4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the JPEG system-independent memory management
9 * routines. This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 * * pool-based allocation and freeing of memory;
13 * * policy decisions about how to divide available memory among the
15 * * control logic for swapping virtual arrays between main memory and
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems. For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed. (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
31 #include "jmemsys.h" /* import the system-dependent declarations */
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
35 extern char * getenv
JPP((const char * name
));
41 * Some important notes:
42 * The allocation routines provided here must never return NULL.
43 * They should exit to error_exit if unsuccessful.
45 * It's not a good idea to try to merge the sarray and barray routines,
46 * even though they are textually almost the same, because samples are
47 * usually stored as bytes while coefficients are shorts or ints. Thus,
48 * in machines where byte pointers have a different representation from
49 * word pointers, the resulting machine code could not be the same.
54 * Many machines require storage alignment: longs must start on 4-byte
55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
56 * always returns pointers that are multiples of the worst-case alignment
57 * requirement, and we had better do so too.
58 * There isn't any really portable way to determine the worst-case alignment
59 * requirement. This module assumes that the alignment requirement is
60 * multiples of sizeof(ALIGN_TYPE).
61 * By default, we define ALIGN_TYPE as double. This is necessary on some
62 * workstations (where doubles really do need 8-byte alignment) and will work
63 * fine on nearly everything. If your machine has lesser alignment needs,
64 * you can save a few bytes by making ALIGN_TYPE smaller.
65 * The only place I know of where this will NOT work is certain Macintosh
66 * 680x0 compilers that define double as a 10-byte IEEE extended float.
67 * Doing 10-byte alignment is counterproductive because longwords won't be
68 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
72 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
73 #define ALIGN_TYPE double
78 * We allocate objects from "pools", where each pool is gotten with a single
79 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
80 * overhead within a pool, except for alignment padding. Each pool has a
81 * header with a link to the next pool of the same class.
82 * Small and large pool headers are identical except that the latter's
83 * link pointer must be FAR on 80x86 machines.
84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
85 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
86 * of the alignment requirement of ALIGN_TYPE.
89 typedef union small_pool_struct
* small_pool_ptr
;
91 typedef union small_pool_struct
{
93 small_pool_ptr next
; /* next in list of pools */
94 size_t bytes_used
; /* how many bytes already used within pool */
95 size_t bytes_left
; /* bytes still available in this pool */
97 ALIGN_TYPE dummy
; /* included in union to ensure alignment */
100 typedef union large_pool_struct FAR
* large_pool_ptr
;
102 typedef union large_pool_struct
{
104 large_pool_ptr next
; /* next in list of pools */
105 size_t bytes_used
; /* how many bytes already used within pool */
106 size_t bytes_left
; /* bytes still available in this pool */
108 ALIGN_TYPE dummy
; /* included in union to ensure alignment */
113 * Here is the full definition of a memory manager object.
117 struct jpeg_memory_mgr pub
; /* public fields */
119 /* Each pool identifier (lifetime class) names a linked list of pools. */
120 small_pool_ptr small_list
[JPOOL_NUMPOOLS
];
121 large_pool_ptr large_list
[JPOOL_NUMPOOLS
];
123 /* Since we only have one lifetime class of virtual arrays, only one
124 * linked list is necessary (for each datatype). Note that the virtual
125 * array control blocks being linked together are actually stored somewhere
126 * in the small-pool list.
128 jvirt_sarray_ptr virt_sarray_list
;
129 jvirt_barray_ptr virt_barray_list
;
131 /* This counts total space obtained from jpeg_get_small/large */
132 long total_space_allocated
;
134 /* alloc_sarray and alloc_barray set this value for use by virtual
137 JDIMENSION last_rowsperchunk
; /* from most recent alloc_sarray/barray */
140 typedef my_memory_mgr
* my_mem_ptr
;
144 * The control blocks for virtual arrays.
145 * Note that these blocks are allocated in the "small" pool area.
146 * System-dependent info for the associated backing store (if any) is hidden
147 * inside the backing_store_info struct.
150 struct jvirt_sarray_control
{
151 JSAMPARRAY mem_buffer
; /* => the in-memory buffer */
152 JDIMENSION rows_in_array
; /* total virtual array height */
153 JDIMENSION samplesperrow
; /* width of array (and of memory buffer) */
154 JDIMENSION maxaccess
; /* max rows accessed by access_virt_sarray */
155 JDIMENSION rows_in_mem
; /* height of memory buffer */
156 JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
157 JDIMENSION cur_start_row
; /* first logical row # in the buffer */
158 JDIMENSION first_undef_row
; /* row # of first uninitialized row */
159 wxjpeg_boolean pre_zero
; /* pre-zero mode requested? */
160 wxjpeg_boolean dirty
; /* do current buffer contents need written? */
161 wxjpeg_boolean b_s_open
; /* is backing-store data valid? */
162 jvirt_sarray_ptr next
; /* link to next virtual sarray control block */
163 backing_store_info b_s_info
; /* System-dependent control info */
166 struct jvirt_barray_control
{
167 JBLOCKARRAY mem_buffer
; /* => the in-memory buffer */
168 JDIMENSION rows_in_array
; /* total virtual array height */
169 JDIMENSION blocksperrow
; /* width of array (and of memory buffer) */
170 JDIMENSION maxaccess
; /* max rows accessed by access_virt_barray */
171 JDIMENSION rows_in_mem
; /* height of memory buffer */
172 JDIMENSION rowsperchunk
; /* allocation chunk size in mem_buffer */
173 JDIMENSION cur_start_row
; /* first logical row # in the buffer */
174 JDIMENSION first_undef_row
; /* row # of first uninitialized row */
175 wxjpeg_boolean pre_zero
; /* pre-zero mode requested? */
176 wxjpeg_boolean dirty
; /* do current buffer contents need written? */
177 wxjpeg_boolean b_s_open
; /* is backing-store data valid? */
178 jvirt_barray_ptr next
; /* link to next virtual barray control block */
179 backing_store_info b_s_info
; /* System-dependent control info */
183 #ifdef MEM_STATS /* optional extra stuff for statistics */
186 print_mem_stats (j_common_ptr cinfo
, int pool_id
)
188 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
189 small_pool_ptr shdr_ptr
;
190 large_pool_ptr lhdr_ptr
;
192 /* Since this is only a debugging stub, we can cheat a little by using
193 * fprintf directly rather than going through the trace message code.
