NULL
) {
530 TIFFError("Fax3SetupState",
531 "%s: No space for Group 3/4 reference line",
535 } else /* 1d encoding */
536 EncoderState(tif
)->refline
= NULL
;
541 * CCITT Group 3 FAX Encoding.
544 #define Fax3FlushBits(tif, sp) { \
545 if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) \
546 (void) TIFFFlushData1(tif); \
547 *(tif)->tif_rawcp++ = (sp)->data; \
548 (tif)->tif_rawcc++; \
549 (sp)->data = 0, (sp)->bit = 8; \
551 #define _FlushBits(tif) { \
552 if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) \
553 (void) TIFFFlushData1(tif); \
554 *(tif)->tif_rawcp++ = data; \
555 (tif)->tif_rawcc++; \
558 static const int _msbmask
[9] =
559 { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
560 #define _PutBits(tif, bits, length) { \
561 while (length > bit) { \
562 data |= bits >> (length - bit); \
566 data |= (bits & _msbmask[length]) << (bit - length); \
573 * Write a variable-length bit-value to
574 * the output stream. Values are
575 * assumed to be at most 16 bits.
578 Fax3PutBits(TIFF
* tif
, u_int bits
, u_int length
)
580 Fax3EncodeState
* sp
= EncoderState(tif
);
584 _PutBits(tif
, bits
, length
);
591 * Write a code to the output stream.
593 #define putcode(tif, te) Fax3PutBits(tif, (te)->code, (te)->length)
596 #define DEBUG_COLOR(w) (tab == TIFFFaxWhiteCodes ? w "W" : w "B")
597 #define DEBUG_PRINT(what,len) { \
599 printf("%08X/%-2d: %s%5d\t", data, bit, DEBUG_COLOR(what), len); \
600 for (t = length-1; t >= 0; t--) \
601 putchar(code & (1<<t) ? '1' : '0'); \
607 * Write the sequence of codes that describes
608 * the specified span of zero's or one's. The
609 * appropriate table that holds the make-up and
610 * terminating codes is supplied.
613 putspan(TIFF
* tif
, int32 span
, const tableentry
* tab
)
615 Fax3EncodeState
* sp
= EncoderState(tif
);
620 while (span
>= 2624) {
621 const tableentry
* te
= &tab
[63 + (2560>>6)];
622 code
= te
->code
, length
= te
->length
;
624 DEBUG_PRINT("MakeUp", te
->runlen
);
626 _PutBits(tif
, code
, length
);
630 const tableentry
* te
= &tab
[63 + (span
>>6)];
631 assert(te
->runlen
== 64*(span
>>6));
632 code
= te
->code
, length
= te
->length
;
634 DEBUG_PRINT("MakeUp", te
->runlen
);
636 _PutBits(tif
, code
, length
);
639 code
= tab
[span
].code
, length
= tab
[span
].length
;
641 DEBUG_PRINT(" Term", tab
[span
].runlen
);
643 _PutBits(tif
, code
, length
);
650 * Write an EOL code to the output stream. The zero-fill
651 * logic for byte-aligning encoded scanlines is handled
652 * here. We also handle writing the tag bit for the next
653 * scanline when doing 2d encoding.
656 Fax3PutEOL(TIFF
* tif
)
658 Fax3EncodeState
* sp
= EncoderState(tif
);
663 if (sp
->b
.groupoptions
& GROUP3OPT_FILLBITS
) {
665 * Force bit alignment so EOL will terminate on
666 * a byte boundary. That is, force the bit alignment
667 * to 16-12 = 4 before putting out the EOL code.
670 if (align
!= sp
->bit
) {
672 align
= sp
->bit
+ (8 - align
);
674 align
= sp
->bit
- align
;
676 _PutBits(tif
, 0, align
);
679 code
= EOL
, length
= 12;
680 if (is2DEncoding(sp
))
681 code
= (code
<<1) | (sp
->tag
== G3_1D
), length
++;
682 _PutBits(tif
, code
, length
);
689 * Reset encoding state at the start of a strip.
692 Fax3PreEncode(TIFF
* tif
, tsample_t s
)
694 Fax3EncodeState
* sp
= EncoderState(tif
);
702 * This is necessary for Group 4; otherwise it isn't
703 * needed because the first scanline of each strip ends
704 * up being copied into the refline.
