1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %% Author: wxWidgets Team
8 %% Copyright: (c) wxWidgets Team
9 %% License: wxWindows license
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 \section{\class{wxArray
}}\label{wxarray
}
14 This section describes the so called
{\it dynamic arrays
}. This is a C
15 array-like data structure i.e. the member access time is constant (and not
16 linear according to the number of container elements as for linked lists). However, these
17 arrays are dynamic in the sense that they will automatically allocate more
18 memory if there is not enough of it for adding a new element. They also perform
19 range checking on the index values but in debug mode only, so please be sure to
20 compile your application in debug mode to use it (see
\helpref{debugging overview
}{debuggingoverview
} for
21 details). So, unlike the arrays in some other
22 languages, attempt to access an element beyond the arrays bound doesn't
23 automatically expand the array but provokes an assertion failure instead in
24 debug build and does nothing (except possibly crashing your program) in the
27 The array classes were designed to be reasonably efficient, both in terms of
28 run-time speed and memory consumption and the executable size. The speed of
29 array item access is, of course, constant (independent of the number of elements)
30 making them much more efficient than linked lists (
\helpref{wxList
}{wxlist
}).
31 Adding items to the arrays is also implemented in more or less constant time -
32 but the price is preallocating the memory in advance. In the
\helpref{memory management
}{wxarraymemorymanagement
} section
33 you may find some useful hints about optimizing wxArray memory usage. As for executable size, all
34 wxArray functions are inline, so they do not take
{\it any space at all
}.
36 wxWidgets has three different kinds of array. All of them derive from
37 wxBaseArray class which works with untyped data and can not be used directly.
38 The standard macros WX
\_DEFINE\_ARRAY(), WX
\_DEFINE\_SORTED\_ARRAY() and
39 WX
\_DEFINE\_OBJARRAY() are used to define a new class deriving from it. The
40 classes declared will be called in this documentation wxArray, wxSortedArray and
41 wxObjArray but you should keep in mind that no classes with such names actually
42 exist, each time you use one of WX
\_DEFINE\_XXXARRAY macro you define a class
43 with a new name. In fact, these names are "template" names and each usage of one
44 of the macros mentioned above creates a template specialization for the given
47 wxArray is suitable for storing integer types and pointers which it does not
48 treat as objects in any way, i.e. the element pointed to by the pointer is not
49 deleted when the element is removed from the array. It should be noted that
50 all of wxArray's functions are inline, so it costs strictly nothing to define as
51 many array types as you want (either in terms of the executable size or the
52 speed) as long as at least one of them is defined and this is always the case
53 because wxArrays are used by wxWidgets internally. This class has one serious
54 limitation: it can only be used for storing integral types (bool, char, short,
55 int, long and their unsigned variants) or pointers (of any kind). An attempt
56 to use with objects of sizeof() greater than sizeof(long) will provoke a
57 runtime assertion failure, however declaring a wxArray of floats will not (on
58 the machines where sizeof(float) <= sizeof(long)), yet it will
{\bf not
} work,
59 please use wxObjArray for storing floats and doubles (NB: a more efficient
60 wxArrayDouble class is scheduled for the next release of wxWidgets).
