]> git.saurik.com Git - redis.git/blob - src/ziplist.c
Encode sorted set after loading from dump
[redis.git] / src / ziplist.c
1 /* The ziplist is a specially encoded dually linked list that is designed
2 * to be very memory efficient. It stores both strings and integer values,
3 * where integers are encoded as actual integers instead of a series of
4 * characters. It allows push and pop operations on either side of the list
5 * in O(1) time. However, because every operation requires a reallocation of
6 * the memory used by the ziplist, the actual complexity is related to the
7 * amount of memory used by the ziplist.
8 *
9 * ----------------------------------------------------------------------------
10 *
11 * ZIPLIST OVERALL LAYOUT:
12 * The general layout of the ziplist is as follows:
13 * <zlbytes><zltail><zllen><entry><entry><zlend>
14 *
15 * <zlbytes> is an unsigned integer to hold the number of bytes that the
16 * ziplist occupies. This value needs to be stored to be able to resize the
17 * entire structure without the need to traverse it first.
18 *
19 * <zltail> is the offset to the last entry in the list. This allows a pop
20 * operation on the far side of the list without the need for full traversal.
21 *
22 * <zllen> is the number of entries.When this value is larger than 2**16-2,
23 * we need to traverse the entire list to know how many items it holds.
24 *
25 * <zlend> is a single byte special value, equal to 255, which indicates the
26 * end of the list.
27 *
28 * ZIPLIST ENTRIES:
29 * Every entry in the ziplist is prefixed by a header that contains two pieces
30 * of information. First, the length of the previous entry is stored to be
31 * able to traverse the list from back to front. Second, the encoding with an
32 * optional string length of the entry itself is stored.
33 *
34 * The length of the previous entry is encoded in the following way:
35 * If this length is smaller than 254 bytes, it will only consume a single
36 * byte that takes the length as value. When the length is greater than or
37 * equal to 254, it will consume 5 bytes. The first byte is set to 254 to
38 * indicate a larger value is following. The remaining 4 bytes take the
39 * length of the previous entry as value.
40 *
41 * The other header field of the entry itself depends on the contents of the
42 * entry. When the entry is a string, the first 2 bits of this header will hold
43 * the type of encoding used to store the length of the string, followed by the
44 * actual length of the string. When the entry is an integer the first 2 bits
45 * are both set to 1. The following 2 bits are used to specify what kind of
46 * integer will be stored after this header. An overview of the different
47 * types and encodings is as follows:
48 *
49 * |00pppppp| - 1 byte
50 * String value with length less than or equal to 63 bytes (6 bits).
51 * |01pppppp|qqqqqqqq| - 2 bytes
52 * String value with length less than or equal to 16383 bytes (14 bits).
53 * |10______|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
54 * String value with length greater than or equal to 16384 bytes.
55 * |1100____| - 1 byte
56 * Integer encoded as int16_t (2 bytes).
57 * |1101____| - 1 byte
58 * Integer encoded as int32_t (4 bytes).
59 * |1110____| - 1 byte
60 * Integer encoded as int64_t (8 bytes).
61 */
62
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <stdint.h>
67 #include <assert.h>
68 #include <limits.h>
69 #include "zmalloc.h"
70 #include "ziplist.h"
71
72 int ll2string(char *s, size_t len, long long value);
73
74 #define ZIP_END 255
75 #define ZIP_BIGLEN 254
76
77 /* Different encoding/length possibilities */
78 #define ZIP_STR_06B (0 << 6)
79 #define ZIP_STR_14B (1 << 6)
80 #define ZIP_STR_32B (2 << 6)
81 #define ZIP_INT_16B (0xc0 | 0<<4)
82 #define ZIP_INT_32B (0xc0 | 1<<4)
83 #define ZIP_INT_64B (0xc0 | 2<<4)
84
85 /* Macro's to determine type */
86 #define ZIP_IS_STR(enc) (((enc) & 0xc0) < 0xc0)
87 #define ZIP_IS_INT(enc) (!ZIP_IS_STR(enc) && ((enc) & 0x30) < 0x30)
88
89 /* Utility macros */
90 #define ZIPLIST_BYTES(zl) (*((uint32_t*)(zl)))
91 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
92 #define ZIPLIST_LENGTH(zl) (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
93 #define ZIPLIST_HEADER_SIZE (sizeof(uint32_t)*2+sizeof(uint16_t))
94 #define ZIPLIST_ENTRY_HEAD(zl) ((zl)+ZIPLIST_HEADER_SIZE)
95 #define ZIPLIST_ENTRY_TAIL(zl) ((zl)+ZIPLIST_TAIL_OFFSET(zl))
96 #define ZIPLIST_ENTRY_END(zl) ((zl)+ZIPLIST_BYTES(zl)-1)
97
98 /* We know a positive increment can only be 1 because entries can only be
