4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains Huffman entropy encoding routines.
10 * Much of the complexity here has to do with supporting output suspension.
11 * If the data destination module demands suspension, we want to be able to
12 * back up to the start of the current MCU. To do this, we copy state
13 * variables into local working storage, and update them back to the
14 * permanent JPEG objects only upon successful completion of an MCU.
17 #define JPEG_INTERNALS
20 #include "jchuff.h" /* Declarations shared with jcphuff.c */
23 /* Expanded entropy encoder object for Huffman encoding.
25 * The savable_state subrecord contains fields that change within an MCU,
26 * but must not be updated permanently until we complete the MCU.
30 JPEG_INT32 put_buffer
; /* current bit-accumulation buffer */
31 int put_bits
; /* # of bits now in it */
32 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
35 /* This macro is to work around compilers with missing or broken
36 * structure assignment. You'll need to fix this code if you have
37 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 #ifndef NO_STRUCT_ASSIGN
41 #define ASSIGN_STATE(dest,src) ((dest) = (src))
43 #if MAX_COMPS_IN_SCAN == 4
44 #define ASSIGN_STATE(dest,src) \
45 ((dest).put_buffer = (src).put_buffer, \
46 (dest).put_bits = (src).put_bits, \
47 (dest).last_dc_val[0] = (src).last_dc_val[0], \
48 (dest).last_dc_val[1] = (src).last_dc_val[1], \
49 (dest).last_dc_val[2] = (src).last_dc_val[2], \
50 (dest).last_dc_val[3] = (src).last_dc_val[3])
56 struct jpeg_entropy_encoder pub
; /* public fields */
58 savable_state saved
; /* Bit buffer & DC state at start of MCU */
60 /* These fields are NOT loaded into local working state. */
61 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
62 int next_restart_num
; /* next restart number to write (0-7) */
64 /* Pointers to derived tables (these workspaces have image lifespan) */
65 c_derived_tbl
* dc_derived_tbls
[NUM_HUFF_TBLS
];
66 c_derived_tbl
* ac_derived_tbls
[NUM_HUFF_TBLS
];
68 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
69 long * dc_count_ptrs
[NUM_HUFF_TBLS
];
70 long * ac_count_ptrs
[NUM_HUFF_TBLS
];
72 } huff_entropy_encoder
;
74 typedef huff_entropy_encoder
* huff_entropy_ptr
;
76 /* Working state while writing an MCU.
77 * This struct contains all the fields that are needed by subroutines.
81 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
82 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
83 savable_state cur
; /* Current bit buffer & DC state */
84 j_compress_ptr cinfo
; /* dump_buffer needs access to this */
88 /* Forward declarations */
89 METHODDEF(wxjpeg_boolean
) encode_mcu_huff
JPP((j_compress_ptr cinfo
,
90 JBLOCKROW
*MCU_data
));
91 METHODDEF(void) finish_pass_huff
JPP((j_compress_ptr cinfo
));
92 #ifdef ENTROPY_OPT_SUPPORTED
93 METHODDEF(wxjpeg_boolean
) encode_mcu_gather
JPP((j_compress_ptr cinfo
,
94 JBLOCKROW
*MCU_data
));
95 METHODDEF(void) finish_pass_gather
JPP((j_compress_ptr cinfo
));
100 * Initialize for a Huffman-compressed scan.
101 * If gather_statistics is TRUE, we do not output anything during the scan,
102 * just count the Huffman symbols used and generate Huffman code tables.
