]> git.saurik.com Git - redis.git/blob - zipmap.c
print warnings in redis log when a test raises an exception (very likely to be caused...
[redis.git] / zipmap.c
1 /* String -> String Map data structure optimized for size.
2 * This file implements a data structure mapping strings to other strings
3 * implementing an O(n) lookup data structure designed to be very memory
4 * efficient.
5 *
6 * The Redis Hash type uses this data structure for hashes composed of a small
7 * number of elements, to switch to an hash table once a given number of
8 * elements is reached.
9 *
10 * Given that many times Redis Hashes are used to represent objects composed
11 * of few fields, this is a very big win in terms of used memory.
12 *
13 * --------------------------------------------------------------------------
14 *
15 * Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com>
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are met:
20 *
21 * * Redistributions of source code must retain the above copyright notice,
22 * this list of conditions and the following disclaimer.
23 * * Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 * * Neither the name of Redis nor the names of its contributors may be used
27 * to endorse or promote products derived from this software without
28 * specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
31 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
34 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /* Memory layout of a zipmap, for the map "foo" => "bar", "hello" => "world":
44 *
45 * <zmlen><len>"foo"<len><free>"bar"<len>"hello"<len><free>"world"
46 *
47 * <zmlen> is 1 byte length that holds the current size of the zipmap.
48 * When the zipmap length is greater than or equal to 254, this value
49 * is not used and the zipmap needs to be traversed to find out the length.
50 *
51 * <len> is the length of the following string (key or value).
52 * <len> lengths are encoded in a single value or in a 5 bytes value.
53 * If the first byte value (as an unsigned 8 bit value) is between 0 and
54 * 252, it's a single-byte length. If it is 253 then a four bytes unsigned
55 * integer follows (in the host byte ordering). A value fo 255 is used to
56 * signal the end of the hash. The special value 254 is used to mark
57 * empty space that can be used to add new key/value pairs.
58 *
59 * <free> is the number of free unused bytes
60 * after the string, resulting from modification of values associated to a
61 * key (for instance if "foo" is set to "bar', and later "foo" will be se to
62 * "hi", I'll have a free byte to use if the value will enlarge again later,
63 * or even in order to add a key/value pair if it fits.
64 *
65 * <free> is always an unsigned 8 bit number, because if after an
66 * update operation there are more than a few free bytes, the zipmap will be
67 * reallocated to make sure it is as small as possible.
68 *
69 * The most compact representation of the above two elements hash is actually:
70 *
71 * "\x02\x03foo\x03\x00bar\x05hello\x05\x00world\xff"
72 *
73 * Note that because keys and values are prefixed length "objects",
74 * the lookup will take O(N) where N is the number of elements
75 * in the zipmap and *not* the number of bytes needed to represent the zipmap.
76 * This lowers the constant times considerably.
77 */
78
79 #include <stdio.h>
80 #include <string.h>
81 #include <assert.h>
82 #include "zmalloc.h"
83
84 #define ZIPMAP_BIGLEN 254
85 #define ZIPMAP_END 255
86
87 /* The following defines the max value for the <free> field described in the
88 * comments above, that is, the max number of trailing bytes in a value. */
89 #define ZIPMAP_VALUE_MAX_FREE 4
90
91 /* The following macro returns the number of bytes needed to encode the length
92 * for the integer value _l, that is, 1 byte for lengths < ZIPMAP_BIGLEN and
93 * 5 bytes for all the other lengths. */
94 #define ZIPMAP_LEN_BYTES(_l) (((_l) < ZIPMAP_BIGLEN) ? 1 : sizeof(unsigned int)+1)
95
96 /* Create a new empty zipmap. */
97 unsigned char *zipmapNew(void) {
98 unsigned char *zm = zmalloc(2);
99
100 zm[0] = 0; /* Length */
101 zm[1] = ZIPMAP_END;
102 return zm;
103 }
104
105 /* Decode the encoded length pointed by 'p' */
106 static unsigned int zipmapDecodeLength(unsigned char *p) {
107 unsigned int len = *p;
108
109 if (len < ZIPMAP_BIGLEN) return len;
110 memcpy(&len,p+1,sizeof(unsigned int));
111 return len;
112 }
113
114 /* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
115 * the amount of bytes required to encode such a length. */
116 static unsigned int zipmapEncodeLength(unsigned char *p, unsigned int len) {
117 if (p == NULL) {
118 return ZIPMAP_LEN_BYTES(len);
119 } else {
120 if (len < ZIPMAP_BIGLEN) {
121 p[0] = len;
122 return 1;
123 } else {
124 p[0] = ZIPMAP_BIGLEN;
125 memcpy(p+1,&len,sizeof(len));
126 return 1+sizeof(len);
127 }
128 }
129 }
130
131 /* Search for a matching key, returning a pointer to the entry inside the
132 * zipmap. Returns NULL if the key is not found.