99 * pushed one at a time. */
100 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
101 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) ZIPLIST_LENGTH(zl)+=incr; }
102
103 typedef struct zlentry {
104 unsigned int prevrawlensize, prevrawlen;
105 unsigned int lensize, len;
106 unsigned int headersize;
107 unsigned char encoding;
108 unsigned char *p;
109 } zlentry;
110
111 /* Return the encoding pointer to by 'p'. */
112 static unsigned int zipEntryEncoding(unsigned char *p) {
113 /* String encoding: 2 MSBs */
114 unsigned char b = p[0] & 0xc0;
115 if (b < 0xc0) {
116 return b;
117 } else {
118 /* Integer encoding: 4 MSBs */
119 return p[0] & 0xf0;
120 }
121 assert(NULL);
122 return 0;
123 }
124
125 /* Return bytes needed to store integer encoded by 'encoding' */
126 static unsigned int zipIntSize(unsigned char encoding) {
127 switch(encoding) {
128 case ZIP_INT_16B: return sizeof(int16_t);
129 case ZIP_INT_32B: return sizeof(int32_t);
130 case ZIP_INT_64B: return sizeof(int64_t);
131 }
132 assert(NULL);
133 return 0;
134 }
135
136 /* Decode the encoded length pointed by 'p'. If a pointer to 'lensize' is
137 * provided, it is set to the number of bytes required to encode the length. */
138 static unsigned int zipDecodeLength(unsigned char *p, unsigned int *lensize) {
139 unsigned char encoding = zipEntryEncoding(p);
140 unsigned int len = 0;
141
142 if (ZIP_IS_STR(encoding)) {
143 switch(encoding) {
144 case ZIP_STR_06B:
145 len = p[0] & 0x3f;
146 if (lensize) *lensize = 1;
147 break;
148 case ZIP_STR_14B:
149 len = ((p[0] & 0x3f) << 8) | p[1];
150 if (lensize) *lensize = 2;
151 break;
152 case ZIP_STR_32B:
153 len = (p[1] << 24) | (p[2] << 16) | (p[3] << 8) | p[4];
154 if (lensize) *lensize = 5;
155 break;
156 default:
157 assert(NULL);
158 }
159 } else {
160 len = zipIntSize(encoding);
161 if (lensize) *lensize = 1;
162 }
163 return len;
164 }
165
166 /* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
167 * the amount of bytes required to encode such a length. */
168 static unsigned int zipEncodeLength(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
169 unsigned char len = 1, buf[5];
170
171 if (ZIP_IS_STR(encoding)) {
172 /* Although encoding is given it may not be set for strings,
173 * so we determine it here using the raw length. */
174 if (rawlen <= 0x3f) {
175 if (!p) return len;
176 buf[0] = ZIP_STR_06B | rawlen;
177 } else if (rawlen <= 0x3fff) {
178 len += 1;
179 if (!p) return len;
180 buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
181 buf[1] = rawlen & 0xff;
182 } else {
183 len += 4;
184 if (!p) return len;
185 buf[0] = ZIP_STR_32B;
186 buf[1] = (rawlen >> 24) & 0xff;
187 buf[2] = (rawlen >> 16) & 0xff;
188 buf[3] = (rawlen >> 8) & 0xff;
189 buf[4] = rawlen & 0xff;
190 }
191 } else {
192 /* Implies integer encoding, so length is always 1. */
193 if (!p) return len;
194 buf[0] = encoding;
195 }
196
197 /* Store this length at p */
198 memcpy(p,buf,len);
199 return len;
200 }
201
202 /* Decode the length of the previous element stored at "p". */
203 static unsigned int zipPrevDecodeLength(unsigned char *p, unsigned int *lensize) {
204 unsigned int len = *p;
205 if (len < ZIP_BIGLEN) {
206 if (lensize) *lensize = 1;
207 } else {
208 if (lensize) *lensize = 1+sizeof(len);
209 memcpy(&len,p+1,sizeof(len));
210 }
211 return len;
212 }
213
214 /* Encode the length of the previous entry and write it to "p". Return the
215 * number of bytes needed to encode this length if "p" is NULL. */
216 static unsigned int zipPrevEncodeLength(unsigned char *p, unsigned int len) {
217 if (p == NULL) {
218 return (len < ZIP_BIGLEN) ? 1 : sizeof(len)+1;
219 } else {
220 if (len < ZIP_BIGLEN) {
221 p[0] = len;
222 return 1;
223 } else {
224 p[0] = ZIP_BIGLEN;
225 memcpy(p+1,&len,sizeof(len));
226 return 1+sizeof(len);
227 }
228 }
229 }
230
231 /* Encode the length of the previous entry and write it to "p". This only
232 * uses the larger encoding (required in __ziplistCascadeUpdate). */
233 static void zipPrevEncodeLengthForceLarge(unsigned char *p, unsigned int len) {
234 if (p == NULL) return;
235 p[0] = ZIP_BIGLEN;
236 memcpy(p+1,&len,sizeof(len));
237 }
238
239 /* Return the difference in number of bytes needed to store the new length
240 * "len" on the entry pointed to by "p". */
241 static int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
242 unsigned int prevlensize;
243 zipPrevDecodeLength(p,&prevlensize);
244 return zipPrevEncodeLength(NULL,len)-prevlensize;
245 }
246
247 /* Check if string pointed to by 'entry' can be encoded as an integer.