62 wxSortedArray is a wxArray variant which should be used when searching in the
63 array is a frequently used operation. It requires you to define an additional
64 function for comparing two elements of the array element type and always stores
65 its items in the sorted order (according to this function). Thus, it is
66 \helpref{Index()
}{wxarrayindex
} function execution time is $O(log(N))$ instead of
67 $O(N)$ for the usual arrays but the
\helpref{Add()
}{wxarrayadd
} method is
68 slower: it is $O(log(N))$ instead of constant time (neglecting time spent in
69 memory allocation routine). However, in a usual situation elements are added to
70 an array much less often than searched inside it, so wxSortedArray may lead to
71 huge performance improvements compared to wxArray. Finally, it should be
72 noticed that, as wxArray, wxSortedArray can be only used for storing integral
75 wxObjArray class treats its elements like "objects". It may delete them when
76 they are removed from the array (invoking the correct destructor) and copies
77 them using the objects copy constructor. In order to implement this behaviour
78 the definition of the wxObjArray arrays is split in two parts: first, you should
79 declare the new wxObjArray class using WX
\_DECLARE\_OBJARRAY() macro and then
80 you must include the file defining the implementation of template type:
81 <wx/arrimpl.cpp> and define the array class with WX
\_DEFINE\_OBJARRAY() macro
82 from a point where the full (as opposed to `forward') declaration of the array
83 elements class is in scope. As it probably sounds very complicated here is an
87 #include <wx/dynarray.h>
89 // we must forward declare the array because it is used inside the class
94 // this defines two new types: ArrayOfDirectories and ArrayOfFiles which can be
95 // now used as shown below
96 WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
97 WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);
102 ArrayOfDirectories m_subdirectories; // all subdirectories
103 ArrayOfFiles m_files; // all files in this directory
108 // now that we have MyDirectory declaration in scope we may finish the
109 // definition of ArrayOfDirectories -- note that this expands into some C++
110 // code and so should only be compiled once (i.e., don't put this in the
111 // header, but into a source file or you will get linking errors)
112 #include <wx/arrimpl.cpp> // this is a magic incantation which must be done!
113 WX_DEFINE_OBJARRAY(ArrayOfDirectories);
118 It is not as elegant as writing
121 typedef std::vector<MyDirectory> ArrayOfDirectories;
124 but is not that complicated and allows the code to be compiled with any, however
125 dumb, C++ compiler in the world.
127 Things are much simpler for wxArray and wxSortedArray however: it is enough
131 WX_DEFINE_ARRAY_INT(int, ArrayOfInts);
132 WX_DEFINE_SORTED_ARRAY_INT(int, ArrayOfSortedInts);
135 i.e. there is only one
{\tt DEFINE
} macro and no need for separate
139 \wxheading{See also:
}
141 \helpref{Container classes overview
}{wxcontaineroverview
},
\helpref{wxList
}{wxlist
}
143 \wxheading{Include files
}
145 <wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp>
148 \latexignore{\rtfignore{\wxheading{Function groups
}}}
150 \membersection{Macros for template array definition
}\label{arraymacros
}
152 To use an array you must first define the array class. This is done with the
153 help of the macros in this section. The class of array elements must be (at
154 least) forward declared for WX
\_DEFINE\_ARRAY, WX
\_DEFINE\_SORTED\_ARRAY and
155 WX
\_DECLARE\_OBJARRAY macros and must be fully declared before you use
156 WX
\_DEFINE\_OBJARRAY macro.
158 \helpref{WX
\_DEFINE\_ARRAY}{wxdefinearray
}\\
159 \helpref{WX
\_DEFINE\_EXPORTED\_ARRAY}{wxdefinearray
}\\
160 \helpref{WX
\_DEFINE\_USER\_EXPORTED\_ARRAY}{wxdefinearray
}\\
161 \helpref{WX
\_DEFINE\_SORTED\_ARRAY}{wxdefinesortedarray
}\\
162 \helpref{WX
\_DEFINE\_SORTED\_EXPORTED\_ARRAY}{wxdefinesortedarray
}\\
163 \helpref{WX
\_DEFINE\_SORTED\_USER\_EXPORTED\_ARRAY}{wxdefinesortedarray
}\\
164 \helpref{WX
\_DECLARE\_EXPORTED\_OBJARRAY}{wxdeclareobjarray
}\\
165 \helpref{WX
\_DECLARE\_USER\_EXPORTED\_OBJARRAY}{wxdeclareobjarray
}\\
166 \helpref{WX
\_DEFINE\_OBJARRAY}{wxdefineobjarray
}\\
167 \helpref{WX
\_DEFINE\_EXPORTED\_OBJARRAY}{wxdefineobjarray
}\\
168 \helpref{WX
\_DEFINE\_USER\_EXPORTED\_OBJARRAY}{wxdefineobjarray
}
170 To slightly complicate the matters even further, the operator $->$ defined by
171 default for the array iterators by these macros only makes sense if the array
172 element type is not a pointer itself and, although it still works, this
173 provokes warnings from some compilers and to avoid them you should use the
174 {\tt \_PTR} versions of the macros above. For example, to define an array of
175 pointers to
{\tt double
} you should use:
178 WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointers);
181 Note that the above macros are generally only useful for
182 wxObject types. There are separate macros for declaring an array of a simple type,
185 The following simple types are supported:\\
191 To create an array of a simple type, simply append the type you want in CAPS to
192 the array definition.