133 *
134 * If NULL is returned, and totlen is not NULL, it is set to the entire
135 * size of the zimap, so that the calling function will be able to
136 * reallocate the original zipmap to make room for more entries. */
137 static unsigned char *zipmapLookupRaw(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned int *totlen) {
138 unsigned char *p = zm+1, *k = NULL;
139 unsigned int l;
140
141 while(*p != ZIPMAP_END) {
142 unsigned char free;
143
144 /* Match or skip the key */
145 l = zipmapDecodeLength(p);
146 if (k == NULL && l == klen && !memcmp(p+1,key,l)) {
147 /* Only return when the user doesn't care
148 * for the total length of the zipmap. */
149 if (totlen != NULL) {
150 k = p;
151 } else {
152 return p;
153 }
154 }
155 p += zipmapEncodeLength(NULL,l) + l;
156 /* Skip the value as well */
157 l = zipmapDecodeLength(p);
158 p += zipmapEncodeLength(NULL,l);
159 free = p[0];
160 p += l+1+free; /* +1 to skip the free byte */
161 }
162 if (totlen != NULL) *totlen = (unsigned int)(p-zm)+1;
163 return k;
164 }
165
166 static unsigned long zipmapRequiredLength(unsigned int klen, unsigned int vlen) {
167 unsigned int l;
168
169 l = klen+vlen+3;
170 if (klen >= ZIPMAP_BIGLEN) l += 4;
171 if (vlen >= ZIPMAP_BIGLEN) l += 4;
172 return l;
173 }
174
175 /* Return the total amount used by a key (encoded length + payload) */
176 static unsigned int zipmapRawKeyLength(unsigned char *p) {
177 unsigned int l = zipmapDecodeLength(p);
178
179 return zipmapEncodeLength(NULL,l) + l;
180 }
181
182 /* Return the total amount used by a value
183 * (encoded length + single byte free count + payload) */
184 static unsigned int zipmapRawValueLength(unsigned char *p) {
185 unsigned int l = zipmapDecodeLength(p);
186 unsigned int used;
187
188 used = zipmapEncodeLength(NULL,l);
189 used += p[used] + 1 + l;
190 return used;
191 }
192
193 /* If 'p' points to a key, this function returns the total amount of
194 * bytes used to store this entry (entry = key + associated value + trailing
195 * free space if any). */
196 static unsigned int zipmapRawEntryLength(unsigned char *p) {
197 unsigned int l = zipmapRawKeyLength(p);
198 return l + zipmapRawValueLength(p+l);
199 }
200
201 static inline unsigned char *zipmapResize(unsigned char *zm, unsigned int len) {
202 zm = zrealloc(zm, len);
203 zm[len-1] = ZIPMAP_END;
204 return zm;
205 }
206
207 /* Set key to value, creating the key if it does not already exist.