248 * Stores the integer value in 'v' and its encoding in 'encoding'. */
249 static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
250 long long value;
251 char *eptr;
252 char buf[32];
253
254 if (entrylen >= 32 || entrylen == 0) return 0;
255 if (entry[0] == '-' || (entry[0] >= '0' && entry[0] <= '9')) {
256 int slen;
257
258 /* Perform a back-and-forth conversion to make sure that
259 * the string turned into an integer is not losing any info. */
260 memcpy(buf,entry,entrylen);
261 buf[entrylen] = '\0';
262 value = strtoll(buf,&eptr,10);
263 if (eptr[0] != '\0') return 0;
264 slen = ll2string(buf,32,value);
265 if (entrylen != (unsigned)slen || memcmp(buf,entry,slen)) return 0;
266
267 /* Great, the string can be encoded. Check what's the smallest
268 * of our encoding types that can hold this value. */
269 if (value >= INT16_MIN && value <= INT16_MAX) {
270 *encoding = ZIP_INT_16B;
271 } else if (value >= INT32_MIN && value <= INT32_MAX) {
272 *encoding = ZIP_INT_32B;
273 } else {
274 *encoding = ZIP_INT_64B;
275 }
276 *v = value;
277 return 1;
278 }
279 return 0;
280 }
281
282 /* Store integer 'value' at 'p', encoded as 'encoding' */
283 static void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
284 int16_t i16;
285 int32_t i32;
286 int64_t i64;
287 if (encoding == ZIP_INT_16B) {
288 i16 = value;
289 memcpy(p,&i16,sizeof(i16));
290 } else if (encoding == ZIP_INT_32B) {
291 i32 = value;
292 memcpy(p,&i32,sizeof(i32));
293 } else if (encoding == ZIP_INT_64B) {
294 i64 = value;
295 memcpy(p,&i64,sizeof(i64));
296 } else {
297 assert(NULL);
298 }
299 }
300
301 /* Read integer encoded as 'encoding' from 'p' */
302 static int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
303 int16_t i16;
304 int32_t i32;
305 int64_t i64, ret = 0;
306 if (encoding == ZIP_INT_16B) {
307 memcpy(&i16,p,sizeof(i16));
308 ret = i16;
309 } else if (encoding == ZIP_INT_32B) {
310 memcpy(&i32,p,sizeof(i32));
311 ret = i32;
312 } else if (encoding == ZIP_INT_64B) {
313 memcpy(&i64,p,sizeof(i64));
314 ret = i64;
315 } else {
316 assert(NULL);
317 }
318 return ret;
319 }
320
321 /* Return a struct with all information about an entry. */
322 static zlentry zipEntry(unsigned char *p) {
323 zlentry e;
324 e.prevrawlen = zipPrevDecodeLength(p,&e.prevrawlensize);
325 e.len = zipDecodeLength(p+e.prevrawlensize,&e.lensize);
326 e.headersize = e.prevrawlensize+e.lensize;
327 e.encoding = zipEntryEncoding(p+e.prevrawlensize);
328 e.p = p;
329 return e;
330 }
331
332 /* Return the total number of bytes used by the entry at "p". */
333 static unsigned int zipRawEntryLength(unsigned char *p) {
334 zlentry e = zipEntry(p);
335 return e.headersize + e.len;
336 }
337
338 /* Create a new empty ziplist. */
339 unsigned char *ziplistNew(void) {
340 unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
341 unsigned char *zl = zmalloc(bytes);
342 ZIPLIST_BYTES(zl) = bytes;
343 ZIPLIST_TAIL_OFFSET(zl) = ZIPLIST_HEADER_SIZE;
344 ZIPLIST_LENGTH(zl) = 0;
345 zl[bytes-1] = ZIP_END;
346 return zl;
347 }
348
349 /* Resize the ziplist. */
350 static unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
351 zl = zrealloc(zl,len);
352 ZIPLIST_BYTES(zl) = len;
353 zl[len-1] = ZIP_END;
354 return zl;
355 }
356
357 /* When an entry is inserted, we need to set the prevlen field of the next
358 * entry to equal the length of the inserted entry. It can occur that this
359 * length cannot be encoded in 1 byte and the next entry needs to be grow
360 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
361 * because this only happens when an entry is already being inserted (which
362 * causes a realloc and memmove). However, encoding the prevlen may require
363 * that this entry is grown as well. This effect may cascade throughout
364 * the ziplist when there are consecutive entries with a size close to
365 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
366 * consecutive entry.
367 *
368 * Note that this effect can also happen in reverse, where the bytes required
369 * to encode the prevlen field can shrink. This effect is deliberately ignored,
370 * because it can cause a "flapping" effect where a chain prevlen fields is
371 * first grown and then shrunk again after consecutive inserts. Rather, the
372 * field is allowed to stay larger than necessary, because a large prevlen
373 * field implies the ziplist is holding large entries anyway.