194 For example, for an integer array, you'd use one of the following variants:
196 \helpref{WX
\_DEFINE\_ARRAY\_INT}{wxdefinearray
}\\
197 \helpref{WX
\_DEFINE\_EXPORTED\_ARRAY\_INT}{wxdefinearray
}\\
198 \helpref{WX
\_DEFINE\_USER\_EXPORTED\_ARRAY\_INT}{wxdefinearray
}\\
199 \helpref{WX
\_DEFINE\_SORTED\_ARRAY\_INT}{wxdefinesortedarray
}\\
200 \helpref{WX
\_DEFINE\_SORTED\_EXPORTED\_ARRAY\_INT}{wxdefinesortedarray
}\\
201 \helpref{WX
\_DEFINE\_SORTED\_USER\_EXPORTED\_ARRAY\_INT}{wxdefinesortedarray
}\\
203 \membersection{Constructors and destructors
}\label{arrayconstructorsdestructors
}
205 Array classes are
100\% C++ objects and as such they have the appropriate copy
206 constructors and assignment operators. Copying wxArray just copies the elements
207 but copying wxObjArray copies the arrays items. However, for memory-efficiency
208 sake, neither of these classes has virtual destructor. It is not very important
209 for wxArray which has trivial destructor anyhow, but it does mean that you
210 should avoid deleting wxObjArray through a wxBaseArray pointer (as you would
211 never use wxBaseArray anyhow it shouldn't be a problem) and that you should not
212 derive your own classes from the array classes.
214 \helpref{wxArray default constructor
}{wxarrayctordef
}\\
215 \helpref{wxArray copy constructors and assignment operators
}{wxarrayctorcopy
}\\
216 \helpref{\destruct{wxArray
}}{wxarraydtor
}
218 \membersection{Memory management
}\label{wxarraymemorymanagement
}
220 Automatic array memory management is quite trivial: the array starts by
221 preallocating some minimal amount of memory (defined by
222 WX
\_ARRAY\_DEFAULT\_INITIAL\_SIZE) and when further new items exhaust already
223 allocated memory it reallocates it adding
50\% of the currently allocated
224 amount, but no more than some maximal number which is defined by
225 ARRAY
\_MAXSIZE\_INCREMENT constant. Of course, this may lead to some memory
226 being wasted (ARRAY
\_MAXSIZE\_INCREMENT in the worst case, i.e.
4Kb in the
227 current implementation), so the
\helpref{Shrink()
}{wxarrayshrink
} function is
228 provided to deallocate the extra memory. The
\helpref{Alloc()
}{wxarrayalloc
}
229 function can also be quite useful if you know in advance how many items you are
230 going to put in the array and will prevent the array code from reallocating the
231 memory more times than needed.
233 \helpref{Alloc
}{wxarrayalloc
}\\
234 \helpref{Shrink
}{wxarrayshrink
}
236 \membersection{Number of elements and simple item access
}\label{arrayelementsaccess
}
238 Functions in this section return the total number of array elements and allow to
239 retrieve them - possibly using just the C array indexing $
[]$ operator which
240 does exactly the same as
\helpref{Item()
}{wxarrayitem
} method.