707 _TIFFmemset(sp
->refline
, 0x00, sp
->b
.rowbytes
);
708 if (is2DEncoding(sp
)) {
709 float res
= tif
->tif_dir
.td_yresolution
;
711 * The CCITT spec says that when doing 2d encoding, you
712 * should only do it on K consecutive scanlines, where K
713 * depends on the resolution of the image being encoded
714 * (2 for <= 200 lpi, 4 for > 200 lpi). Since the directory
715 * code initializes td_yresolution to 0, this code will
716 * select a K of 2 unless the YResolution tag is set
717 * appropriately. (Note also that we fudge a little here
718 * and use 150 lpi to avoid problems with units conversion.)
720 if (tif
->tif_dir
.td_resolutionunit
== RESUNIT_CENTIMETER
)
721 res
*= 2.54f
; /* convert to inches */
722 sp
->maxk
= (res
> 150 ? 4 : 2);
725 sp
->k
= sp
->maxk
= 0;
729 static const u_char zeroruns
[256] = {
730 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, /* 0x00 - 0x0f */
731 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0x10 - 0x1f */
732 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x20 - 0x2f */
733 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x30 - 0x3f */
734 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x4f */
735 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x5f */
736 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x6f */
737 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x7f */
738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 - 0x8f */
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x90 - 0x9f */
740 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xa0 - 0xaf */
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xb0 - 0xbf */
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc0 - 0xcf */
743 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd0 - 0xdf */
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe0 - 0xef */
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf0 - 0xff */
747 static const u_char oneruns
[256] = {
748 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x0f */
749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x1f */
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 - 0x2f */
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 - 0x3f */
752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 - 0x4f */
753 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x50 - 0x5f */
754 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 - 0x6f */
755 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 - 0x7f */
756 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x80 - 0x8f */
757 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x90 - 0x9f */
758 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xa0 - 0xaf */
759 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xb0 - 0xbf */
760 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xc0 - 0xcf */
761 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xd0 - 0xdf */
762 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0xe0 - 0xef */
763 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, /* 0xf0 - 0xff */
767 * On certain systems it pays to inline
768 * the routines that find pixel spans.
771 static int32
find0span(u_char
*, int32
, int32
);
772 static int32
find1span(u_char
*, int32
, int32
);
773 #pragma inline(find0span,find1span)
777 * Find a span of ones or zeros using the supplied
778 * table. The ``base'' of the bit string is supplied
779 * along with the start+end bit indices.
782 find0span(u_char
* bp
, int32 bs
, int32 be
)
784 int32 bits
= be
- bs
;
789 * Check partial byte on lhs.
791 if (bits
> 0 && (n
= (bs
& 7))) {
792 span
= zeroruns
[(*bp
<< n
) & 0xff];
793 if (span
> 8-n
) /* table value too generous */
795 if (span
> bits
) /* constrain span to bit range */
797 if (n
+span
< 8) /* doesn't extend to edge of byte */
803 if (bits
>= 2*8*sizeof (long)) {
806 * Align to longword boundary and check longwords.
808 while (!isAligned(bp
, long)) {
810 return (span
+ zeroruns
[*bp
]);
811 span
+= 8, bits
-= 8;
815 while (bits
>= 8*sizeof (long) && *lp
== 0) {
816 span
+= 8*sizeof (long), bits
-= 8*sizeof (long);
822 * Scan full bytes for all 0's.
825 if (*bp
!= 0x00) /* end of run */
826 return (span
+ zeroruns
[*bp
]);
827 span
+= 8, bits
-= 8;
831 * Check partial byte on rhs.
835 span
+= (n
> bits
? bits
: n
);
841 find1span(u_char
* bp
, int32 bs
, int32 be
)
843 int32 bits
= be
- bs
;
848 * Check partial byte on lhs.
850 if (bits
> 0 && (n
= (bs
& 7))) {
851 span
= oneruns
[(*bp
<< n
) & 0xff];
852 if (span
> 8-n
) /* table value too generous */
854 if (span
> bits
) /* constrain span to bit range */
856 if (n
+span
< 8) /* doesn't extend to edge of byte */
862 if (bits
>= 2*8*sizeof (long)) {
865 * Align to longword boundary and check longwords.