194 * This is helpful because message parm array can't handle longs.
196 fprintf(stderr
, "Freeing pool %d, total space = %ld\n",
197 pool_id
, mem
->total_space_allocated
);
199 for (lhdr_ptr
= mem
->large_list
[pool_id
]; lhdr_ptr
!= NULL
;
200 lhdr_ptr
= lhdr_ptr
->hdr
.next
) {
201 fprintf(stderr
, " Large chunk used %ld\n",
202 (long) lhdr_ptr
->hdr
.bytes_used
);
205 for (shdr_ptr
= mem
->small_list
[pool_id
]; shdr_ptr
!= NULL
;
206 shdr_ptr
= shdr_ptr
->hdr
.next
) {
207 fprintf(stderr
, " Small chunk used %ld free %ld\n",
208 (long) shdr_ptr
->hdr
.bytes_used
,
209 (long) shdr_ptr
->hdr
.bytes_left
);
213 #endif /* MEM_STATS */
217 out_of_memory (j_common_ptr cinfo
, int which
)
218 /* Report an out-of-memory error and stop execution */
219 /* If we compiled MEM_STATS support, report alloc requests before dying */
222 cinfo
->err
->trace_level
= 2; /* force self_destruct to report stats */
224 ERREXIT1(cinfo
, JERR_OUT_OF_MEMORY
, which
);
229 * Allocation of "small" objects.
231 * For these, we use pooled storage. When a new pool must be created,
232 * we try to get enough space for the current request plus a "slop" factor,
233 * where the slop will be the amount of leftover space in the new pool.
234 * The speed vs. space tradeoff is largely determined by the slop values.
235 * A different slop value is provided for each pool class (lifetime),
236 * and we also distinguish the first pool of a class from later ones.
237 * NOTE: the values given work fairly well on both 16- and 32-bit-int
238 * machines, but may be too small if longs are 64 bits or more.
241 static const size_t first_pool_slop
[JPOOL_NUMPOOLS
] =
243 1600, /* first PERMANENT pool */
244 16000 /* first IMAGE pool */
247 static const size_t extra_pool_slop
[JPOOL_NUMPOOLS
] =
249 0, /* additional PERMANENT pools */
250 5000 /* additional IMAGE pools */
253 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
257 alloc_small (j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
258 /* Allocate a "small" object */
260 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
261 small_pool_ptr hdr_ptr
, prev_hdr_ptr
;
263 size_t odd_bytes
, min_request
, slop
;
265 /* Check for unsatisfiable request (do now to ensure no overflow below) */
266 if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF(small_pool_hdr
)))
267 out_of_memory(cinfo
, 1); /* request exceeds malloc's ability */
269 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
270 odd_bytes
= sizeofobject
% SIZEOF(ALIGN_TYPE
);
272 sizeofobject
+= SIZEOF(ALIGN_TYPE
) - odd_bytes
;
274 /* See if space is available in any existing pool */
275 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
276 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
278 hdr_ptr
= mem
->small_list
[pool_id
];
279 while (hdr_ptr
!= NULL
) {
280 if (hdr_ptr
->hdr
.bytes_left
>= sizeofobject
)
281 break; /* found pool with enough space */
282 prev_hdr_ptr
= hdr_ptr
;
283 hdr_ptr
= hdr_ptr
->hdr
.next
;
286 /* Time to make a new pool? */
287 if (hdr_ptr
== NULL
) {
288 /* min_request is what we need now, slop is what will be leftover */
289 min_request
= sizeofobject
+ SIZEOF(small_pool_hdr
);
290 if (prev_hdr_ptr
== NULL
) /* first pool in class? */
291 slop
= first_pool_slop
[pool_id
];
293 slop
= extra_pool_slop
[pool_id
];
294 /* Don't ask for more than MAX_ALLOC_CHUNK */
295 if (slop
> (size_t) (MAX_ALLOC_CHUNK
-min_request
))
296 slop
= (size_t) (MAX_ALLOC_CHUNK
-min_request
);
297 /* Try to get space, if fail reduce slop and try again */
299 hdr_ptr
= (small_pool_ptr
) jpeg_get_small(cinfo
, min_request
+ slop
);
303 if (slop
< MIN_SLOP
) /* give up when it gets real small */
304 out_of_memory(cinfo
, 2); /* jpeg_get_small failed */
306 mem
->total_space_allocated
+= min_request
+ slop
;
307 /* Success, initialize the new pool header and add to end of list */
308 hdr_ptr
->hdr
.next
= NULL
;
309 hdr_ptr
->hdr
.bytes_used
= 0;
310 hdr_ptr
->hdr
.bytes_left
= sizeofobject
+ slop
;
311 if (prev_hdr_ptr
== NULL
) /* first pool in class? */
312 mem
->small_list
[pool_id
] = hdr_ptr
;
314 prev_hdr_ptr
->hdr
.next
= hdr_ptr
;
317 /* OK, allocate the object from the current pool */
318 data_ptr
= (char *) (hdr_ptr
+ 1); /* point to first data byte in pool */
319 data_ptr
+= hdr_ptr
->hdr
.bytes_used
; /* point to place for object */
320 hdr_ptr
->hdr
.bytes_used
+= sizeofobject
;
321 hdr_ptr
->hdr
.bytes_left
-= sizeofobject
;
323 return (void *) data_ptr
;
328 * Allocation of "large" objects.
