1 \section{\class{wxMutex
}}\label{wxmutex
}
3 A mutex object is a synchronization object whose state is set to signaled when
4 it is not owned by any thread, and nonsignaled when it is owned. Its name comes
5 from its usefulness in coordinating mutually-exclusive access to a shared
6 resource. Only one thread at a time can own a mutex object but the mutexes are
7 recursive in the sense that a thread can lock a mutex which it had already
8 locked before (instead of dead locking the entire process in this situation by
9 starting to wait on a mutex which will never be released while the thread is
12 For example, when several thread use the data stored in the linked list,
13 modifications to the list should be only allowed to one thread at a time
14 because during a new node addition the list integrity is temporarily broken
15 (this is also called
{\it program invariant
}).
21 // this variable has an "s_" prefix because it is static: seeing an "s_" in
22 // a multithreaded program is in general a good sign that you should use a
23 // mutex (or a critical section)
24 static wxMutex *s_mutexProtectingTheGlobalData;
26 // we store some numbers in this global array which is presumably used by
27 // several threads simultaneously
30 void MyThread::AddNewNode(int num)
32 // ensure that no other thread accesses the list
33 s_mutexProtectingTheGlobalList->Lock();
37 s_mutexProtectingTheGlobalList->Unlock();
40 // return TRUE the given number is greater than all array elements
41 bool MyThread::IsGreater(int num)
43 // before using the list we must acquire the mutex
44 wxMutexLocker lock(s_mutexProtectingTheGlobalData);
46 size_t count = s_data.Count();
47 for ( size_t n =
0; n < count; n++ )
49 if ( s_data
[n
] > num )
58 Notice how wxMutexLocker was used in the second function to ensure that the
59 mutex is unlocked in any case: whether the function returns TRUE or FALSE
60 (because the destructor of the local object
{\it lock
} is always called). Using
61 this class instead of directly using wxMutex is, in general safer and is even
62 more so if your program uses C++ exceptions.
64 \wxheading{Derived from
}
68 \wxheading{Include files
}
74 \helpref{wxThread
}{wxthread
},
\helpref{wxCondition
}{wxcondition
},
75 \helpref{wxMutexLocker
}{wxmutexlocker
},
\helpref{wxCriticalSection
}{wxcriticalsection
}
77 \latexignore{\rtfignore{\wxheading{Members
}}}
79 \membersection{wxMutex::wxMutex
}\label{wxmutexconstr
}
81 \func{}{wxMutex
}{\void}
85 \membersection{wxMutex::
\destruct{wxMutex
}}
87 \func{}{\destruct{wxMutex
}}{\void}
89 Destroys the wxMutex object.
91 \membersection{wxMutex::Lock
}\label{wxmutexlock
}
93 \func{wxMutexError
}{Lock
}{\void}
95 Locks the mutex object.
97 \wxheading{Return value
}
102 \begin{twocollist
}\itemsep=
0pt
103 \twocolitem{{\bf wxMUTEX
\_NO\_ERROR}}{There was no error.
}
104 \twocolitem{{\bf wxMUTEX
\_DEAD\_LOCK}}{A deadlock situation was detected.
}
105 \twocolitem{{\bf wxMUTEX
\_BUSY}}{The mutex is already locked by another thread.
}
108 \membersection{wxMutex::TryLock
}\label{wxmutextrylock
}
110 \func{wxMutexError
}{TryLock
}{\void}
112 Tries to lock the mutex object. If it can't, returns immediately with an error.
114 \wxheading{Return value
}
119 \begin{twocollist
}\itemsep=
0pt
120 \twocolitem{{\bf wxMUTEX
\_NO\_ERROR}}{There was no error.
}
121 \twocolitem{{\bf wxMUTEX
\_DEAD\_LOCK}}{A deadlock situation was detected.
}
122 \twocolitem{{\bf wxMUTEX
\_BUSY}}{The mutex is already locked by another thread.
}
125 \membersection{wxMutex::Unlock
}\label{wxmutexunlock
}
127 \func{wxMutexError
}{Unlock
}{\void}
129 Unlocks the mutex object.
131 \wxheading{Return value
}
136 \begin{twocollist
}\itemsep=
0pt
137 \twocolitem{{\bf wxMUTEX
\_NO\_ERROR}}{There was no error.
}
138 \twocolitem{{\bf wxMUTEX
\_DEAD\_LOCK}}{A deadlock situation was detected.
}
139 \twocolitem{{\bf wxMUTEX
\_BUSY}}{The mutex is already locked by another thread.
}
140 \twocolitem{{\bf wxMUTEX
\_UNLOCKED}}{The calling thread tries to unlock an unlocked mutex.
}