867 while (!isAligned(bp
, long)) {
869 return (span
+ oneruns
[*bp
]);
870 span
+= 8, bits
-= 8;
874 while (bits
>= 8*sizeof (long) && *lp
== ~0) {
875 span
+= 8*sizeof (long), bits
-= 8*sizeof (long);
881 * Scan full bytes for all 1's.
884 if (*bp
!= 0xff) /* end of run */
885 return (span
+ oneruns
[*bp
]);
886 span
+= 8, bits
-= 8;
890 * Check partial byte on rhs.
894 span
+= (n
> bits
? bits
: n
);
900 * Return the offset of the next bit in the range
901 * [bs..be] that is different from the specified
902 * color. The end, be, is returned if no such bit
905 #define finddiff(_cp, _bs, _be, _color) \
906 (_bs + (_color ? find1span(_cp,_bs,_be) : find0span(_cp,_bs,_be)))
908 * Like finddiff, but also check the starting bit
909 * against the end in case start > end.
911 #define finddiff2(_cp, _bs, _be, _color) \
912 (_bs < _be ? finddiff(_cp,_bs,_be,_color) : _be)
915 * 1d-encode a row of pixels. The encoding is
916 * a sequence of all-white or all-black spans
917 * of pixels encoded with Huffman codes.
920 Fax3Encode1DRow(TIFF
* tif
, u_char
* bp
, uint32 bits
)
922 Fax3EncodeState
* sp
= EncoderState(tif
);
926 span
= find0span(bp
, bs
, bits
); /* white span */
927 putspan(tif
, span
, TIFFFaxWhiteCodes
);
931 span
= find1span(bp
, bs
, bits
); /* black span */
932 putspan(tif
, span
, TIFFFaxBlackCodes
);
937 if (sp
->b
.mode
& (FAXMODE_BYTEALIGN
|FAXMODE_WORDALIGN
)) {
938 if (sp
->bit
!= 8) /* byte-align */
939 Fax3FlushBits(tif
, sp
);
940 if ((sp
->b
.mode
&FAXMODE_WORDALIGN
) &&
941 !isAligned(tif
->tif_rawcp
, uint16
))
942 Fax3FlushBits(tif
, sp
);
947 static const tableentry horizcode
=
948 { 3, 0x1 }; /* 001 */
949 static const tableentry passcode
=
950 { 4, 0x1 }; /* 0001 */
951 static const tableentry vcodes
[7] = {
952 { 7, 0x03 }, /* 0000 011 */
953 { 6, 0x03 }, /* 0000 11 */
954 { 3, 0x03 }, /* 011 */
956 { 3, 0x2 }, /* 010 */
957 { 6, 0x02 }, /* 0000 10 */
958 { 7, 0x02 } /* 0000 010 */
962 * 2d-encode a row of pixels. Consult the CCITT
963 * documentation for the algorithm.
966 Fax3Encode2DRow(TIFF
* tif
, u_char
* bp
, u_char
* rp
, uint32 bits
)
968 #define PIXEL(buf,ix) ((((buf)[(ix)>>3]) >> (7-((ix)&7))) & 1)
970 int32 a1
= (PIXEL(bp
, 0) != 0 ? 0 : finddiff(bp
, 0, bits
, 0));
971 int32 b1
= (PIXEL(rp
, 0) != 0 ? 0 : finddiff(rp
, 0, bits
, 0));
975 b2
= finddiff2(rp
, b1
, bits
, PIXEL(rp
,b1
));
978 if (!(-3 <= d
&& d
<= 3)) { /* horizontal mode */
979 a2
= finddiff2(bp
, a1
, bits
, PIXEL(bp
,a1
));
980 putcode(tif
, &horizcode
);
981 if (a0
+a1
== 0 || PIXEL(bp
, a0
) == 0) {
982 putspan(tif
, a1
-a0
, TIFFFaxWhiteCodes
);
983 putspan(tif
, a2
-a1
, TIFFFaxBlackCodes
);
985 putspan(tif
, a1
-a0
, TIFFFaxBlackCodes
);
986 putspan(tif
, a2
-a1
, TIFFFaxWhiteCodes
);
989 } else { /* vertical mode */
990 putcode(tif
, &vcodes
[d
+3]);
993 } else { /* pass mode */
994 putcode(tif
, &passcode
);
999 a1
= finddiff(bp
, a0
, bits
, PIXEL(bp
,a0
));
1000 b1
= finddiff(rp
, a0
, bits
, !PIXEL(bp
,a0
));
1001 b1
= finddiff(rp
, b1
, bits
, PIXEL(bp
,a0
));
1008 * Encode a buffer of pixels.