330 * The external semantics of these are the same as "small" objects,
331 * except that FAR pointers are used on 80x86. However the pool
332 * management heuristics are quite different. We assume that each
333 * request is large enough that it may as well be passed directly to
334 * jpeg_get_large; the pool management just links everything together
335 * so that we can free it all on demand.
336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
337 * structures. The routines that create these structures (see below)
338 * deliberately bunch rows together to ensure a large request size.
341 METHODDEF(void FAR
*)
342 alloc_large (j_common_ptr cinfo
, int pool_id
, size_t sizeofobject
)
343 /* Allocate a "large" object */
345 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
346 large_pool_ptr hdr_ptr
;
349 /* Check for unsatisfiable request (do now to ensure no overflow below) */
350 if (sizeofobject
> (size_t) (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)))
351 out_of_memory(cinfo
, 3); /* request exceeds malloc's ability */
353 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
354 odd_bytes
= sizeofobject
% SIZEOF(ALIGN_TYPE
);
356 sizeofobject
+= SIZEOF(ALIGN_TYPE
) - odd_bytes
;
358 /* Always make a new pool */
359 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
360 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
362 hdr_ptr
= (large_pool_ptr
) jpeg_get_large(cinfo
, sizeofobject
+
363 SIZEOF(large_pool_hdr
));
365 out_of_memory(cinfo
, 4); /* jpeg_get_large failed */
366 mem
->total_space_allocated
+= sizeofobject
+ SIZEOF(large_pool_hdr
);
368 /* Success, initialize the new pool header and add to list */
369 hdr_ptr
->hdr
.next
= mem
->large_list
[pool_id
];
370 /* We maintain space counts in each pool header for statistical purposes,
371 * even though they are not needed for allocation.
373 hdr_ptr
->hdr
.bytes_used
= sizeofobject
;
374 hdr_ptr
->hdr
.bytes_left
= 0;
375 mem
->large_list
[pool_id
] = hdr_ptr
;
377 return (void FAR
*) (hdr_ptr
+ 1); /* point to first data byte in pool */
382 * Creation of 2-D sample arrays.
383 * The pointers are in near heap, the samples themselves in FAR heap.
385 * To minimize allocation overhead and to allow I/O of large contiguous
386 * blocks, we allocate the sample rows in groups of as many rows as possible
387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
388 * NB: the virtual array control routines, later in this file, know about
389 * this chunking of rows. The rowsperchunk value is left in the mem manager
390 * object so that it can be saved away if this sarray is the workspace for
394 METHODDEF(JSAMPARRAY
)
395 alloc_sarray (j_common_ptr cinfo
, int pool_id
,
396 JDIMENSION samplesperrow
, JDIMENSION numrows
)
397 /* Allocate a 2-D sample array */
399 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
402 JDIMENSION rowsperchunk
, currow
, i
;
405 /* Calculate max # of rows allowed in one allocation chunk */
406 ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)) /
407 ((long) samplesperrow
* SIZEOF(JSAMPLE
));
409 ERREXIT(cinfo
, JERR_WIDTH_OVERFLOW
);
410 if (ltemp
< (long) numrows
)
411 rowsperchunk
= (JDIMENSION
) ltemp
;
413 rowsperchunk
= numrows
;
414 mem
->last_rowsperchunk
= rowsperchunk
;
416 /* Get space for row pointers (small object) */
417 result
= (JSAMPARRAY
) alloc_small(cinfo
, pool_id
,
418 (size_t) (numrows
* SIZEOF(JSAMPROW
)));
420 /* Get the rows themselves (large objects) */
422 while (currow
< numrows
) {
423 rowsperchunk
= MIN(rowsperchunk
, numrows
- currow
);
424 workspace
= (JSAMPROW
) alloc_large(cinfo
, pool_id
,
425 (size_t) ((size_t) rowsperchunk
* (size_t) samplesperrow
427 for (i
= rowsperchunk
; i
> 0; i
--) {
428 result
[currow
++] = workspace
;
429 workspace
+= samplesperrow
;
438 * Creation of 2-D coefficient-block arrays.
439 * This is essentially the same as the code for sample arrays, above.