106 start_pass_huff (j_compress_ptr cinfo
, wxjpeg_boolean gather_statistics
)
108 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
109 int ci
, dctbl
, actbl
;
110 jpeg_component_info
* compptr
;
112 if (gather_statistics
) {
113 #ifdef ENTROPY_OPT_SUPPORTED
114 entropy
->pub
.encode_mcu
= encode_mcu_gather
;
115 entropy
->pub
.finish_pass
= finish_pass_gather
;
117 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
120 entropy
->pub
.encode_mcu
= encode_mcu_huff
;
121 entropy
->pub
.finish_pass
= finish_pass_huff
;
124 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
125 compptr
= cinfo
->cur_comp_info
[ci
];
126 dctbl
= compptr
->dc_tbl_no
;
127 actbl
= compptr
->ac_tbl_no
;
128 if (gather_statistics
) {
129 #ifdef ENTROPY_OPT_SUPPORTED
130 /* Check for invalid table indexes */
131 /* (make_c_derived_tbl does this in the other path) */
132 if (dctbl
< 0 || dctbl
>= NUM_HUFF_TBLS
)
133 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, dctbl
);
134 if (actbl
< 0 || actbl
>= NUM_HUFF_TBLS
)
135 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, actbl
);
136 /* Allocate and zero the statistics tables */
137 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
138 if (entropy
->dc_count_ptrs
[dctbl
] == NULL
)
139 entropy
->dc_count_ptrs
[dctbl
] = (long *)
140 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
142 MEMZERO(entropy
->dc_count_ptrs
[dctbl
], 257 * SIZEOF(long));
143 if (entropy
->ac_count_ptrs
[actbl
] == NULL
)
144 entropy
->ac_count_ptrs
[actbl
] = (long *)
145 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
147 MEMZERO(entropy
->ac_count_ptrs
[actbl
], 257 * SIZEOF(long));
150 /* Compute derived values for Huffman tables */
151 /* We may do this more than once for a table, but it's not expensive */
152 jpeg_make_c_derived_tbl(cinfo
, TRUE
, dctbl
,
153 & entropy
->dc_derived_tbls
[dctbl
]);
154 jpeg_make_c_derived_tbl(cinfo
, FALSE
, actbl
,
155 & entropy
->ac_derived_tbls
[actbl
]);
157 /* Initialize DC predictions to 0 */
158 entropy
->saved
.last_dc_val
[ci
] = 0;
161 /* Initialize bit buffer to empty */
162 entropy
->saved
.put_buffer
= 0;
163 entropy
->saved
.put_bits
= 0;
165 /* Initialize restart stuff */
166 entropy
->restarts_to_go
= cinfo
->restart_interval
;
167 entropy
->next_restart_num
= 0;
172 * Compute the derived values for a Huffman table.
173 * This routine also performs some validation checks on the table.
175 * Note this is also used by jcphuff.c.
179 jpeg_make_c_derived_tbl (j_compress_ptr cinfo
, wxjpeg_boolean isDC
, int tblno
,
180 c_derived_tbl
** pdtbl
)
184 int p
, i
, l
, lastp
, si
, maxsymbol
;
186 unsigned int huffcode
[257];
189 /* Note that huffsize[] and huffcode[] are filled in code-length order,
190 * paralleling the order of the symbols themselves in htbl->huffval[].
193 /* Find the input Huffman table */
194 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
195 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
197 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
199 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
201 /* Allocate a workspace if we haven't already done so. */
203 *pdtbl
= (c_derived_tbl
*)
204 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
205 SIZEOF(c_derived_tbl
));
208 /* Figure C.1: make table of Huffman code length for each symbol */
211 for (l
= 1; l
<= 16; l
++) {
212 i
= (int) htbl
->bits
[l
];
213 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
214 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
216 huffsize
[p
++] = (char) l
;
221 /* Figure C.2: generate the codes themselves */
222 /* We also validate that the counts represent a legal Huffman code tree. */
227 while (huffsize
[p
]) {
228 while (((int) huffsize
[p
]) == si
) {
229 huffcode
[p
++] = code
;
232 /* code is now 1 more than the last code used for codelength si; but
233 * it must still fit in si bits, since no code is allowed to be all ones.