1011 Fax3Encode(TIFF
* tif
, tidata_t bp
, tsize_t cc
, tsample_t s
)
1013 Fax3EncodeState
* sp
= EncoderState(tif
);
1016 while ((long)cc
> 0) {
1017 if ((sp
->b
.mode
& FAXMODE_NOEOL
) == 0)
1019 if (is2DEncoding(sp
)) {
1020 if (sp
->tag
== G3_1D
) {
1021 if (!Fax3Encode1DRow(tif
, bp
, sp
->b
.rowpixels
))
1025 if (!Fax3Encode2DRow(tif
, bp
, sp
->refline
, sp
->b
.rowpixels
))
1033 _TIFFmemcpy(sp
->refline
, bp
, sp
->b
.rowbytes
);
1035 if (!Fax3Encode1DRow(tif
, bp
, sp
->b
.rowpixels
))
1038 bp
+= sp
->b
.rowbytes
;
1039 cc
-= sp
->b
.rowbytes
;
1047 Fax3PostEncode(TIFF
* tif
)
1049 Fax3EncodeState
* sp
= EncoderState(tif
);
1052 Fax3FlushBits(tif
, sp
);
1057 Fax3Close(TIFF
* tif
)
1059 if ((Fax3State(tif
)->mode
& FAXMODE_NORTC
) == 0) {
1060 Fax3EncodeState
* sp
= EncoderState(tif
);
1065 if (is2DEncoding(sp
))
1066 code
= (code
<<1) | (sp
->tag
== G3_1D
), length
++;
1067 for (i
= 0; i
< 6; i
++)
1068 Fax3PutBits(tif
, code
, length
);
1069 Fax3FlushBits(tif
, sp
);
1074 Fax3Cleanup(TIFF
* tif
)
1076 if (tif
->tif_data
) {
1077 if (tif
->tif_mode
== O_RDONLY
) {
1078 Fax3DecodeState
* sp
= DecoderState(tif
);
1080 _TIFFfree(sp
->runs
);
1082 Fax3EncodeState
* sp
= EncoderState(tif
);
1084 _TIFFfree(sp
->refline
);
1086 if (Fax3State(tif
)->subaddress
)
1087 _TIFFfree(Fax3State(tif
)->subaddress
);
1088 _TIFFfree(tif
->tif_data
);
1089 tif
->tif_data
= NULL
;
1093 #define FIELD_BADFAXLINES (FIELD_CODEC+0)
1094 #define FIELD_CLEANFAXDATA (FIELD_CODEC+1)
1095 #define FIELD_BADFAXRUN (FIELD_CODEC+2)
1096 #define FIELD_RECVPARAMS (FIELD_CODEC+3)
1097 #define FIELD_SUBADDRESS (FIELD_CODEC+4)
1098 #define FIELD_RECVTIME (FIELD_CODEC+5)
1100 #define FIELD_OPTIONS (FIELD_CODEC+6)
1102 static const TIFFFieldInfo faxFieldInfo
[] = {
1103 { TIFFTAG_FAXMODE
, 0, 0, TIFF_ANY
, FIELD_PSEUDO
,
1104 FALSE
, FALSE
, "FaxMode" },
1105 { TIFFTAG_FAXFILLFUNC
, 0, 0, TIFF_ANY
, FIELD_PSEUDO
,
1106 FALSE
, FALSE
, "FaxFillFunc" },
1107 { TIFFTAG_BADFAXLINES
, 1, 1, TIFF_LONG
, FIELD_BADFAXLINES
,
1108 TRUE
, FALSE
, "BadFaxLines" },
1109 { TIFFTAG_BADFAXLINES
, 1, 1, TIFF_SHORT
, FIELD_BADFAXLINES
,
1110 TRUE
, FALSE
, "BadFaxLines" },
1111 { TIFFTAG_CLEANFAXDATA
, 1, 1, TIFF_SHORT
, FIELD_CLEANFAXDATA
,
1112 TRUE
, FALSE
, "CleanFaxData" },
1113 { TIFFTAG_CONSECUTIVEBADFAXLINES
,1,1, TIFF_LONG
, FIELD_BADFAXRUN
,
1114 TRUE
, FALSE
, "ConsecutiveBadFaxLines" },
1115 { TIFFTAG_CONSECUTIVEBADFAXLINES