442 METHODDEF(JBLOCKARRAY
)
443 alloc_barray (j_common_ptr cinfo
, int pool_id
,
444 JDIMENSION blocksperrow
, JDIMENSION numrows
)
445 /* Allocate a 2-D coefficient-block array */
447 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
450 JDIMENSION rowsperchunk
, currow
, i
;
453 /* Calculate max # of rows allowed in one allocation chunk */
454 ltemp
= (MAX_ALLOC_CHUNK
-SIZEOF(large_pool_hdr
)) /
455 ((long) blocksperrow
* SIZEOF(JBLOCK
));
457 ERREXIT(cinfo
, JERR_WIDTH_OVERFLOW
);
458 if (ltemp
< (long) numrows
)
459 rowsperchunk
= (JDIMENSION
) ltemp
;
461 rowsperchunk
= numrows
;
462 mem
->last_rowsperchunk
= rowsperchunk
;
464 /* Get space for row pointers (small object) */
465 result
= (JBLOCKARRAY
) alloc_small(cinfo
, pool_id
,
466 (size_t) (numrows
* SIZEOF(JBLOCKROW
)));
468 /* Get the rows themselves (large objects) */
470 while (currow
< numrows
) {
471 rowsperchunk
= MIN(rowsperchunk
, numrows
- currow
);
472 workspace
= (JBLOCKROW
) alloc_large(cinfo
, pool_id
,
473 (size_t) ((size_t) rowsperchunk
* (size_t) blocksperrow
475 for (i
= rowsperchunk
; i
> 0; i
--) {
476 result
[currow
++] = workspace
;
477 workspace
+= blocksperrow
;
486 * About virtual array management:
488 * The above "normal" array routines are only used to allocate strip buffers
489 * (as wide as the image, but just a few rows high). Full-image-sized buffers
490 * are handled as "virtual" arrays. The array is still accessed a strip at a
491 * time, but the memory manager must save the whole array for repeated
492 * accesses. The intended implementation is that there is a strip buffer in
493 * memory (as high as is possible given the desired memory limit), plus a
494 * backing file that holds the rest of the array.
496 * The request_virt_array routines are told the total size of the image and
497 * the maximum number of rows that will be accessed at once. The in-memory
498 * buffer must be at least as large as the maxaccess value.
500 * The request routines create control blocks but not the in-memory buffers.
501 * That is postponed until realize_virt_arrays is called. At that time the
502 * total amount of space needed is known (approximately, anyway), so free
503 * memory can be divided up fairly.
505 * The access_virt_array routines are responsible for making a specific strip
506 * area accessible (after reading or writing the backing file, if necessary).
507 * Note that the access routines are told whether the caller intends to modify
508 * the accessed strip; during a read-only pass this saves having to rewrite
509 * data to disk. The access routines are also responsible for pre-zeroing
510 * any newly accessed rows, if pre-zeroing was requested.
512 * In current usage, the access requests are usually for nonoverlapping
513 * strips; that is, successive access start_row numbers differ by exactly
514 * num_rows = maxaccess. This means we can get good performance with simple
515 * buffer dump/reload logic, by making the in-memory buffer be a multiple
516 * of the access height; then there will never be accesses across bufferload
517 * boundaries. The code will still work with overlapping access requests,
518 * but it doesn't handle bufferload overlaps very efficiently.
522 METHODDEF(jvirt_sarray_ptr
)
523 request_virt_sarray (j_common_ptr cinfo
, int pool_id
, wxjpeg_boolean pre_zero
,
524 JDIMENSION samplesperrow
, JDIMENSION numrows
,
525 JDIMENSION maxaccess
)
526 /* Request a virtual 2-D sample array */
528 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
529 jvirt_sarray_ptr result
;
531 /* Only IMAGE-lifetime virtual arrays are currently supported */
532 if (pool_id
!= JPOOL_IMAGE
)
533 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
535 /* get control block */
536 result
= (jvirt_sarray_ptr
) alloc_small(cinfo
, pool_id
,
537 SIZEOF(struct jvirt_sarray_control
));
539 result
->mem_buffer
= NULL
; /* marks array not yet realized */
540 result
->rows_in_array
= numrows
;
541 result
->samplesperrow
= samplesperrow
;
542 result
->maxaccess
= maxaccess
;
543 result
->pre_zero
= pre_zero
;
544 result
->b_s_open
= FALSE
; /* no associated backing-store object */
545 result
->next
= mem
->virt_sarray_list
; /* add to list of virtual arrays */
546 mem
->virt_sarray_list
= result
;
552 METHODDEF(jvirt_barray_ptr
)
553 request_virt_barray (j_common_ptr cinfo
, int pool_id
, wxjpeg_boolean pre_zero
,
554 JDIMENSION blocksperrow
, JDIMENSION numrows
,
555 JDIMENSION maxaccess
)
556 /* Request a virtual 2-D coefficient-block array */
558 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
559 jvirt_barray_ptr result
;
561 /* Only IMAGE-lifetime virtual arrays are currently supported */
562 if (pool_id
!= JPOOL_IMAGE
)
563 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
565 /* get control block */
566 result
= (jvirt_barray_ptr
) alloc_small(cinfo
, pool_id
,
567 SIZEOF(struct jvirt_barray_control
));
569 result
->mem_buffer
= NULL
; /* marks array not yet realized */
570 result
->rows_in_array
= numrows
;
571 result
->blocksperrow
= blocksperrow
;
572 result
->maxaccess
= maxaccess
;
573 result
->pre_zero
= pre_zero
;
574 result
->b_s_open
= FALSE
; /* no associated backing-store object */
575 result
->next
= mem
->virt_barray_list
; /* add to list of virtual arrays */
576 mem
->virt_barray_list
= result
;
583 realize_virt_arrays (j_common_ptr cinfo
)
584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
586 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
587 long space_per_minheight
, maximum_space
, avail_mem
;
588 long minheights
, max_minheights
;
589 jvirt_sarray_ptr sptr
;
590 jvirt_barray_ptr bptr
;
592 /* Compute the minimum space needed (maxaccess rows in each buffer)
593 * and the maximum space needed (full image height in each buffer).