242 \helpref{Count
}{wxarraycount
}\\
243 \helpref{GetCount
}{wxarraygetcount
}\\
244 \helpref{IsEmpty
}{wxarrayisempty
}\\
245 \helpref{Item
}{wxarrayitem
}\\
246 \helpref{Last
}{wxarraylast
}
248 \membersection{Adding items
}\label{arrayadding
}
250 \helpref{Add
}{wxarrayadd
}\\
251 \helpref{Insert
}{wxarrayinsert
}\\
252 \helpref{SetCount
}{wxarraysetcount
}\\
253 \helpref{WX
\_APPEND\_ARRAY}{wxappendarray
}
255 \membersection{Removing items
}\label{arrayremoving
}
257 \helpref{WX
\_CLEAR\_ARRAY}{wxcleararray
}\\
258 \helpref{Empty
}{wxarrayempty
}\\
259 \helpref{Clear
}{wxarrayclear
}\\
260 \helpref{RemoveAt
}{wxarrayremoveat
}\\
261 \helpref{Remove
}{wxarrayremove
}
263 \membersection{Searching and sorting
}\label{arraysearchingandsorting
}
265 \helpref{Index
}{wxarrayindex
}\\
266 \helpref{Sort
}{wxarraysort
}
268 %%%%% MEMBERS HERE %%%%%
269 \helponly{\insertatlevel{2}{
275 \membersection{WX
\_DEFINE\_ARRAY}\label{wxdefinearray
}
277 \func{}{WX
\_DEFINE\_ARRAY}{\param{}{T
},
\param{}{name
}}
279 \func{}{WX
\_DEFINE\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
281 \func{}{WX
\_DEFINE\_USER\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
},
\param{}{exportspec
}}
283 This macro defines a new array class named
{\it name
} and containing the
284 elements of type
{\it T
}. The second form is used when compiling wxWidgets as
285 a DLL under Windows and array needs to be visible outside the DLL. The third is
286 needed for exporting an array from a user DLL.
291 WX_DEFINE_ARRAY_INT(int, MyArrayInt);
294 WX_DEFINE_ARRAY(MyClass *, ArrayOfMyClass);
297 Note that wxWidgets predefines the following standard array classes: wxArrayInt,
298 wxArrayLong and wxArrayPtrVoid.
300 \membersection{WX
\_DEFINE\_SORTED\_ARRAY}\label{wxdefinesortedarray
}
302 \func{}{WX
\_DEFINE\_SORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
304 \func{}{WX
\_DEFINE\_SORTED\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
306 \func{}{WX
\_DEFINE\_SORTED\_USER\_EXPORTED\_ARRAY}{\param{}{T
},
\param{}{name
}}
308 This macro defines a new sorted array class named
{\it name
} and containing
309 the elements of type
{\it T
}. The second form is used when compiling wxWidgets as
310 a DLL under Windows and array needs to be visible outside the DLL. The third is
311 needed for exporting an array from a user DLL.
316 WX_DEFINE_SORTED_ARRAY_INT(int, MySortedArrayInt);
319 WX_DEFINE_SORTED_ARRAY(MyClass *, ArrayOfMyClass);
322 You will have to initialize the objects of this class by passing a comparison
323 function to the array object constructor like this:
326 int CompareInts(int n1, int n2)
331 wxSortedArrayInt sorted(CompareInts);
333 int CompareMyClassObjects(MyClass *item1, MyClass *item2)
335 // sort the items by their address...
336 return Stricmp(item1->GetAddress(), item2->GetAddress());
339 wxArrayOfMyClass another(CompareMyClassObjects);
342 \membersection{WX
\_DECLARE\_OBJARRAY}\label{wxdeclareobjarray
}
344 \func{}{WX
\_DECLARE\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
346 \func{}{WX
\_DECLARE\_EXPORTED\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
348 \func{}{WX
\_DECLARE\_USER\_EXPORTED\_OBJARRAY}{\param{}{T
},
\param{}{name
}}
350 This macro declares a new object array class named
{\it name
} and containing
351 the elements of type
{\it T
}. The second form is used when compiling wxWidgets as
352 a DLL under Windows and array needs to be visible outside the DLL. The third is
353 needed for exporting an array from a user DLL.
359 WX_DECLARE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not "MyClass *"!
362 You must use
\helpref{WX
\_DEFINE\_OBJARRAY()
}{wxdefineobjarray
} macro to define
363 the array class - otherwise you would get link errors.