,1,1, TIFF_SHORT
, FIELD_BADFAXRUN
,
1116 TRUE
, FALSE
, "ConsecutiveBadFaxLines" },
1117 { TIFFTAG_FAXRECVPARAMS
, 1, 1, TIFF_LONG
, FIELD_RECVPARAMS
,
1118 TRUE
, FALSE
, "FaxRecvParams" },
1119 { TIFFTAG_FAXSUBADDRESS
, -1,-1, TIFF_ASCII
, FIELD_SUBADDRESS
,
1120 TRUE
, FALSE
, "FaxSubAddress" },
1121 { TIFFTAG_FAXRECVTIME
, 1, 1, TIFF_LONG
, FIELD_RECVTIME
,
1122 TRUE
, FALSE
, "FaxRecvTime" },
1124 static const TIFFFieldInfo fax3FieldInfo
[] = {
1125 { TIFFTAG_GROUP3OPTIONS
, 1, 1, TIFF_LONG
, FIELD_OPTIONS
,
1126 FALSE
, FALSE
, "Group3Options" },
1128 static const TIFFFieldInfo fax4FieldInfo
[] = {
1129 { TIFFTAG_GROUP4OPTIONS
, 1, 1, TIFF_LONG
, FIELD_OPTIONS
,
1130 FALSE
, FALSE
, "Group4Options" },
1132 #define N(a) (sizeof (a) / sizeof (a[0]))
1135 Fax3VSetField(TIFF
* tif
, ttag_t tag
, va_list ap
)
1137 Fax3BaseState
* sp
= Fax3State(tif
);
1140 case TIFFTAG_FAXMODE
:
1141 sp
->mode
= va_arg(ap
, int);
1142 return (1); /* NB: pseudo tag */
1143 case TIFFTAG_FAXFILLFUNC
:
1144 if (tif
->tif_mode
== O_RDONLY
)
1145 DecoderState(tif
)->fill
= va_arg(ap
, TIFFFaxFillFunc
);
1146 return (1); /* NB: pseudo tag */
1147 case TIFFTAG_GROUP3OPTIONS
:
1148 case TIFFTAG_GROUP4OPTIONS
:
1149 sp
->groupoptions
= va_arg(ap
, uint32
);
1151 case TIFFTAG_BADFAXLINES
:
1152 sp
->badfaxlines
= va_arg(ap
, uint32
);
1154 case TIFFTAG_CLEANFAXDATA
:
1155 sp
->cleanfaxdata
= (uint16
) va_arg(ap
, int);
1157 case TIFFTAG_CONSECUTIVEBADFAXLINES
:
1158 sp
->badfaxrun
= va_arg(ap
, uint32
);
1160 case TIFFTAG_FAXRECVPARAMS
:
1161 sp
->recvparams
= va_arg(ap
, uint32
);
1163 case TIFFTAG_FAXSUBADDRESS
:
1164 _TIFFsetString(&sp
->subaddress
, va_arg(ap
, char*));
1166 case TIFFTAG_FAXRECVTIME
:
1167 sp
->recvtime
= va_arg(ap
, uint32
);
1170 return (*sp
->vsetparent
)(tif
, tag
, ap
);
1172 TIFFSetFieldBit(tif
, _TIFFFieldWithTag(tif
, tag
)->field_bit
);
1173 tif
->tif_flags
|= TIFF_DIRTYDIRECT
;
1178 Fax3VGetField(TIFF
* tif
, ttag_t tag
, va_list ap
)
1180 Fax3BaseState
* sp
= Fax3State(tif
);
1183 case TIFFTAG_FAXMODE
:
1184 *va_arg(ap
, int*) = sp
->mode
;
1186 case TIFFTAG_FAXFILLFUNC
:
1187 if (tif
->tif_mode
== O_RDONLY
)
1188 *va_arg(ap
, TIFFFaxFillFunc
*) = DecoderState(tif
)->fill
;
1190 case TIFFTAG_GROUP3OPTIONS
:
1191 case TIFFTAG_GROUP4OPTIONS
:
1192 *va_arg(ap
, uint32
*) = sp
->groupoptions
;
1194 case TIFFTAG_BADFAXLINES
:
1195 *va_arg(ap
, uint32
*) = sp
->badfaxlines
;
1197 case TIFFTAG_CLEANFAXDATA