374 *
375 * The pointer "p" points to the first entry that does NOT need to be
376 * updated, i.e. consecutive fields MAY need an update. */
377 static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
378 unsigned int curlen = ZIPLIST_BYTES(zl), rawlen, rawlensize;
379 unsigned int offset, noffset, extra;
380 unsigned char *np;
381 zlentry cur, next;
382
383 while (p[0] != ZIP_END) {
384 cur = zipEntry(p);
385 rawlen = cur.headersize + cur.len;
386 rawlensize = zipPrevEncodeLength(NULL,rawlen);
387
388 /* Abort if there is no next entry. */
389 if (p[rawlen] == ZIP_END) break;
390 next = zipEntry(p+rawlen);
391
392 /* Abort when "prevlen" has not changed. */
393 if (next.prevrawlen == rawlen) break;
394
395 if (next.prevrawlensize < rawlensize) {
396 /* The "prevlen" field of "next" needs more bytes to hold
397 * the raw length of "cur". */
398 offset = p-zl;
399 extra = rawlensize-next.prevrawlensize;
400 zl = ziplistResize(zl,curlen+extra);
401 ZIPLIST_TAIL_OFFSET(zl) += extra;
402 p = zl+offset;
403
404 /* Move the tail to the back. */
405 np = p+rawlen;
406 noffset = np-zl;
407 memmove(np+rawlensize,
408 np+next.prevrawlensize,
409 curlen-noffset-next.prevrawlensize-1);
410 zipPrevEncodeLength(np,rawlen);
411
412 /* Advance the cursor */
413 p += rawlen;
414 curlen += extra;
415 } else {
416 if (next.prevrawlensize > rawlensize) {
417 /* This would result in shrinking, which we want to avoid.
418 * So, set "rawlen" in the available bytes. */
419 zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
420 } else {
421 zipPrevEncodeLength(p+rawlen,rawlen);
422 }
423
424 /* Stop here, as the raw length of "next" has not changed. */
425 break;
426 }
427 }
428 return zl;
429 }
430
431 /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
432 static unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
433 unsigned int i, totlen, deleted = 0;
434 int offset, nextdiff = 0;
435 zlentry first, tail;
436
437 first = zipEntry(p);
438 for (i = 0; p[0] != ZIP_END && i < num; i++) {
439 p += zipRawEntryLength(p);
440 deleted++;
441 }
442
443 totlen = p-first.p;
444 if (totlen > 0) {
445 if (p[0] != ZIP_END) {
446 /* Tricky: storing the prevlen in this entry might reduce or
447 * increase the number of bytes needed, compared to the current
448 * prevlen. Note that we can always store this length because
449 * it was previously stored by an entry that is being deleted. */
450 nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
451 zipPrevEncodeLength(p-nextdiff,first.prevrawlen);
452
453 /* Update offset for tail */
454 ZIPLIST_TAIL_OFFSET(zl) -= totlen;
455
456 /* When the tail contains more than one entry, we need to take
457 * "nextdiff" in account as well. Otherwise, a change in the
458 * size of prevlen doesn't have an effect on the *tail* offset. */
459 tail = zipEntry(p);
460 if (p[tail.headersize+tail.len] != ZIP_END)
461 ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
462
463 /* Move tail to the front of the ziplist */
464 memmove(first.p,p-nextdiff,ZIPLIST_BYTES(zl)-(p-zl)-1+nextdiff);
465 } else {
466 /* The entire tail was deleted. No need to move memory. */
467 ZIPLIST_TAIL_OFFSET(zl) = (first.p-zl)-first.prevrawlen;
468 }
469
470 /* Resize and update length */
471 offset = first.p-zl;
472 zl = ziplistResize(zl, ZIPLIST_BYTES(zl)-totlen+nextdiff);
473 ZIPLIST_INCR_LENGTH(zl,-deleted);
474 p = zl+offset;
475
476 /* When nextdiff != 0, the raw length of the next entry has changed, so
477 * we need to cascade the update throughout the ziplist */
478 if (nextdiff != 0)
479 zl = __ziplistCascadeUpdate(zl,p);
480 }
481 return zl;
482 }
483
484 /* Insert item at "p". */
485 static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
486 unsigned int curlen = ZIPLIST_BYTES(zl), reqlen, prevlen = 0;
487 unsigned int offset, nextdiff = 0;
488 unsigned char encoding = 0;
489 long long value;
490 zlentry entry, tail;
491
492 /* Find out prevlen for the entry that is inserted. */
493 if (p[0] != ZIP_END) {
494 entry = zipEntry(p);
495 prevlen = entry.prevrawlen;
496 } else {
497 unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
498 if (ptail[0] != ZIP_END) {
499 prevlen = zipRawEntryLength(ptail);
500 }
501 }
502
503 /* See if the entry can be encoded */
504 if (zipTryEncoding(s,slen,&value,&encoding)) {
505 /* 'encoding' is set to the appropriate integer encoding */
506 reqlen = zipIntSize(encoding);
507 } else {
508 /* 'encoding' is untouched, however zipEncodeLength will use the
509 * string length to figure out how to encode it. */
510 reqlen = slen;
511 }
512 /* We need space for both the length of the previous entry and
513 * the length of the payload. */
514 reqlen += zipPrevEncodeLength(NULL,prevlen);
515 reqlen += zipEncodeLength(NULL,encoding,slen);
516
517 /* When the insert position is not equal to the tail, we need to
518 * make sure that the next entry can hold this entry's length in
519 * its prevlen field. */
520 nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
521