208 * If 'update' is not NULL, *update is set to 1 if the key was
209 * already preset, otherwise to 0. */
210 unsigned char *zipmapSet(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned char *val, unsigned int vlen, int *update) {
211 unsigned int zmlen, offset;
212 unsigned int freelen, reqlen = zipmapRequiredLength(klen,vlen);
213 unsigned int empty, vempty;
214 unsigned char *p;
215
216 freelen = reqlen;
217 if (update) *update = 0;
218 p = zipmapLookupRaw(zm,key,klen,&zmlen);
219 if (p == NULL) {
220 /* Key not found: enlarge */
221 zm = zipmapResize(zm, zmlen+reqlen);
222 p = zm+zmlen-1;
223 zmlen = zmlen+reqlen;
224
225 /* Increase zipmap length (this is an insert) */
226 if (zm[0] < ZIPMAP_BIGLEN) zm[0]++;
227 } else {
228 /* Key found. Is there enough space for the new value? */
229 /* Compute the total length: */
230 if (update) *update = 1;
231 freelen = zipmapRawEntryLength(p);
232 if (freelen < reqlen) {
233 /* Store the offset of this key within the current zipmap, so
234 * it can be resized. Then, move the tail backwards so this
235 * pair fits at the current position. */
236 offset = p-zm;
237 zm = zipmapResize(zm, zmlen-freelen+reqlen);
238 p = zm+offset;
239
240 /* The +1 in the number of bytes to be moved is caused by the
241 * end-of-zipmap byte. Note: the *original* zmlen is used. */
242 memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1));
243 zmlen = zmlen-freelen+reqlen;
244 freelen = reqlen;
245 }
246 }
247
248 /* We now have a suitable block where the key/value entry can
249 * be written. If there is too much free space, move the tail
250 * of the zipmap a few bytes to the front and shrink the zipmap,
251 * as we want zipmaps to be very space efficient. */
252 empty = freelen-reqlen;
253 if (empty >= ZIPMAP_VALUE_MAX_FREE) {
254 /* First, move the tail <empty> bytes to the front, then resize
255 * the zipmap to be <empty> bytes smaller. */
256 offset = p-zm;
257 memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1));
258 zmlen -= empty;
259 zm = zipmapResize(zm, zmlen);
260 p = zm+offset;
261 vempty = 0;
262 } else {
263 vempty = empty;
264 }
265
266 /* Just write the key + value and we are done. */
267 /* Key: */
268 p += zipmapEncodeLength(p,klen);
269 memcpy(p,key,klen);
270 p += klen;
271 /* Value: */
272 p += zipmapEncodeLength(p,vlen);
273 *p++ = vempty;
274 memcpy(p,val,vlen);
275 return zm;
276 }
277
278 /* Remove the specified key. If 'deleted' is not NULL the pointed integer is
279 * set to 0 if the key was not found, to 1 if it was found and deleted. */
280 unsigned char *zipmapDel(unsigned char *zm, unsigned char *key, unsigned int klen, int *deleted) {
281 unsigned int zmlen, freelen;
282 unsigned char *p = zipmapLookupRaw(zm,key,klen,&zmlen);
283 if (p) {
284 freelen = zipmapRawEntryLength(p);
285 memmove(p, p+freelen, zmlen-((p-zm)+freelen+1));
286 zm = zipmapResize(zm, zmlen-freelen);
287
288 /* Decrease zipmap length */
289 if (zm[0] < ZIPMAP_BIGLEN) zm[0]--;
290
291 if (deleted) *deleted = 1;
292 } else {
293 if (deleted) *deleted = 0;
294 }
295 return zm;
296 }
297
298 /* Call it before to iterate trought elements via zipmapNext() */
299 unsigned char *zipmapRewind(unsigned char *zm) {
300 return zm+1;
301 }
302
303 /* This function is used to iterate through all the zipmap elements.
304 * In the first call the first argument is the pointer to the zipmap + 1.
305 * In the next calls what zipmapNext returns is used as first argument.
306 * Example:
307 *
308 * unsigned char *i = zipmapRewind(my_zipmap);
309 * while((i = zipmapNext(i,&key,&klen,&value,&vlen)) != NULL) {
310 * printf("%d bytes key at $p\n", klen, key);
311 * printf("%d bytes value at $p\n", vlen, value);
312 * }
313 */
314 unsigned char *zipmapNext(unsigned char *zm, unsigned char **key, unsigned int *klen, unsigned char **value, unsigned int *vlen) {
315 if (zm[0] == ZIPMAP_END) return NULL;
316 if (key) {
317 *key = zm;
318 *klen = zipmapDecodeLength(zm);
319 *key += ZIPMAP_LEN_BYTES(*klen);
320 }
321 zm += zipmapRawKeyLength(zm);
322 if (value) {
323 *value = zm+1;
324 *vlen = zipmapDecodeLength(zm);
325 *value += ZIPMAP_LEN_BYTES(*vlen);
326 }
327 zm += zipmapRawValueLength(zm);
328 return zm;
329 }
330
331 /* Search a key and retrieve the pointer and len of the associated value.