:
1198 *va_arg(ap
, uint16
*) = sp
->cleanfaxdata
;
1200 case TIFFTAG_CONSECUTIVEBADFAXLINES
:
1201 *va_arg(ap
, uint32
*) = sp
->badfaxrun
;
1203 case TIFFTAG_FAXRECVPARAMS
:
1204 *va_arg(ap
, uint32
*) = sp
->recvparams
;
1206 case TIFFTAG_FAXSUBADDRESS
:
1207 *va_arg(ap
, char**) = sp
->subaddress
;
1209 case TIFFTAG_FAXRECVTIME
:
1210 *va_arg(ap
, uint32
*) = sp
->recvtime
;
1213 return (*sp
->vgetparent
)(tif
, tag
, ap
);
1219 Fax3PrintDir(TIFF
* tif
, FILE* fd
, long flags
)
1221 Fax3BaseState
* sp
= Fax3State(tif
);
1224 if (TIFFFieldSet(tif
,FIELD_OPTIONS
)) {
1225 const char* sep
= " ";
1226 if (tif
->tif_dir
.td_compression
== COMPRESSION_CCITTFAX4
) {
1227 fprintf(fd
, " Group 4 Options:");
1228 if (sp
->groupoptions
& GROUP4OPT_UNCOMPRESSED
)
1229 fprintf(fd
, "%suncompressed data", sep
);
1232 fprintf(fd
, " Group 3 Options:");
1233 if (sp
->groupoptions
& GROUP3OPT_2DENCODING
)
1234 fprintf(fd
, "%s2-d encoding", sep
), sep
= "+";
1235 if (sp
->groupoptions
& GROUP3OPT_FILLBITS
)
1236 fprintf(fd
, "%sEOL padding", sep
), sep
= "+";
1237 if (sp
->groupoptions
& GROUP3OPT_UNCOMPRESSED
)
1238 fprintf(fd
, "%suncompressed data", sep
);
1240 fprintf(fd
, " (%lu = 0x%lx)\n",
1241 (u_long
) sp
->groupoptions
, (u_long
) sp
->groupoptions
);
1243 if (TIFFFieldSet(tif
,FIELD_CLEANFAXDATA
)) {
1244 fprintf(fd
, " Fax Data:");
1245 switch (sp
->cleanfaxdata
) {
1246 case CLEANFAXDATA_CLEAN
:
1247 fprintf(fd
, " clean");
1249 case CLEANFAXDATA_REGENERATED
:
1250 fprintf(fd
, " receiver regenerated");
1252 case CLEANFAXDATA_UNCLEAN
:
1253 fprintf(fd
, " uncorrected errors");
1256 fprintf(fd
, " (%u = 0x%x)\n",
1257 sp
->cleanfaxdata
, sp
->cleanfaxdata
);
1259 if (TIFFFieldSet(tif
,FIELD_BADFAXLINES
))
1260 fprintf(fd
, " Bad Fax Lines: %lu\n", (u_long
) sp
->badfaxlines
);
1261 if (TIFFFieldSet(tif
,FIELD_BADFAXRUN
))
1262 fprintf(fd
, " Consecutive Bad Fax Lines: %lu\n",
1263 (u_long
) sp
->badfaxrun
);
1264 if (TIFFFieldSet(tif
,FIELD_RECVPARAMS
))
1265 fprintf(fd
, " Fax Receive Parameters: %08lx\n",
1266 (u_long
) sp
->recvparams
);
1267 if (TIFFFieldSet(tif
,FIELD_SUBADDRESS
))
1268 fprintf(fd
, " Fax SubAddress: %s\n", sp
->subaddress
);
1269 if (TIFFFieldSet(tif
,FIELD_RECVTIME
))
1270 fprintf(fd
, " Fax Receive Time: %lu secs\n",
1271 (u_long
) sp
->recvtime
);
1275 InitCCITTFax3(TIFF
* tif
)
1280 * Allocate state block so tag methods have storage to record values.