235 if (((JPEG_INT32
) code
) >= (((JPEG_INT32
) 1) << si
))
236 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
241 /* Figure C.3: generate encoding tables */
242 /* These are code and size indexed by symbol value */
244 /* Set all codeless symbols to have code length 0;
245 * this lets us detect duplicate VAL entries here, and later
246 * allows emit_bits to detect any attempt to emit such symbols.
248 MEMZERO(dtbl
->ehufsi
, SIZEOF(dtbl
->ehufsi
));
250 /* This is also a convenient place to check for out-of-range
251 * and duplicated VAL entries. We allow 0..255 for AC symbols
252 * but only 0..15 for DC. (We could constrain them further
253 * based on data depth and mode, but this seems enough.)
255 maxsymbol
= isDC
? 15 : 255;
257 for (p
= 0; p
< lastp
; p
++) {
258 i
= htbl
->huffval
[p
];
259 if (i
< 0 || i
> maxsymbol
|| dtbl
->ehufsi
[i
])
260 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
261 dtbl
->ehufco
[i
] = huffcode
[p
];
262 dtbl
->ehufsi
[i
] = huffsize
[p
];
267 /* Outputting bytes to the file */
269 /* Emit a byte, taking 'action' if must suspend. */
270 #define emit_byte(state,val,action) \
271 { *(state)->next_output_byte++ = (JOCTET) (val); \
272 if (--(state)->free_in_buffer == 0) \
273 if (! dump_buffer(state)) \
277 LOCAL(wxjpeg_boolean
)
278 dump_buffer (working_state
* state
)
279 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
281 struct jpeg_destination_mgr
* dest
= state
->cinfo
->dest
;
283 if (! (*dest
->empty_output_buffer
) (state
->cinfo
))
285 /* After a successful buffer dump, must reset buffer pointers */
286 state
->next_output_byte
= dest
->next_output_byte
;
287 state
->free_in_buffer
= dest
->free_in_buffer
;
292 /* Outputting bits to the file */
294 /* Only the right 24 bits of put_buffer are used; the valid bits are
295 * left-justified in this part. At most 16 bits can be passed to emit_bits
296 * in one call, and we never retain more than 7 bits in put_buffer
297 * between calls, so 24 bits are sufficient.
301 LOCAL(wxjpeg_boolean
)
302 emit_bits (working_state
* state
, unsigned int code
, int size
)
303 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
305 /* This routine is heavily used, so it's worth coding tightly. */
306 register JPEG_INT32 put_buffer
= (JPEG_INT32
) code
;
307 register int put_bits
= state
->cur
.put_bits
;
309 /* if size is 0, caller used an invalid Huffman table entry */
311 ERREXIT(state
->cinfo
, JERR_HUFF_MISSING_CODE
);
313 put_buffer
&= (((JPEG_INT32
) 1)<<size
) - 1; /* mask off any extra bits in code */
315 put_bits
+= size
; /* new number of bits in buffer */
317 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
319 put_buffer
|= state
->cur
.put_buffer
; /* and merge with old buffer contents */
321 while (put_bits
>= 8) {
322 int c
= (int) ((put_buffer
>> 16) & 0xFF);
324 emit_byte(state
, c
, return FALSE
);
325 if (c
== 0xFF) { /* need to stuff a zero byte? */
326 emit_byte(state
, 0, return FALSE
);
332 state
->cur
.put_buffer
= put_buffer
; /* update state variables */
333 state
->cur
.put_bits
= put_bits
;
339 LOCAL(wxjpeg_boolean
)
340 flush_bits (working_state
* state
)
342 if (! emit_bits(state
, 0x7F, 7)) /* fill any partial byte with ones */
344 state
->cur
.put_buffer
= 0; /* and reset bit-buffer to empty */
345 state
->cur
.put_bits
= 0;
350 /* Encode a single block's worth of coefficients */
352 LOCAL(wxjpeg_boolean
)
353 encode_one_block (working_state
* state
, JCOEFPTR block
, int last_dc_val
,
354 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
356 register int temp
, temp2
;
358 register int k
, r
, i
;
360 /* Encode the DC coefficient difference per section F.1.2.1 */
362 temp
= temp2
= block
[0] - last_dc_val
;
365 temp
= -temp
; /* temp is abs value of input */
366 /* For a negative input, want temp2 = bitwise complement of abs(input) */
367 /* This code assumes we are on a two's complement machine */
371 /* Find the number of bits needed for the magnitude of the coefficient */
377 /* Check for out-of-range coefficient values.