594 * These may be of use to the system-dependent jpeg_mem_available routine.
596 space_per_minheight
= 0;
598 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
599 if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
600 space_per_minheight
+= (long) sptr
->maxaccess
*
601 (long) sptr
->samplesperrow
* SIZEOF(JSAMPLE
);
602 maximum_space
+= (long) sptr
->rows_in_array
*
603 (long) sptr
->samplesperrow
* SIZEOF(JSAMPLE
);
606 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
607 if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
608 space_per_minheight
+= (long) bptr
->maxaccess
*
609 (long) bptr
->blocksperrow
* SIZEOF(JBLOCK
);
610 maximum_space
+= (long) bptr
->rows_in_array
*
611 (long) bptr
->blocksperrow
* SIZEOF(JBLOCK
);
615 if (space_per_minheight
<= 0)
616 return; /* no unrealized arrays, no work */
618 /* Determine amount of memory to actually use; this is system-dependent. */
619 avail_mem
= jpeg_mem_available(cinfo
, space_per_minheight
, maximum_space
,
620 mem
->total_space_allocated
);
622 /* If the maximum space needed is available, make all the buffers full
623 * height; otherwise parcel it out with the same number of minheights
626 if (avail_mem
>= maximum_space
)
627 max_minheights
= 1000000000L;
629 max_minheights
= avail_mem
/ space_per_minheight
;
630 /* If there doesn't seem to be enough space, try to get the minimum
631 * anyway. This allows a "stub" implementation of jpeg_mem_available().
633 if (max_minheights
<= 0)
637 /* Allocate the in-memory buffers and initialize backing store as needed. */
639 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
640 if (sptr
->mem_buffer
== NULL
) { /* if not realized yet */
641 minheights
= ((long) sptr
->rows_in_array
- 1L) / sptr
->maxaccess
+ 1L;
642 if (minheights
<= max_minheights
) {
643 /* This buffer fits in memory */
644 sptr
->rows_in_mem
= sptr
->rows_in_array
;
646 /* It doesn't fit in memory, create backing store. */
647 sptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* sptr
->maxaccess
);
648 jpeg_open_backing_store(cinfo
, & sptr
->b_s_info
,
649 (long) sptr
->rows_in_array
*
650 (long) sptr
->samplesperrow
*
651 (long) SIZEOF(JSAMPLE
));
652 sptr
->b_s_open
= TRUE
;
654 sptr
->mem_buffer
= alloc_sarray(cinfo
, JPOOL_IMAGE
,
655 sptr
->samplesperrow
, sptr
->rows_in_mem
);
656 sptr
->rowsperchunk
= mem
->last_rowsperchunk
;
657 sptr
->cur_start_row
= 0;
658 sptr
->first_undef_row
= 0;
663 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
664 if (bptr
->mem_buffer
== NULL
) { /* if not realized yet */
665 minheights
= ((long) bptr
->rows_in_array
- 1L) / bptr
->maxaccess
+ 1L;
666 if (minheights
<= max_minheights
) {
667 /* This buffer fits in memory */
668 bptr
->rows_in_mem
= bptr
->rows_in_array
;
670 /* It doesn't fit in memory, create backing store. */
671 bptr
->rows_in_mem
= (JDIMENSION
) (max_minheights
* bptr
->maxaccess
);
672 jpeg_open_backing_store(cinfo
, & bptr
->b_s_info
,
673 (long) bptr
->rows_in_array
*
674 (long) bptr
->blocksperrow
*
675 (long) SIZEOF(JBLOCK
));
676 bptr
->b_s_open
= TRUE
;
678 bptr
->mem_buffer
= alloc_barray(cinfo
, JPOOL_IMAGE
,
679 bptr
->blocksperrow
, bptr
->rows_in_mem
);
680 bptr
->rowsperchunk
= mem
->last_rowsperchunk
;
681 bptr
->cur_start_row
= 0;
682 bptr
->first_undef_row
= 0;
690 do_sarray_io (j_common_ptr cinfo
, jvirt_sarray_ptr ptr
, wxjpeg_boolean writing
)
691 /* Do backing store read or write of a virtual sample array */
693 long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
695 bytesperrow
= (long) ptr
->samplesperrow
* SIZEOF(JSAMPLE
);
696 file_offset
= ptr
->cur_start_row
* bytesperrow
;
697 /* Loop to read or write each allocation chunk in mem_buffer */
698 for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
699 /* One chunk, but check for short chunk at end of buffer */
700 rows
= MIN((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
701 /* Transfer no more than is currently defined */
702 thisrow
= (long) ptr
->cur_start_row
+ i
;
703 rows
= MIN(rows
, (long) ptr
->first_undef_row
- thisrow
);
704 /* Transfer no more than fits in file */
705 rows
= MIN(rows
, (long) ptr
->rows_in_array
- thisrow
);
706 if (rows
<= 0) /* this chunk might be past end of file! */
708 byte_count
= rows
* bytesperrow
;
710 (*ptr
->b_s_info
.write_backing_store
) (cinfo
, & ptr
->b_s_info
,
711 (void FAR
*) ptr
->mem_buffer
[i
],
712 file_offset
, byte_count
);
714 (*ptr
->b_s_info
.read_backing_store
) (cinfo
, & ptr
->b_s_info
,
715 (void FAR
*) ptr
->mem_buffer
[i
],
716 file_offset
, byte_count
);
717 file_offset
+= byte_count
;
723 do_barray_io (j_common_ptr cinfo
, jvirt_barray_ptr ptr
, wxjpeg_boolean writing
)
724 /* Do backing store read or write of a virtual coefficient-block array */
726 long bytesperrow
, file_offset
, byte_count
, rows
, thisrow
, i
;
728 bytesperrow
= (long) ptr
->blocksperrow
* SIZEOF(JBLOCK
);
729 file_offset
= ptr
->cur_start_row
* bytesperrow
;