1282 if (tif
->tif_mode
== O_RDONLY
)
1283 tif
->tif_data
= _TIFFmalloc(sizeof (Fax3DecodeState
));
1285 tif
->tif_data
= _TIFFmalloc(sizeof (Fax3EncodeState
));
1286 if (tif
->tif_data
== NULL
) {
1287 TIFFError("TIFFInitCCITTFax3",
1288 "%s: No space for state block", tif
->tif_name
);
1291 sp
= Fax3State(tif
);
1294 * Merge codec-specific tag information and
1295 * override parent get/set field methods.
1297 _TIFFMergeFieldInfo(tif
, faxFieldInfo
, N(faxFieldInfo
));
1298 sp
->vgetparent
= tif
->tif_vgetfield
;
1299 tif
->tif_vgetfield
= Fax3VGetField
; /* hook for codec tags */
1300 sp
->vsetparent
= tif
->tif_vsetfield
;
1301 tif
->tif_vsetfield
= Fax3VSetField
; /* hook for codec tags */
1302 tif
->tif_printdir
= Fax3PrintDir
; /* hook for codec tags */
1303 sp
->groupoptions
= 0;
1305 sp
->subaddress
= NULL
;
1307 if (tif
->tif_mode
== O_RDONLY
) {
1308 tif
->tif_flags
|= TIFF_NOBITREV
;/* decoder does bit reversal */
1309 DecoderState(tif
)->runs
= NULL
;
1310 TIFFSetField(tif
, TIFFTAG_FAXFILLFUNC
, _TIFFFax3fillruns
);
1312 EncoderState(tif
)->refline
= NULL
;
1315 * Install codec methods.
1317 tif
->tif_setupdecode
= Fax3SetupState
;
1318 tif
->tif_predecode
= Fax3PreDecode
;
1319 tif
->tif_decoderow
= Fax3Decode1D
;
1320 tif
->tif_decodestrip
= Fax3Decode1D
;
1321 tif
->tif_decodetile
= Fax3Decode1D
;
1322 tif
->tif_setupencode
= Fax3SetupState
;
1323 tif
->tif_preencode
= Fax3PreEncode
;
1324 tif
->tif_postencode
= Fax3PostEncode
;
1325 tif
->tif_encoderow
= Fax3Encode
;
1326 tif
->tif_encodestrip
= Fax3Encode
;
1327 tif
->tif_encodetile
= Fax3Encode
;
1328 tif
->tif_close
= Fax3Close
;
1329 tif
->tif_cleanup
= Fax3Cleanup
;
1335 TIFFInitCCITTFax3(TIFF
* tif
, int scheme
)
1337 if (InitCCITTFax3(tif
)) {
1338 _TIFFMergeFieldInfo(tif
, fax3FieldInfo
, N(fax3FieldInfo
));
1341 * The default format is Class/F-style w/o RTC.
1343 return TIFFSetField(tif
, TIFFTAG_FAXMODE
, FAXMODE_CLASSF
);
1349 * CCITT Group 4 (T.6) Facsimile-compatible
1350 * Compression Scheme Support.
1353 #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; }
1355 * Decode the requested amount of G4-encoded data.
1358 Fax4Decode(TIFF
* tif
, tidata_t buf
, tsize_t occ
, tsample_t s
)
1360 DECLARE_STATE_2D(tif
, sp
, "Fax4Decode");
1363 CACHE_STATE(tif
, sp
);
1364 while ((long)occ
> 0) {
1367 pa
= thisrun
= sp
->curruns
;
1371 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc
, BitsAvail
);
1372 printf("-------------------- %d\n", tif
->tif_row
);
1376 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
1377 SETVAL(0); /* imaginary change for reference */
1378 SWAP(uint32
*, sp
->curruns
, sp
->refruns
);
1379 buf
+= sp
->b
.rowbytes
;
1380 occ
-= sp
->b
.rowbytes
;
1385 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
1386 UNCACHE_STATE(tif
, sp
);
1389 UNCACHE_STATE(tif
, sp
);
1395 * Encode the requested amount of data.