378 * Since we're encoding a difference, the range limit is twice as much.
380 if (nbits
> MAX_COEF_BITS
+1)
381 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
383 /* Emit the Huffman-coded symbol for the number of bits */
384 if (! emit_bits(state
, dctbl
->ehufco
[nbits
], dctbl
->ehufsi
[nbits
]))
387 /* Emit that number of bits of the value, if positive, */
388 /* or the complement of its magnitude, if negative. */
389 if (nbits
) /* emit_bits rejects calls with size 0 */
390 if (! emit_bits(state
, (unsigned int) temp2
, nbits
))
393 /* Encode the AC coefficients per section F.1.2.2 */
395 r
= 0; /* r = run length of zeros */
397 for (k
= 1; k
< DCTSIZE2
; k
++) {
398 if ((temp
= block
[jpeg_natural_order
[k
]]) == 0) {
401 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
403 if (! emit_bits(state
, actbl
->ehufco
[0xF0], actbl
->ehufsi
[0xF0]))
410 temp
= -temp
; /* temp is abs value of input */
411 /* This code assumes we are on a two's complement machine */
415 /* Find the number of bits needed for the magnitude of the coefficient */
416 nbits
= 1; /* there must be at least one 1 bit */
419 /* Check for out-of-range coefficient values */
420 if (nbits
> MAX_COEF_BITS
)
421 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
423 /* Emit Huffman symbol for run length / number of bits */
424 i
= (r
<< 4) + nbits
;
425 if (! emit_bits(state
, actbl
->ehufco
[i
], actbl
->ehufsi
[i
]))
428 /* Emit that number of bits of the value, if positive, */
429 /* or the complement of its magnitude, if negative. */
430 if (! emit_bits(state
, (unsigned int) temp2
, nbits
))
437 /* If the last coef(s) were zero, emit an end-of-block code */
439 if (! emit_bits(state
, actbl
->ehufco
[0], actbl
->ehufsi
[0]))
447 * Emit a restart marker & resynchronize predictions.
450 LOCAL(wxjpeg_boolean
)
451 emit_restart (working_state
* state
, int restart_num
)
455 if (! flush_bits(state
))
458 emit_byte(state
, 0xFF, return FALSE
);
459 emit_byte(state
, JPEG_RST0
+ restart_num
, return FALSE
);
461 /* Re-initialize DC predictions to 0 */
462 for (ci
= 0; ci
< state
->cinfo
->comps_in_scan
; ci
++)
463 state
->cur
.last_dc_val
[ci
] = 0;
465 /* The restart counter is not updated until we successfully write the MCU. */
472 * Encode and output one MCU's worth of Huffman-compressed coefficients.
475 METHODDEF(wxjpeg_boolean
)
476 encode_mcu_huff (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
478 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
481 jpeg_component_info
* compptr
;
483 /* Load up working state */
484 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
485 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
486 ASSIGN_STATE(state
.cur
, entropy
->saved
);
489 /* Emit restart marker if needed */
490 if (cinfo
->restart_interval
) {
491 if (entropy
->restarts_to_go
== 0)
492 if (! emit_restart(&state
, entropy
->next_restart_num
))
496 /* Encode the MCU data blocks */
497 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
498 ci
= cinfo
->MCU_membership
[blkn
];
499 compptr
= cinfo
->cur_comp_info
[ci
];
500 if (! encode_one_block(&state
,
501 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
502 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
503 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
505 /* Update last_dc_val */
506 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
509 /* Completed MCU, so update state */
510 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
511 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
512 ASSIGN_STATE(entropy
->saved
, state
.cur
);
514 /* Update restart-interval state too */
515 if (cinfo
->restart_interval
) {
516 if (entropy
->restarts_to_go
== 0) {
517 entropy
->restarts_to_go
= cinfo
->restart_interval
;
518 entropy
->next_restart_num
++;
519 entropy
->next_restart_num
&= 7;
521 entropy
->restarts_to_go
--;
529 * Finish up at the end of a Huffman-compressed scan.