730 /* Loop to read or write each allocation chunk in mem_buffer */
731 for (i
= 0; i
< (long) ptr
->rows_in_mem
; i
+= ptr
->rowsperchunk
) {
732 /* One chunk, but check for short chunk at end of buffer */
733 rows
= MIN((long) ptr
->rowsperchunk
, (long) ptr
->rows_in_mem
- i
);
734 /* Transfer no more than is currently defined */
735 thisrow
= (long) ptr
->cur_start_row
+ i
;
736 rows
= MIN(rows
, (long) ptr
->first_undef_row
- thisrow
);
737 /* Transfer no more than fits in file */
738 rows
= MIN(rows
, (long) ptr
->rows_in_array
- thisrow
);
739 if (rows
<= 0) /* this chunk might be past end of file! */
741 byte_count
= rows
* bytesperrow
;
743 (*ptr
->b_s_info
.write_backing_store
) (cinfo
, & ptr
->b_s_info
,
744 (void FAR
*) ptr
->mem_buffer
[i
],
745 file_offset
, byte_count
);
747 (*ptr
->b_s_info
.read_backing_store
) (cinfo
, & ptr
->b_s_info
,
748 (void FAR
*) ptr
->mem_buffer
[i
],
749 file_offset
, byte_count
);
750 file_offset
+= byte_count
;
755 METHODDEF(JSAMPARRAY
)
756 access_virt_sarray (j_common_ptr cinfo
, jvirt_sarray_ptr ptr
,
757 JDIMENSION start_row
, JDIMENSION num_rows
,
758 wxjpeg_boolean writable
)
759 /* Access the part of a virtual sample array starting at start_row */
760 /* and extending for num_rows rows. writable is true if */
761 /* caller intends to modify the accessed area. */
763 JDIMENSION end_row
= start_row
+ num_rows
;
764 JDIMENSION undef_row
;
766 /* debugging check */
767 if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
768 ptr
->mem_buffer
== NULL
)
769 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
771 /* Make the desired part of the virtual array accessible */
772 if (start_row
< ptr
->cur_start_row
||
773 end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
775 ERREXIT(cinfo
, JERR_VIRTUAL_BUG
);
776 /* Flush old buffer contents if necessary */
778 do_sarray_io(cinfo
, ptr
, TRUE
);
781 /* Decide what part of virtual array to access.
782 * Algorithm: if target address > current window, assume forward scan,
783 * load starting at target address. If target address < current window,
784 * assume backward scan, load so that target area is top of window.
785 * Note that when switching from forward write to forward read, will have
786 * start_row = 0, so the limiting case applies and we load from 0 anyway.
788 if (start_row
> ptr
->cur_start_row
) {
789 ptr
->cur_start_row
= start_row
;
791 /* use long arithmetic here to avoid overflow & unsigned problems */
794 ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
796 ltemp
= 0; /* don't fall off front end of file */
797 ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
799 /* Read in the selected part of the array.
800 * During the initial write pass, we will do no actual read
801 * because the selected part is all undefined.
803 do_sarray_io(cinfo
, ptr
, FALSE
);
805 /* Ensure the accessed part of the array is defined; prezero if needed.
806 * To improve locality of access, we only prezero the part of the array
807 * that the caller is about to access, not the entire in-memory array.
809 if (ptr
->first_undef_row
< end_row
) {
810 if (ptr
->first_undef_row
< start_row
) {
811 if (writable
) /* writer skipped over a section of array */
812 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
813 undef_row
= start_row
; /* but reader is allowed to read ahead */
815 undef_row
= ptr
->first_undef_row
;
818 ptr
->first_undef_row
= end_row
;
820 size_t bytesperrow
= (size_t) ptr
->samplesperrow
* SIZEOF(JSAMPLE
);
821 undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
822 end_row
-= ptr
->cur_start_row
;
823 while (undef_row
< end_row
) {
824 jzero_far((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
828 if (! writable
) /* reader looking at undefined data */
829 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
832 /* Flag the buffer dirty if caller will write in it */
835 /* Return address of proper part of the buffer */
836 return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
840 METHODDEF(JBLOCKARRAY
)
841 access_virt_barray (j_common_ptr cinfo
, jvirt_barray_ptr ptr
,
842 JDIMENSION start_row
, JDIMENSION num_rows
,
843 wxjpeg_boolean writable
)
844 /* Access the part of a virtual block array starting at start_row */
845 /* and extending for num_rows rows. writable is true if */
846 /* caller intends to modify the accessed area. */
848 JDIMENSION end_row
= start_row
+ num_rows
;
849 JDIMENSION undef_row
;
851 /* debugging check */
852 if (end_row
> ptr
->rows_in_array
|| num_rows
> ptr
->maxaccess
||
853 ptr
->mem_buffer
== NULL
)
854 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
856 /* Make the desired part of the virtual array accessible */
857 if (start_row
< ptr
->cur_start_row
||
858 end_row
> ptr
->cur_start_row
+ptr
->rows_in_mem
) {
860 ERREXIT(cinfo
, JERR_VIRTUAL_BUG
);
861 /* Flush old buffer contents if necessary */
863 do_barray_io(cinfo
, ptr
, TRUE
);
866 /* Decide what part of virtual array to access.