522 /* Store offset because a realloc may change the address of zl. */
523 offset = p-zl;
524 zl = ziplistResize(zl,curlen+reqlen+nextdiff);
525 p = zl+offset;
526
527 /* Apply memory move when necessary and update tail offset. */
528 if (p[0] != ZIP_END) {
529 /* Subtract one because of the ZIP_END bytes */
530 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
531
532 /* Encode this entry's raw length in the next entry. */
533 zipPrevEncodeLength(p+reqlen,reqlen);
534
535 /* Update offset for tail */
536 ZIPLIST_TAIL_OFFSET(zl) += reqlen;
537
538 /* When the tail contains more than one entry, we need to take
539 * "nextdiff" in account as well. Otherwise, a change in the
540 * size of prevlen doesn't have an effect on the *tail* offset. */
541 tail = zipEntry(p+reqlen);
542 if (p[reqlen+tail.headersize+tail.len] != ZIP_END)
543 ZIPLIST_TAIL_OFFSET(zl) += nextdiff;
544 } else {
545 /* This element will be the new tail. */
546 ZIPLIST_TAIL_OFFSET(zl) = p-zl;
547 }
548
549 /* When nextdiff != 0, the raw length of the next entry has changed, so
550 * we need to cascade the update throughout the ziplist */
551 if (nextdiff != 0) {
552 offset = p-zl;
553 zl = __ziplistCascadeUpdate(zl,p+reqlen);
554 p = zl+offset;
555 }
556
557 /* Write the entry */
558 p += zipPrevEncodeLength(p,prevlen);
559 p += zipEncodeLength(p,encoding,slen);
560 if (ZIP_IS_STR(encoding)) {
561 memcpy(p,s,slen);
562 } else {
563 zipSaveInteger(p,value,encoding);
564 }
565 ZIPLIST_INCR_LENGTH(zl,1);
566 return zl;
567 }
568
569 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
570 unsigned char *p;
571 p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
572 return __ziplistInsert(zl,p,s,slen);
573 }
574
575 /* Returns an offset to use for iterating with ziplistNext. When the given
576 * index is negative, the list is traversed back to front. When the list
577 * doesn't contain an element at the provided index, NULL is returned. */
578 unsigned char *ziplistIndex(unsigned char *zl, int index) {
579 unsigned char *p;
580 zlentry entry;
581 if (index < 0) {
582 index = (-index)-1;
583 p = ZIPLIST_ENTRY_TAIL(zl);
584 if (p[0] != ZIP_END) {
585 entry = zipEntry(p);
586 while (entry.prevrawlen > 0 && index--) {
587 p -= entry.prevrawlen;
588 entry = zipEntry(p);
589 }
590 }
591 } else {
592 p = ZIPLIST_ENTRY_HEAD(zl);
593 while (p[0] != ZIP_END && index--) {
594 p += zipRawEntryLength(p);
595 }
596 }
597 return (p[0] == ZIP_END || index > 0) ? NULL : p;
598 }
599
600 /* Return pointer to next entry in ziplist.
601 *
602 * zl is the pointer to the ziplist
603 * p is the pointer to the current element
604 *
605 * The element after 'p' is returned, otherwise NULL if we are at the end. */
606 unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
607 ((void) zl);
608
609 /* "p" could be equal to ZIP_END, caused by ziplistDelete,
610 * and we should return NULL. Otherwise, we should return NULL
611 * when the *next* element is ZIP_END (there is no next entry). */
612 if (p[0] == ZIP_END) {
613 return NULL;
614 } else {
615 p = p+zipRawEntryLength(p);
616 return (p[0] == ZIP_END) ? NULL : p;
617 }
618 }
619
620 /* Return pointer to previous entry in ziplist. */
621 unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
622 zlentry entry;
623
624 /* Iterating backwards from ZIP_END should return the tail. When "p" is
625 * equal to the first element of the list, we're already at the head,
626 * and should return NULL. */
627 if (p[0] == ZIP_END) {
628 p = ZIPLIST_ENTRY_TAIL(zl);
629 return (p[0] == ZIP_END) ? NULL : p;
630 } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
631 return NULL;
632 } else {
633 entry = zipEntry(p);
634 assert(entry.prevrawlen > 0);
635 return p-entry.prevrawlen;
636 }
637 }
638
639 /* Get entry pointer to by 'p' and store in either 'e' or 'v' depending
640 * on the encoding of the entry. 'e' is always set to NULL to be able
641 * to find out whether the string pointer or the integer value was set.
642 * Return 0 if 'p' points to the end of the zipmap, 1 otherwise. */
643 unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
644 zlentry entry;
645 if (p == NULL || p[0] == ZIP_END) return 0;
646 if (sstr) *sstr = NULL;
647
648 entry = zipEntry(p);
649 if (ZIP_IS_STR(entry.encoding)) {
650 if (sstr) {
651 *slen = entry.len;
652 *sstr = p+entry.headersize;
653 }
654 } else {
655 if (sval) {
656 *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
657 }
658 }
659 return 1;
660 }
661
662 /* Insert an entry at "p". */
663 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
664 return __ziplistInsert(zl,p,s,slen);
665 }
666
667 /* Delete a single entry from the ziplist, pointed to by *p.
668 * Also update *p in place, to be able to iterate over the
669 * ziplist, while deleting entries. */
670 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
671 unsigned int offset = *p-zl;
672 zl = __ziplistDelete(zl,*p,1);
673
674 /* Store pointer to current element in p, because ziplistDelete will
675 * do a realloc which might result in a different "zl"-pointer.