533 finish_pass_huff (j_compress_ptr cinfo
)
535 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
538 /* Load up working state ... flush_bits needs it */
539 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
540 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
541 ASSIGN_STATE(state
.cur
, entropy
->saved
);
544 /* Flush out the last data */
545 if (! flush_bits(&state
))
546 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
549 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
550 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
551 ASSIGN_STATE(entropy
->saved
, state
.cur
);
556 * Huffman coding optimization.
558 * We first scan the supplied data and count the number of uses of each symbol
559 * that is to be Huffman-coded. (This process MUST agree with the code above.)
560 * Then we build a Huffman coding tree for the observed counts.
561 * Symbols which are not needed at all for the particular image are not
562 * assigned any code, which saves space in the DHT marker as well as in
563 * the compressed data.
566 #ifdef ENTROPY_OPT_SUPPORTED
569 /* Process a single block's worth of coefficients */
572 htest_one_block (j_compress_ptr cinfo
, JCOEFPTR block
, int last_dc_val
,
573 long dc_counts
[], long ac_counts
[])
579 /* Encode the DC coefficient difference per section F.1.2.1 */
581 temp
= block
[0] - last_dc_val
;
585 /* Find the number of bits needed for the magnitude of the coefficient */
591 /* Check for out-of-range coefficient values.
592 * Since we're encoding a difference, the range limit is twice as much.
594 if (nbits
> MAX_COEF_BITS
+1)
595 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
597 /* Count the Huffman symbol for the number of bits */
600 /* Encode the AC coefficients per section F.1.2.2 */
602 r
= 0; /* r = run length of zeros */
604 for (k
= 1; k
< DCTSIZE2
; k
++) {
605 if ((temp
= block
[jpeg_natural_order
[k
]]) == 0) {
608 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
614 /* Find the number of bits needed for the magnitude of the coefficient */
618 /* Find the number of bits needed for the magnitude of the coefficient */
619 nbits
= 1; /* there must be at least one 1 bit */
622 /* Check for out-of-range coefficient values */
623 if (nbits
> MAX_COEF_BITS
)
624 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
626 /* Count Huffman symbol for run length / number of bits */
627 ac_counts
[(r
<< 4) + nbits
]++;
633 /* If the last coef(s) were zero, emit an end-of-block code */
640 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
641 * No data is actually output, so no suspension return is possible.
644 METHODDEF(wxjpeg_boolean
)
645 encode_mcu_gather (j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
647 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
649 jpeg_component_info
* compptr
;
651 /* Take care of restart intervals if needed */
652 if (cinfo
->restart_interval
) {
653 if (entropy
->restarts_to_go
== 0) {
654 /* Re-initialize DC predictions to 0 */
655 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
656 entropy
->saved
.last_dc_val
[ci
] = 0;
657 /* Update restart state */
658 entropy
->restarts_to_go
= cinfo
->restart_interval
;
660 entropy
->restarts_to_go
--;
663 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
664 ci
= cinfo
->MCU_membership
[blkn
];
665 compptr
= cinfo
->cur_comp_info
[ci
];
666 htest_one_block(cinfo
, MCU_data
[blkn
][0], entropy
->saved
.last_dc_val
[ci
],
667 entropy
->dc_count_ptrs
[compptr
->dc_tbl_no
],
668 entropy
->ac_count_ptrs
[compptr
->ac_tbl_no
]);
669 entropy
->saved
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
677 * Generate the best Huffman code table for the given counts, fill htbl.