867 * Algorithm: if target address > current window, assume forward scan,
868 * load starting at target address. If target address < current window,
869 * assume backward scan, load so that target area is top of window.
870 * Note that when switching from forward write to forward read, will have
871 * start_row = 0, so the limiting case applies and we load from 0 anyway.
873 if (start_row
> ptr
->cur_start_row
) {
874 ptr
->cur_start_row
= start_row
;
876 /* use long arithmetic here to avoid overflow & unsigned problems */
879 ltemp
= (long) end_row
- (long) ptr
->rows_in_mem
;
881 ltemp
= 0; /* don't fall off front end of file */
882 ptr
->cur_start_row
= (JDIMENSION
) ltemp
;
884 /* Read in the selected part of the array.
885 * During the initial write pass, we will do no actual read
886 * because the selected part is all undefined.
888 do_barray_io(cinfo
, ptr
, FALSE
);
890 /* Ensure the accessed part of the array is defined; prezero if needed.
891 * To improve locality of access, we only prezero the part of the array
892 * that the caller is about to access, not the entire in-memory array.
894 if (ptr
->first_undef_row
< end_row
) {
895 if (ptr
->first_undef_row
< start_row
) {
896 if (writable
) /* writer skipped over a section of array */
897 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
898 undef_row
= start_row
; /* but reader is allowed to read ahead */
900 undef_row
= ptr
->first_undef_row
;
903 ptr
->first_undef_row
= end_row
;
905 size_t bytesperrow
= (size_t) ptr
->blocksperrow
* SIZEOF(JBLOCK
);
906 undef_row
-= ptr
->cur_start_row
; /* make indexes relative to buffer */
907 end_row
-= ptr
->cur_start_row
;
908 while (undef_row
< end_row
) {
909 jzero_far((void FAR
*) ptr
->mem_buffer
[undef_row
], bytesperrow
);
913 if (! writable
) /* reader looking at undefined data */
914 ERREXIT(cinfo
, JERR_BAD_VIRTUAL_ACCESS
);
917 /* Flag the buffer dirty if caller will write in it */
920 /* Return address of proper part of the buffer */
921 return ptr
->mem_buffer
+ (start_row
- ptr
->cur_start_row
);
926 * Release all objects belonging to a specified pool.
930 free_pool (j_common_ptr cinfo
, int pool_id
)
932 my_mem_ptr mem
= (my_mem_ptr
) cinfo
->mem
;
933 small_pool_ptr shdr_ptr
;
934 large_pool_ptr lhdr_ptr
;
937 if (pool_id
< 0 || pool_id
>= JPOOL_NUMPOOLS
)
938 ERREXIT1(cinfo
, JERR_BAD_POOL_ID
, pool_id
); /* safety check */
941 if (cinfo
->err
->trace_level
> 1)
942 print_mem_stats(cinfo
, pool_id
); /* print pool's memory usage statistics */
945 /* If freeing IMAGE pool, close any virtual arrays first */
946 if (pool_id
== JPOOL_IMAGE
) {
947 jvirt_sarray_ptr sptr
;
948 jvirt_barray_ptr bptr
;
950 for (sptr
= mem
->virt_sarray_list
; sptr
!= NULL
; sptr
= sptr
->next
) {
951 if (sptr
->b_s_open
) { /* there may be no backing store */
952 sptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
953 (*sptr
->b_s_info
.close_backing_store
) (cinfo
, & sptr
->b_s_info
);
956 mem
->virt_sarray_list
= NULL
;
957 for (bptr
= mem
->virt_barray_list
; bptr
!= NULL
; bptr
= bptr
->next
) {
958 if (bptr
->b_s_open
) { /* there may be no backing store */
959 bptr
->b_s_open
= FALSE
; /* prevent recursive close if error */
960 (*bptr
->b_s_info
.close_backing_store
) (cinfo
, & bptr
->b_s_info
);
963 mem
->virt_barray_list
= NULL
;
966 /* Release large objects */
967 lhdr_ptr
= mem
->large_list
[pool_id
];
968 mem
->large_list
[pool_id
] = NULL
;
970 while (lhdr_ptr
!= NULL
) {
971 large_pool_ptr next_lhdr_ptr
= lhdr_ptr
->hdr
.next
;
972 space_freed
= lhdr_ptr
->hdr
.bytes_used
+
973 lhdr_ptr
->hdr
.bytes_left
+
974 SIZEOF(large_pool_hdr
);
975 jpeg_free_large(cinfo
, (void FAR
*) lhdr_ptr
, space_freed
);
976 mem
->total_space_allocated
-= space_freed
;
977 lhdr_ptr
= next_lhdr_ptr
;
980 /* Release small objects */
981 shdr_ptr
= mem
->small_list
[pool_id
];
982 mem
->small_list
[pool_id
] = NULL
;
984 while (shdr_ptr
!= NULL
) {
985 small_pool_ptr next_shdr_ptr
= shdr_ptr
->hdr
.next
;
986 space_freed
= shdr_ptr
->hdr
.bytes_used
+
987 shdr_ptr
->hdr
.bytes_left
+
988 SIZEOF(small_pool_hdr
);
989 jpeg_free_small(cinfo
, (void *) shdr_ptr
, space_freed
);
990 mem
->total_space_allocated
-= space_freed
;
991 shdr_ptr
= next_shdr_ptr
;
997 * Close up shop entirely.