676 * When the delete direction is back to front, we might delete the last
677 * entry and end up with "p" pointing to ZIP_END, so check this. */
678 *p = zl+offset;
679 return zl;
680 }
681
682 /* Delete a range of entries from the ziplist. */
683 unsigned char *ziplistDeleteRange(unsigned char *zl, unsigned int index, unsigned int num) {
684 unsigned char *p = ziplistIndex(zl,index);
685 return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
686 }
687
688 /* Compare entry pointer to by 'p' with 'entry'. Return 1 if equal. */
689 unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
690 zlentry entry;
691 unsigned char sencoding;
692 long long zval, sval;
693 if (p[0] == ZIP_END) return 0;
694
695 entry = zipEntry(p);
696 if (ZIP_IS_STR(entry.encoding)) {
697 /* Raw compare */
698 if (entry.len == slen) {
699 return memcmp(p+entry.headersize,sstr,slen) == 0;
700 } else {
701 return 0;
702 }
703 } else {
704 /* Try to compare encoded values */
705 if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
706 if (entry.encoding == sencoding) {
707 zval = zipLoadInteger(p+entry.headersize,entry.encoding);
708 return zval == sval;
709 }
710 }
711 }
712 return 0;
713 }
714
715 /* Return length of ziplist. */
716 unsigned int ziplistLen(unsigned char *zl) {
717 unsigned int len = 0;
718 if (ZIPLIST_LENGTH(zl) < UINT16_MAX) {
719 len = ZIPLIST_LENGTH(zl);
720 } else {
721 unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
722 while (*p != ZIP_END) {
723 p += zipRawEntryLength(p);
724 len++;
725 }
726
727 /* Re-store length if small enough */
728 if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = len;
729 }
730 return len;
731 }
732
733 /* Return ziplist blob size in bytes. */
734 size_t ziplistBlobLen(unsigned char *zl) {
735 return ZIPLIST_BYTES(zl);
736 }
737
738 void ziplistRepr(unsigned char *zl) {
739 unsigned char *p;
740 int index = 0;
741 zlentry entry;
742
743 printf(
744 "{total bytes %d} "
745 "{length %u}\n"
746 "{tail offset %u}\n",
747 ZIPLIST_BYTES(zl),
748 ZIPLIST_LENGTH(zl),
749 ZIPLIST_TAIL_OFFSET(zl));
750 p = ZIPLIST_ENTRY_HEAD(zl);
751 while(*p != ZIP_END) {
752 entry = zipEntry(p);
753 printf(
754 "{"
755 "addr 0x%08lx, "
756 "index %2d, "
757 "offset %5ld, "
758 "rl: %5u, "
759 "hs %2u, "
760 "pl: %5u, "
761 "pls: %2u, "
762 "payload %5u"
763 "} ",
764 (long unsigned)p,
765 index,
766 (unsigned long) (p-zl),
767 entry.headersize+entry.len,
768 entry.headersize,
769 entry.prevrawlen,
770 entry.prevrawlensize,
771 entry.len);
772 p += entry.headersize;
773 if (ZIP_IS_STR(entry.encoding)) {
774 if (entry.len > 40) {
775 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
776 printf("...");
777 } else {
778 if (entry.len &&
779 fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
780 }
781 } else {
782 printf("%lld", (long long) zipLoadInteger(p,entry.encoding));
783 }
784 printf("\n");
785 p += entry.len;
786 index++;
787 }
788 printf("{end}\n\n");
789 }
790
791 #ifdef ZIPLIST_TEST_MAIN
792 #include <sys/time.h>
793 #include "adlist.h"
794 #include "sds.h"
795
796 #define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
797
798 unsigned char *createList() {
799 unsigned char *zl = ziplistNew();
800 zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
801 zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
802 zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
803 zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
804 return zl;
805 }
806
807 unsigned char *createIntList() {
808 unsigned char *zl = ziplistNew();
809 char buf[32];
810
811 sprintf(buf, "100");
812 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
813 sprintf(buf, "128000");
814 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
815 sprintf(buf, "-100");
816 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
817 sprintf(buf, "4294967296");
818 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
819 sprintf(buf, "non integer");
820 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
821 sprintf(buf, "much much longer non integer");
822 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
823 return zl;
824 }
825
826 long long usec(void) {
827 struct timeval tv;
828 gettimeofday(&tv,NULL);
829 return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
830 }
831
832 void stress(int pos, int num, int maxsize, int dnum) {
833 int i,j,k;
834 unsigned char *zl;
835 char posstr[2][5] = { "HEAD", "TAIL" };
836 long long start;
837 for (i = 0; i < maxsize; i+=dnum) {
838 zl = ziplistNew();
839 for (j = 0; j < i; j++) {
840 zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
841 }
842
843 /* Do num times a push+pop from pos */
844 start = usec();
845 for (k = 0; k < num; k++) {
846 zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