365 \membersection{WX
\_DEFINE\_OBJARRAY}\label{wxdefineobjarray
}
367 \func{}{WX
\_DEFINE\_OBJARRAY}{\param{}{name
}}
369 \func{}{WX
\_DEFINE\_EXPORTED\_OBJARRAY}{\param{}{name
}}
371 \func{}{WX
\_DEFINE\_USER\_EXPORTED\_OBJARRAY}{\param{}{name
}}
373 This macro defines the methods of the array class
{\it name
} not defined by the
374 \helpref{WX
\_DECLARE\_OBJARRAY()
}{wxdeclareobjarray
} macro. You must include the
375 file <wx/arrimpl.cpp> before using this macro and you must have the full
376 declaration of the class of array elements in scope! If you forget to do the
377 first, the error will be caught by the compiler, but, unfortunately, many
378 compilers will not give any warnings if you forget to do the second - but the
379 objects of the class will not be copied correctly and their real destructor will
380 not be called. The latter two forms are merely aliases of the first to satisfy
381 some people's sense of symmetry when using the exported declarations.
386 // first declare the class!
390 MyClass(const MyClass&);
397 #include <wx/arrimpl.cpp>
398 WX_DEFINE_OBJARRAY(wxArrayOfMyClass);
401 \membersection{WX
\_APPEND\_ARRAY}\label{wxappendarray
}
403 \func{void
}{WX
\_APPEND\_ARRAY}{\param{wxArray\&
}{array
},
\param{wxArray\&
}{other
}}
405 This macro may be used to append all elements of the
{\it other
} array to the
406 {\it array
}. The two arrays must be of the same type.
408 \membersection{WX
\_CLEAR\_ARRAY}\label{wxcleararray
}
410 \func{void
}{WX
\_CLEAR\_ARRAY}{\param{wxArray\&
}{array
}}
412 This macro may be used to delete all elements of the array before emptying it.
413 It can not be used with wxObjArrays - but they will delete their elements anyhow
414 when you call Empty().
416 \membersection{Default constructors
}\label{wxarrayctordef
}
418 \func{}{wxArray
}{\void}
420 \func{}{wxObjArray
}{\void}
422 Default constructor initializes an empty array object.
424 \func{}{wxSortedArray
}{\param{int
(*)(T first, T second)}{compareFunction}}
426 There is no default constructor for wxSortedArray classes - you must initialize it
427 with a function to use for item comparison. It is a function which is passed
428 two arguments of type {\it T} where {\it T} is the array element type and which
429 should return a negative, zero or positive value according to whether the first
430 element passed to it is less than, equal to or greater than the second one.
432 \membersection{wxArray copy constructor and assignment operator}\label{wxarrayctorcopy}
434 \func{}{wxArray}{\param{const wxArray\& }{array}}
436 \func{}{wxSortedArray}{\param{const wxSortedArray\& }{array}}
438 \func{}{wxObjArray}{\param{const wxObjArray\& }{array}}
440 \func{wxArray\&}{operator$=$}{\param{const wxArray\& }{array}}
442 \func{wxSortedArray\&}{operator$=$}{\param{const wxSortedArray\& }{array}}
444 \func{wxObjArray\&}{operator$=$}{\param{const wxObjArray\& }{array}}
446 The copy constructors and assignment operators perform a shallow array copy
447 (i.e. they don't copy the objects pointed to even if the source array contains
448 the items of pointer type) for wxArray and wxSortedArray and a deep copy (i.e.
449 the array element are copied too) for wxObjArray.
451 \membersection{wxArray::\destruct{wxArray}}\label{wxarraydtor}
453 \func{}{\destruct{wxArray}}{\void}
455 \func{}{\destruct{wxSortedArray}}{\void}
457 \func{}{\destruct{wxObjArray}}{\void}
459 The wxObjArray destructor deletes all the items owned by the array. This is not
460 done by wxArray and wxSortedArray versions - you may use
461 \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro for this.