998 * Note that this cannot be called unless cinfo->mem is non-NULL.
1002 self_destruct (j_common_ptr cinfo
)
1006 /* Close all backing store, release all memory.
1007 * Releasing pools in reverse order might help avoid fragmentation
1008 * with some (brain-damaged) malloc libraries.
1010 for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
1011 free_pool(cinfo
, pool
);
1014 /* Release the memory manager control block too. */
1015 jpeg_free_small(cinfo
, (void *) cinfo
->mem
, SIZEOF(my_memory_mgr
));
1016 cinfo
->mem
= NULL
; /* ensures I will be called only once */
1018 jpeg_mem_term(cinfo
); /* system-dependent cleanup */
1023 * Memory manager initialization.
1024 * When this is called, only the error manager pointer is valid in cinfo!
1028 jinit_memory_mgr (j_common_ptr cinfo
)
1035 cinfo
->mem
= NULL
; /* for safety if init fails */
1037 /* Check for configuration errors.
1038 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1039 * doesn't reflect any real hardware alignment requirement.
1040 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1041 * in common if and only if X is a power of 2, ie has only one one-bit.
1042 * Some compilers may give an "unreachable code" warning here; ignore it.
1044 if ((SIZEOF(ALIGN_TYPE
) & (SIZEOF(ALIGN_TYPE
)-1)) != 0)
1045 ERREXIT(cinfo
, JERR_BAD_ALIGN_TYPE
);
1046 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1047 * a multiple of SIZEOF(ALIGN_TYPE).
1048 * Again, an "unreachable code" warning may be ignored here.
1049 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1051 test_mac
= (size_t) MAX_ALLOC_CHUNK
;
1052 if ((long) test_mac
!= MAX_ALLOC_CHUNK
||
1053 (MAX_ALLOC_CHUNK
% SIZEOF(ALIGN_TYPE
)) != 0)
1054 ERREXIT(cinfo
, JERR_BAD_ALLOC_CHUNK
);
1056 max_to_use
= jpeg_mem_init(cinfo
); /* system-dependent initialization */
1058 /* Attempt to allocate memory manager's control block */
1059 mem
= (my_mem_ptr
) jpeg_get_small(cinfo
, SIZEOF(my_memory_mgr
));
1062 jpeg_mem_term(cinfo
); /* system-dependent cleanup */
1063 ERREXIT1(cinfo
, JERR_OUT_OF_MEMORY
, 0);
1066 /* OK, fill in the method pointers */
1067 mem
->pub
.alloc_small
= alloc_small
;
1068 mem
->pub
.alloc_large
= alloc_large
;
1069 mem
->pub
.alloc_sarray
= alloc_sarray
;
1070 mem
->pub
.alloc_barray
= alloc_barray
;
1071 mem
->pub
.request_virt_sarray
= request_virt_sarray
;
1072 mem
->pub
.request_virt_barray
= request_virt_barray
;
1073 mem
->pub
.realize_virt_arrays
= realize_virt_arrays
;
1074 mem
->pub
.access_virt_sarray
= access_virt_sarray
;
1075 mem
->pub
.access_virt_barray
= access_virt_barray
;
1076 mem
->pub
.free_pool
= free_pool
;
1077 mem
->pub
.self_destruct
= self_destruct
;
1079 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1080 mem
->pub
.max_alloc_chunk
= MAX_ALLOC_CHUNK
;
1082 /* Initialize working state */
1083 mem
->pub
.max_memory_to_use
= max_to_use
;
1085 for (pool
= JPOOL_NUMPOOLS
-1; pool
>= JPOOL_PERMANENT
; pool
--) {
1086 mem
->small_list
[pool
] = NULL
;
1087 mem
->large_list
[pool
] = NULL
;
1089 mem
->virt_sarray_list
= NULL
;
1090 mem
->virt_barray_list
= NULL
;
1092 mem
->total_space_allocated
= SIZEOF(my_memory_mgr
);
1094 /* Declare ourselves open for business */
1095 cinfo
->mem
= & mem
->pub
;
1097 /* Check for an environment variable JPEGMEM; if found, override the
1098 * default max_memory setting from jpeg_mem_init. Note that the
1099 * surrounding application may again override this value.
1100 * If your system doesn't support getenv(), define NO_GETENV to disable
1106 if ((memenv
= getenv("JPEGMEM")) != NULL
) {
1109 if (sscanf(memenv
, "%ld%c", &max_to_use
, &ch
) > 0) {
1110 if (ch
== 'm' || ch
== 'M')
1111 max_to_use
*= 1000L;
1112 mem
->pub
.max_memory_to_use
= max_to_use
* 1000L;