847 zl = ziplistDeleteRange(zl,0,1);
848 }
849 printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
850 i,ZIPLIST_BYTES(zl),num,posstr[pos],usec()-start);
851 zfree(zl);
852 }
853 }
854
855 void pop(unsigned char *zl, int where) {
856 unsigned char *p, *vstr;
857 unsigned int vlen;
858 long long vlong;
859
860 p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
861 if (ziplistGet(p,&vstr,&vlen,&vlong)) {
862 if (where == ZIPLIST_HEAD)
863 printf("Pop head: ");
864 else
865 printf("Pop tail: ");
866
867 if (vstr)
868 if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
869 else
870 printf("%lld", vlong);
871
872 printf("\n");
873 ziplistDeleteRange(zl,-1,1);
874 } else {
875 printf("ERROR: Could not pop\n");
876 exit(1);
877 }
878 }
879
880 void randstring(char *target, unsigned int min, unsigned int max) {
881 int p, len = min+rand()%(max-min+1);
882 int minval, maxval;
883 switch(rand() % 3) {
884 case 0:
885 minval = 0;
886 maxval = 255;
887 break;
888 case 1:
889 minval = 48;
890 maxval = 122;
891 break;
892 case 2:
893 minval = 48;
894 maxval = 52;
895 break;
896 default:
897 assert(NULL);
898 }
899
900 while(p < len)
901 target[p++] = minval+rand()%(maxval-minval+1);
902 return;
903 }
904
905
906 int main(int argc, char **argv) {
907 unsigned char *zl, *p;
908 unsigned char *entry;
909 unsigned int elen;
910 long long value;
911
912 /* If an argument is given, use it as the random seed. */
913 if (argc == 2)
914 srand(atoi(argv[1]));
915
916 zl = createIntList();
917 ziplistRepr(zl);
918
919 zl = createList();
920 ziplistRepr(zl);
921
922 pop(zl,ZIPLIST_TAIL);
923 ziplistRepr(zl);
924
925 pop(zl,ZIPLIST_HEAD);
926 ziplistRepr(zl);
927
928 pop(zl,ZIPLIST_TAIL);
929 ziplistRepr(zl);
930
931 pop(zl,ZIPLIST_TAIL);
932 ziplistRepr(zl);
933
934 printf("Get element at index 3:\n");
935 {
936 zl = createList();
937 p = ziplistIndex(zl, 3);
938 if (!ziplistGet(p, &entry, &elen, &value)) {
939 printf("ERROR: Could not access index 3\n");
940 return 1;
941 }
942 if (entry) {
943 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
944 printf("\n");
945 } else {
946 printf("%lld\n", value);
947 }
948 printf("\n");
949 }
950
951 printf("Get element at index 4 (out of range):\n");
952 {
953 zl = createList();
954 p = ziplistIndex(zl, 4);
955 if (p == NULL) {
956 printf("No entry\n");
957 } else {
958 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
959 return 1;
960 }
961 printf("\n");
962 }
963
964 printf("Get element at index -1 (last element):\n");
965 {
966 zl = createList();
967 p = ziplistIndex(zl, -1);
968 if (!ziplistGet(p, &entry, &elen, &value)) {
969 printf("ERROR: Could not access index -1\n");
970 return 1;
971 }
972 if (entry) {
973 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
974 printf("\n");
975 } else {
976 printf("%lld\n", value);
977 }
978 printf("\n");
979 }
980
981 printf("Get element at index -4 (first element):\n");
982 {
983 zl = createList();
984 p = ziplistIndex(zl, -4);
985 if (!ziplistGet(p, &entry, &elen, &value)) {
986 printf("ERROR: Could not access index -4\n");
987 return 1;
988 }
989 if (entry) {
990 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
991 printf("\n");
992 } else {
993 printf("%lld\n", value);
994 }
995 printf("\n");
996 }
997
998 printf("Get element at index -5 (reverse out of range):\n");
999 {
1000 zl = createList();
1001 p = ziplistIndex(zl, -5);
1002 if (p == NULL) {
1003 printf("No entry\n");
1004 } else {
1005 printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1006 return 1;
1007 }
1008 printf("\n");
1009 }
1010
1011 printf("Iterate list from 0 to end:\n");
1012 {
1013 zl = createList();
1014 p = ziplistIndex(zl, 0);
1015 while (ziplistGet(p, &entry, &elen, &value)) {
1016 printf("Entry: ");
1017 if (entry) {
1018 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1019 } else {
1020 printf("%lld", value);
1021 }
1022 p = ziplistNext(zl,p);
1023 printf("\n");
1024 }
1025 printf("\n");
1026 }
1027
1028 printf("Iterate list from 1 to end:\n");
1029 {
1030 zl = createList();
1031 p = ziplistIndex(zl, 1);
1032 while (ziplistGet(p, &entry, &elen, &value)) {
1033 printf("Entry: ");
1034 if (entry) {
1035 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1036 } else {
1037 printf("%lld", value);
1038 }
1039 p = ziplistNext(zl,p);
1040 printf("\n");
1041 }
1042 printf("\n");
1043 }
1044
1045 printf("Iterate list from 2 to end:\n");
1046 {
1047 zl = createList();
1048 p = ziplistIndex(zl, 2);
1049 while (ziplistGet(p, &entry, &elen, &value)) {
1050 printf("Entry: ");
1051 if (entry) {
1052 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1053 } else {
1054 printf("%lld", value);
1055 }
1056 p = ziplistNext(zl,p);
1057 printf("\n");
1058 }
1059 printf("\n");
1060 }
1061
1062 printf("Iterate starting out of range:\n");