678 * Note this is also used by jcphuff.c.
680 * The JPEG standard requires that no symbol be assigned a codeword of all
681 * one bits (so that padding bits added at the end of a compressed segment
682 * can't look like a valid code). Because of the canonical ordering of
683 * codewords, this just means that there must be an unused slot in the
684 * longest codeword length category. Section K.2 of the JPEG spec suggests
685 * reserving such a slot by pretending that symbol 256 is a valid symbol
686 * with count 1. In theory that's not optimal; giving it count zero but
687 * including it in the symbol set anyway should give a better Huffman code.
688 * But the theoretically better code actually seems to come out worse in
689 * practice, because it produces more all-ones bytes (which incur stuffed
690 * zero bytes in the final file). In any case the difference is tiny.
692 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
693 * If some symbols have a very small but nonzero probability, the Huffman tree
694 * must be adjusted to meet the code length restriction. We currently use
695 * the adjustment method suggested in JPEG section K.2. This method is *not*
696 * optimal; it may not choose the best possible limited-length code. But
697 * typically only very-low-frequency symbols will be given less-than-optimal
698 * lengths, so the code is almost optimal. Experimental comparisons against
699 * an optimal limited-length-code algorithm indicate that the difference is
700 * microscopic --- usually less than a hundredth of a percent of total size.
701 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
705 jpeg_gen_optimal_table (j_compress_ptr cinfo
, JHUFF_TBL
* htbl
, long freq
[])
707 #define MAX_CLEN 32 /* assumed maximum initial code length */
708 UINT8 bits
[MAX_CLEN
+1]; /* bits[k] = # of symbols with code length k */
709 int codesize
[257]; /* codesize[k] = code length of symbol k */
710 int others
[257]; /* next symbol in current branch of tree */
715 /* This algorithm is explained in section K.2 of the JPEG standard */
717 MEMZERO(bits
, SIZEOF(bits
));
718 MEMZERO(codesize
, SIZEOF(codesize
));
719 for (i
= 0; i
< 257; i
++)
720 others
[i
] = -1; /* init links to empty */
722 freq
[256] = 1; /* make sure 256 has a nonzero count */
723 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
724 * that no real symbol is given code-value of all ones, because 256
725 * will be placed last in the largest codeword category.
728 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
731 /* Find the smallest nonzero frequency, set c1 = its symbol */
732 /* In case of ties, take the larger symbol number */
735 for (i
= 0; i
<= 256; i
++) {
736 if (freq
[i
] && freq
[i
] <= v
) {
742 /* Find the next smallest nonzero frequency, set c2 = its symbol */
743 /* In case of ties, take the larger symbol number */
746 for (i
= 0; i
<= 256; i
++) {
747 if (freq
[i
] && freq
[i
] <= v
&& i
!= c1
) {
753 /* Done if we've merged everything into one frequency */
757 /* Else merge the two counts/trees */
758 freq
[c1
] += freq
[c2
];
761 /* Increment the codesize of everything in c1's tree branch */
763 while (others
[c1
] >= 0) {
768 others
[c1
] = c2
; /* chain c2 onto c1's tree branch */
770 /* Increment the codesize of everything in c2's tree branch */
772 while (others
[c2
] >= 0) {
778 /* Now count the number of symbols of each code length */
779 for (i
= 0; i
<= 256; i
++) {
781 /* The JPEG standard seems to think that this can't happen, */
782 /* but I'm paranoid... */
783 if (codesize
[i
] > MAX_CLEN
)
784 ERREXIT(cinfo
, JERR_HUFF_CLEN_OVERFLOW
);
790 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
791 * Huffman procedure assigned any such lengths, we must adjust the coding.