463 \membersection{wxArray::Add}\label{wxarrayadd}
465 \func{void}{Add}{\param{T }{item}, \param{size\_t}{ copies = $1$}}
467 \func{void}{Add}{\param{T *}{item}}
469 \func{void}{Add}{\param{T \&}{item}, \param{size\_t}{ copies = $1$}}
471 Appends the given number of {\it copies} of the {\it item} to the array
472 consisting of the elements of type {\it T}.
474 The first version is used with wxArray and wxSortedArray. The second and the
475 third are used with wxObjArray. There is an important difference between
476 them: if you give a pointer to the array, it will take ownership of it, i.e.
477 will delete it when the item is deleted from the array. If you give a reference
478 to the array, however, the array will make a copy of the item and will not take
479 ownership of the original item. Once again, it only makes sense for wxObjArrays
480 because the other array types never take ownership of their elements. Also note
481 that you cannot append more than one pointer as reusing it would lead to
482 deleting it twice (or more) and hence to a crash.
484 You may also use \helpref{WX\_APPEND\_ARRAY}{wxappendarray} macro to append all
485 elements of one array to another one but it is more efficient to use
486 {\it copies} parameter and modify the elements in place later if you plan to
487 append a lot of items.
489 \membersection{wxArray::Alloc}\label{wxarrayalloc}
491 \func{void}{Alloc}{\param{size\_t }{count}}
493 Preallocates memory for a given number of array elements. It is worth calling
494 when the number of items which are going to be added to the array is known in
495 advance because it will save unneeded memory reallocation. If the array already
496 has enough memory for the given number of items, nothing happens. In any case,
497 the existing contents of the array is not modified.
499 \membersection{wxArray::Clear}\label{wxarrayclear}
501 \func{void}{Clear}{\void}
503 This function does the same as \helpref{Empty()}{wxarrayempty} and additionally
504 frees the memory allocated to the array.
506 \membersection{wxArray::Count}\label{wxarraycount}
508 \constfunc{size\_t}{Count}{\void}
510 Same as \helpref{GetCount()}{wxarraygetcount}. This function is deprecated -
511 it exists only for compatibility.
513 \membersection{wxObjArray::Detach}\label{wxobjarraydetach}
515 \func{T *}{Detach}{\param{size\_t }{index}}
517 Removes the element from the array, but, unlike,
518 \helpref{Remove()}{wxarrayremove} doesn't delete it. The function returns the
519 pointer to the removed element.
521 \membersection{wxArray::Empty}\label{wxarrayempty}
523 \func{void}{Empty}{\void}
525 Empties the array. For wxObjArray classes, this destroys all of the array
526 elements. For wxArray and wxSortedArray this does nothing except marking the
527 array of being empty - this function does not free the allocated memory, use
528 \helpref{Clear()}{wxarrayclear} for this.
530 \membersection{wxArray::GetCount}\label{wxarraygetcount}
532 \constfunc{size\_t}{GetCount}{\void}
534 Return the number of items in the array.
536 \membersection{wxArray::Index}\label{wxarrayindex}
538 \constfunc{int}{Index}{\param{T\& }{item}, \param{bool }{searchFromEnd = false}}
540 \constfunc{int}{Index}{\param{T\& }{item}}
542 The first version of the function is for wxArray and wxObjArray, the second is
543 for wxSortedArray only.
545 Searches the element in the array, starting from either beginning or the end
546 depending on the value of {\it searchFromEnd} parameter. {\tt wxNOT\_FOUND} is
547 returned if the element is not found, otherwise the index of the element is
550 Linear search is used for the wxArray and wxObjArray classes but binary search
551 in the sorted array is used for wxSortedArray (this is why searchFromEnd
552 parameter doesn't make sense for it).