332 * If the key is found the function returns 1, otherwise 0. */
333 int zipmapGet(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned char **value, unsigned int *vlen) {
334 unsigned char *p;
335
336 if ((p = zipmapLookupRaw(zm,key,klen,NULL)) == NULL) return 0;
337 p += zipmapRawKeyLength(p);
338 *vlen = zipmapDecodeLength(p);
339 *value = p + ZIPMAP_LEN_BYTES(*vlen) + 1;
340 return 1;
341 }
342
343 /* Return 1 if the key exists, otherwise 0 is returned. */
344 int zipmapExists(unsigned char *zm, unsigned char *key, unsigned int klen) {
345 return zipmapLookupRaw(zm,key,klen,NULL) != NULL;
346 }
347
348 /* Return the number of entries inside a zipmap */
349 unsigned int zipmapLen(unsigned char *zm) {
350 unsigned int len = 0;
351 if (zm[0] < ZIPMAP_BIGLEN) {
352 len = zm[0];
353 } else {
354 unsigned char *p = zipmapRewind(zm);
355 while((p = zipmapNext(p,NULL,NULL,NULL,NULL)) != NULL) len++;
356
357 /* Re-store length if small enough */
358 if (len < ZIPMAP_BIGLEN) zm[0] = len;
359 }
360 return len;
361 }
362
363 void zipmapRepr(unsigned char *p) {
364 unsigned int l;
365
366 printf("{status %u}",*p++);
367 while(1) {
368 if (p[0] == ZIPMAP_END) {
369 printf("{end}");
370 break;
371 } else {
372 unsigned char e;
373
374 l = zipmapDecodeLength(p);
375 printf("{key %u}",l);
376 p += zipmapEncodeLength(NULL,l);
377 fwrite(p,l,1,stdout);
378 p += l;
379
380 l = zipmapDecodeLength(p);
381 printf("{value %u}",l);
382 p += zipmapEncodeLength(NULL,l);
383 e = *p++;
384 fwrite(p,l,1,stdout);
385 p += l+e;
386 if (e) {
387 printf("[");
388 while(e--) printf(".");
389 printf("]");
390 }
391 }
392 }
393 printf("\n");
394 }
395
396 #ifdef ZIPMAP_TEST_MAIN
397 int main(void) {
398 unsigned char *zm;
399
400 zm = zipmapNew();
401
402 zm = zipmapSet(zm,(unsigned char*) "name",4, (unsigned char*) "foo",3,NULL);
403 zm = zipmapSet(zm,(unsigned char*) "surname",7, (unsigned char*) "foo",3,NULL);
404 zm = zipmapSet(zm,(unsigned char*) "age",3, (unsigned char*) "foo",3,NULL);
405 zipmapRepr(zm);
406 exit(1);
407
408 zm = zipmapSet(zm,(unsigned char*) "hello",5, (unsigned char*) "world!",6,NULL);
409 zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "bar",3,NULL);
410 zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "!",1,NULL);
411 zipmapRepr(zm);
412 zm = zipmapSet(zm,(unsigned char*) "foo",3, (unsigned char*) "12345",5,NULL);
413 zipmapRepr(zm);
414 zm = zipmapSet(zm,(unsigned char*) "new",3, (unsigned char*) "xx",2,NULL);
415 zm = zipmapSet(zm,(unsigned char*) "noval",5, (unsigned char*) "",0,NULL);
416 zipmapRepr(zm);
417 zm = zipmapDel(zm,(unsigned char*) "new",3,NULL);
418 zipmapRepr(zm);
419 printf("\nPerform a direct lookup:\n");
420 {
421 unsigned char *value;
422 unsigned int vlen;
423
424 if (zipmapGet(zm,(unsigned char*) "foo",3,&value,&vlen)) {
425 printf(" foo is associated to the %d bytes value: %.*s\n",
426 vlen, vlen, value);
427 }
428 }
429 printf("\nIterate trought elements:\n");
430 {
431 unsigned char *i = zipmapRewind(zm);
432 unsigned char *key, *value;
433 unsigned int klen, vlen;
434
435 while((i = zipmapNext(i,&key,&klen,&value,&vlen)) != NULL) {
436 printf(" %d:%.*s => %d:%.*s\n", klen, klen, key, vlen, vlen, value);
437 }
438 }
439 return 0;
440 }
441 #endif