792 * Here is what the JPEG spec says about how this next bit works:
793 * Since symbols are paired for the longest Huffman code, the symbols are
794 * removed from this length category two at a time. The prefix for the pair
795 * (which is one bit shorter) is allocated to one of the pair; then,
796 * skipping the BITS entry for that prefix length, a code word from the next
797 * shortest nonzero BITS entry is converted into a prefix for two code words
801 for (i
= MAX_CLEN
; i
> 16; i
--) {
802 while (bits
[i
] > 0) {
803 j
= i
- 2; /* find length of new prefix to be used */
807 bits
[i
] -= 2; /* remove two symbols */
808 bits
[i
-1]++; /* one goes in this length */
809 bits
[j
+1] += 2; /* two new symbols in this length */
810 bits
[j
]--; /* symbol of this length is now a prefix */
814 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
815 while (bits
[i
] == 0) /* find largest codelength still in use */
819 /* Return final symbol counts (only for lengths 0..16) */
820 MEMCOPY(htbl
->bits
, bits
, SIZEOF(htbl
->bits
));
822 /* Return a list of the symbols sorted by code length */
823 /* It's not real clear to me why we don't need to consider the codelength
824 * changes made above, but the JPEG spec seems to think this works.
827 for (i
= 1; i
<= MAX_CLEN
; i
++) {
828 for (j
= 0; j
<= 255; j
++) {
829 if (codesize
[j
] == i
) {
830 htbl
->huffval
[p
] = (UINT8
) j
;
836 /* Set sent_table FALSE so updated table will be written to JPEG file. */
837 htbl
->sent_table
= FALSE
;
842 * Finish up a statistics-gathering pass and create the new Huffman tables.
846 finish_pass_gather (j_compress_ptr cinfo
)
848 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
849 int ci
, dctbl
, actbl
;
850 jpeg_component_info
* compptr
;
852 wxjpeg_boolean did_dc
[NUM_HUFF_TBLS
];
853 wxjpeg_boolean did_ac
[NUM_HUFF_TBLS
];
855 /* It's important not to apply jpeg_gen_optimal_table more than once
856 * per table, because it clobbers the input frequency counts!
858 MEMZERO(did_dc
, SIZEOF(did_dc
));
859 MEMZERO(did_ac
, SIZEOF(did_ac
));
861 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
862 compptr
= cinfo
->cur_comp_info
[ci
];
863 dctbl
= compptr
->dc_tbl_no
;
864 actbl
= compptr
->ac_tbl_no
;
865 if (! did_dc
[dctbl
]) {
866 htblptr
= & cinfo
->dc_huff_tbl_ptrs
[dctbl
];
867 if (*htblptr
== NULL
)
868 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
869 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->dc_count_ptrs
[dctbl
]);
870 did_dc
[dctbl
] = TRUE
;
872 if (! did_ac
[actbl
]) {
873 htblptr
= & cinfo
->ac_huff_tbl_ptrs
[actbl
];
874 if (*htblptr
== NULL
)
875 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
876 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->ac_count_ptrs
[actbl
]);
877 did_ac
[actbl
] = TRUE
;
883 #endif /* ENTROPY_OPT_SUPPORTED */
887 * Module initialization routine for Huffman entropy encoding.
891 jinit_huff_encoder (j_compress_ptr cinfo
)
893 huff_entropy_ptr entropy
;
896 entropy
= (huff_entropy_ptr
)
897 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
898 SIZEOF(huff_entropy_encoder
));
899 cinfo
->entropy
= (struct jpeg_entropy_encoder
*) entropy
;
900 entropy
->pub
.start_pass
= start_pass_huff
;
902 /* Mark tables unallocated */
903 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
904 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;
905 #ifdef ENTROPY_OPT_SUPPORTED
906 entropy
->dc_count_ptrs
[i
] = entropy
->ac_count_ptrs
[i
] = NULL
;