554 {\bf NB:} even for wxObjArray classes, the operator==() of the elements in the
555 array is {\bf not} used by this function. It searches exactly the given
556 element in the array and so will only succeed if this element had been
557 previously added to the array, but fail even if another, identical, element is
560 \membersection{wxArray::Insert}\label{wxarrayinsert}
562 \func{void}{Insert}{\param{T }{item}, \param{size\_t }{n}, \param{size\_t }{copies = $1$}}
564 \func{void}{Insert}{\param{T *}{item}, \param{size\_t }{n}}
566 \func{void}{Insert}{\param{T \&}{item}, \param{size\_t }{n}, \param{size\_t }{copies = $1$}}
568 Insert the given number of {\it copies} of the {\it item} into the array before
569 the existing item {\it n} - thus, {\it Insert(something, 0u)} will insert an
570 item in such way that it will become the first array element.
572 Please see \helpref{Add()}{wxarrayadd} for explanation of the differences
573 between the overloaded versions of this function.
575 \membersection{wxArray::IsEmpty}\label{wxarrayisempty}
577 \constfunc{bool}{IsEmpty}{\void}
579 Returns true if the array is empty, false otherwise.
581 \membersection{wxArray::Item}\label{wxarrayitem}
583 \constfunc{T\&}{Item}{\param{size\_t }{index}}
585 Returns the item at the given position in the array. If {\it index} is out of
586 bounds, an assert failure is raised in the debug builds but nothing special is
587 done in the release build.
589 The returned value is of type "reference to the array element type" for all of
592 \membersection{wxArray::Last}\label{wxarraylast}
594 \constfunc{T\&}{Last}{\void}
596 Returns the last element in the array, i.e. is the same as Item(GetCount() - 1).
597 An assert failure is raised in the debug mode if the array is empty.
599 The returned value is of type "reference to the array element type" for all of
602 \membersection{wxArray::Remove}\label{wxarrayremove}
604 \func{\void}{Remove}{\param{T }{item}}
606 Removes an element from the array by value: the first item of the
607 array equal to {\it item} is removed, an assert failure will result from an
608 attempt to remove an item which doesn't exist in the array.
610 When an element is removed from wxObjArray it is deleted by the array - use
611 \helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On the
612 other hand, when an object is removed from a wxArray nothing happens - you
613 should delete it manually if required:
621 See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
622 elements of a wxArray (supposed to contain pointers).
624 \membersection{wxArray::RemoveAt}\label{wxarrayremoveat}
626 \func{\void}{RemoveAt}{\param{size\_t }{index}, \param{size\_t }{count = $1$}}
628 Removes {\it count} elements starting at {\it index} from the array. When an
629 element is removed from wxObjArray it is deleted by the array - use
630 \helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On
631 the other hand, when an object is removed from a wxArray nothing happens -
632 you should delete it manually if required:
640 See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
641 elements of a wxArray (supposed to contain pointers).
643 \membersection{wxArray::SetCount}\label{wxarraysetcount}
645 \func{void}{SetCount}{\param{size\_t }{count}, \param{T }{defval = T($0$)}}
647 This function ensures that the number of array elements is at least
648 {\it count}. If the array has already {\it count} or more items, nothing is
649 done. Otherwise, {\tt count - GetCount()} elements are added and initialized to
650 the value {\it defval}.
654 \helpref{GetCount}{wxarraygetcount}
656 \membersection{wxArray::Shrink}\label{wxarrayshrink}
658 \func{void}{Shrink}{\void}
660 Frees all memory unused by the array. If the program knows that no new items
661 will be added to the array it may call Shrink() to reduce its memory usage.
662 However, if a new item is added to the array, some extra memory will be
665 \membersection{wxArray::Sort}\label{wxarraysort}
667 \func{void}{Sort}{\param{CMPFUNC<T> }{compareFunction}}
669 The notation CMPFUNC<T> should be read as if we had the following declaration:
672 template int CMPFUNC(T *first, T *second);
675 where {\it T} is the type of the array elements. I.e. it is a function returning
676 {\it int} which is passed two arguments of type {\it T *}.
678 Sorts the array using the specified compare function: this function should
679 return a negative, zero or positive value according to whether the first element
680 passed to it is less than, equal to or greater than the second one.
682 wxSortedArray doesn't have this function because it is always sorted.