1398 Fax4Encode(TIFF
* tif
, tidata_t bp
, tsize_t cc
, tsample_t s
)
1400 Fax3EncodeState
*sp
= EncoderState(tif
);
1403 while ((long)cc
> 0) {
1404 if (!Fax3Encode2DRow(tif
, bp
, sp
->refline
, sp
->b
.rowpixels
))
1406 _TIFFmemcpy(sp
->refline
, bp
, sp
->b
.rowbytes
);
1407 bp
+= sp
->b
.rowbytes
;
1408 cc
-= sp
->b
.rowbytes
;
1416 Fax4PostEncode(TIFF
* tif
)
1418 Fax3EncodeState
*sp
= EncoderState(tif
);
1420 /* terminate strip w/ EOFB */
1421 Fax3PutBits(tif
, EOL
, 12);
1422 Fax3PutBits(tif
, EOL
, 12);
1424 Fax3FlushBits(tif
, sp
);
1429 TIFFInitCCITTFax4(TIFF
* tif
, int scheme
)
1431 if (InitCCITTFax3(tif
)) { /* reuse G3 support */
1432 _TIFFMergeFieldInfo(tif
, fax4FieldInfo
, N(fax4FieldInfo
));
1434 tif
->tif_decoderow
= Fax4Decode
;
1435 tif
->tif_decodestrip
= Fax4Decode
;
1436 tif
->tif_decodetile
= Fax4Decode
;
1437 tif
->tif_encoderow
= Fax4Encode
;
1438 tif
->tif_encodestrip
= Fax4Encode
;
1439 tif
->tif_encodetile
= Fax4Encode
;
1440 tif
->tif_postencode
= Fax4PostEncode
;
1442 * Suppress RTC at the end of each strip.
1444 return TIFFSetField(tif
, TIFFTAG_FAXMODE
, FAXMODE_NORTC
);
1450 * CCITT Group 3 1-D Modified Huffman RLE Compression Support.
1451 * (Compression algorithms 2 and 32771)
1455 * Decode the requested amount of RLE-encoded data.
1458 Fax3DecodeRLE(TIFF
* tif
, tidata_t buf
, tsize_t occ
, tsample_t s
)
1460 DECLARE_STATE(tif
, sp
, "Fax3DecodeRLE");
1461 int mode
= sp
->b
.mode
;
1464 CACHE_STATE(tif
, sp
);
1465 thisrun
= sp
->curruns
;
1466 while ((long)occ
> 0) {
1471 printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc
, BitsAvail
);
1472 printf("-------------------- %d\n", tif
->tif_row
);
1476 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
1478 * Cleanup at the end of the row.
1480 if (mode
& FAXMODE_BYTEALIGN
) {
1481 int n
= BitsAvail
- (BitsAvail
&~ 7);
1483 } else if (mode
& FAXMODE_WORDALIGN
) {
1484 int n
= BitsAvail
- (BitsAvail
&~ 15);
1486 if (BitsAvail
== 0 && !isAligned(cp
, uint16
))
1489 buf
+= sp
->b
.rowbytes
;
1490 occ
-= sp
->b
.rowbytes
;
1494 EOFRLE
: /* premature EOF */
1495 (*sp
->fill
)(buf
, thisrun
, pa
, lastx
);
1496 UNCACHE_STATE(tif
, sp
);
1499 UNCACHE_STATE(tif
, sp
);
1504 TIFFInitCCITTRLE(TIFF
* tif
, int scheme
)
1506 if (InitCCITTFax3(tif
)) { /* reuse G3 support */
1507 tif
->tif_decoderow
= Fax3DecodeRLE
;
1508 tif
->tif_decodestrip
= Fax3DecodeRLE
;
1509 tif
->tif_decodetile
= Fax3DecodeRLE
;
1511 * Suppress RTC+EOLs when encoding and byte-align data.
1513 return TIFFSetField(tif
, TIFFTAG_FAXMODE
,
1514 FAXMODE_NORTC
|FAXMODE_NOEOL
|FAXMODE_BYTEALIGN
);
1520 TIFFInitCCITTRLEW(TIFF
* tif
, int scheme
)
1522 if (InitCCITTFax3(tif
)) { /* reuse G3 support */
1523 tif
->tif_decoderow
= Fax3DecodeRLE
;
1524 tif
->tif_decodestrip
= Fax3DecodeRLE
;
1525 tif
->tif_decodetile
= Fax3DecodeRLE
;
1527 * Suppress RTC+EOLs when encoding and word-align data.
1529 return TIFFSetField(tif
, TIFFTAG_FAXMODE
,
1530 FAXMODE_NORTC
|FAXMODE_NOEOL
|FAXMODE_WORDALIGN
);
1534 #endif /* CCITT_SUPPORT */