1063 {
1064 zl = createList();
1065 p = ziplistIndex(zl, 4);
1066 if (!ziplistGet(p, &entry, &elen, &value)) {
1067 printf("No entry\n");
1068 } else {
1069 printf("ERROR\n");
1070 }
1071 printf("\n");
1072 }
1073
1074 printf("Iterate from back to front:\n");
1075 {
1076 zl = createList();
1077 p = ziplistIndex(zl, -1);
1078 while (ziplistGet(p, &entry, &elen, &value)) {
1079 printf("Entry: ");
1080 if (entry) {
1081 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1082 } else {
1083 printf("%lld", value);
1084 }
1085 p = ziplistPrev(zl,p);
1086 printf("\n");
1087 }
1088 printf("\n");
1089 }
1090
1091 printf("Iterate from back to front, deleting all items:\n");
1092 {
1093 zl = createList();
1094 p = ziplistIndex(zl, -1);
1095 while (ziplistGet(p, &entry, &elen, &value)) {
1096 printf("Entry: ");
1097 if (entry) {
1098 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1099 } else {
1100 printf("%lld", value);
1101 }
1102 zl = ziplistDelete(zl,&p);
1103 p = ziplistPrev(zl,p);
1104 printf("\n");
1105 }
1106 printf("\n");
1107 }
1108
1109 printf("Delete inclusive range 0,0:\n");
1110 {
1111 zl = createList();
1112 zl = ziplistDeleteRange(zl, 0, 1);
1113 ziplistRepr(zl);
1114 }
1115
1116 printf("Delete inclusive range 0,1:\n");
1117 {
1118 zl = createList();
1119 zl = ziplistDeleteRange(zl, 0, 2);
1120 ziplistRepr(zl);
1121 }
1122
1123 printf("Delete inclusive range 1,2:\n");
1124 {
1125 zl = createList();
1126 zl = ziplistDeleteRange(zl, 1, 2);
1127 ziplistRepr(zl);
1128 }
1129
1130 printf("Delete with start index out of range:\n");
1131 {
1132 zl = createList();
1133 zl = ziplistDeleteRange(zl, 5, 1);
1134 ziplistRepr(zl);
1135 }
1136
1137 printf("Delete with num overflow:\n");
1138 {
1139 zl = createList();
1140 zl = ziplistDeleteRange(zl, 1, 5);
1141 ziplistRepr(zl);
1142 }
1143
1144 printf("Delete foo while iterating:\n");
1145 {
1146 zl = createList();
1147 p = ziplistIndex(zl,0);
1148 while (ziplistGet(p,&entry,&elen,&value)) {
1149 if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1150 printf("Delete foo\n");
1151 zl = ziplistDelete(zl,&p);
1152 } else {
1153 printf("Entry: ");
1154 if (entry) {
1155 if (elen && fwrite(entry,elen,1,stdout) == 0)
1156 perror("fwrite");
1157 } else {
1158 printf("%lld",value);
1159 }
1160 p = ziplistNext(zl,p);
1161 printf("\n");
1162 }
1163 }
1164 printf("\n");
1165 ziplistRepr(zl);
1166 }
1167
1168 printf("Regression test for >255 byte strings:\n");
1169 {
1170 char v1[257],v2[257];
1171 memset(v1,'x',256);
1172 memset(v2,'y',256);
1173 zl = ziplistNew();
1174 zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1175 zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1176
1177 /* Pop values again and compare their value. */
1178 p = ziplistIndex(zl,0);
1179 assert(ziplistGet(p,&entry,&elen,&value));
1180 assert(strncmp(v1,(char*)entry,elen) == 0);
1181 p = ziplistIndex(zl,1);
1182 assert(ziplistGet(p,&entry,&elen,&value));
1183 assert(strncmp(v2,(char*)entry,elen) == 0);
1184 printf("SUCCESS\n\n");
1185 }
1186
1187 printf("Create long list and check indices:\n");
1188 {
1189 zl = ziplistNew();
1190 char buf[32];
1191 int i,len;
1192 for (i = 0; i < 1000; i++) {
1193 len = sprintf(buf,"%d",i);
1194 zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1195 }
1196 for (i = 0; i < 1000; i++) {
1197 p = ziplistIndex(zl,i);
1198 assert(ziplistGet(p,NULL,NULL,&value));
1199 assert(i == value);
1200
1201 p = ziplistIndex(zl,-i-1);
1202 assert(ziplistGet(p,NULL,NULL,&value));
1203 assert(999-i == value);
1204 }
1205 printf("SUCCESS\n\n");
1206 }
1207
1208 printf("Compare strings with ziplist entries:\n");
1209 {
1210 zl = createList();
1211 p = ziplistIndex(zl,0);
1212 if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1213 printf("ERROR: not \"hello\"\n");
1214 return 1;
1215 }
1216 if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1217 printf("ERROR: \"hella\"\n");
1218 return 1;
1219 }
1220
1221 p = ziplistIndex(zl,3);
1222 if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1223 printf("ERROR: not \"1024\"\n");
1224 return 1;
1225 }
1226 if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1227 printf("ERROR: \"1025\"\n");
1228 return 1;
1229 }
1230 printf("SUCCESS\n\n");
1231 }
1232
1233 printf("Stress with random payloads of different encoding:\n");
1234 {
1235 int i,j,len,where;
1236 unsigned char *p;
1237 char buf[1024];
1238 list *ref;
1239 listNode *refnode;
1240
1241 /* Hold temp vars from ziplist */
1242 unsigned char *sstr;
1243 unsigned int slen;
1244 long long sval;
1245
1246 /* In the regression for the cascade bug, it was triggered
1247 * with a random seed of 2. */
1248 srand(2);
1249
1250 for (i = 0; i < 20000; i++) {
1251 zl = ziplistNew();
1252 ref = listCreate();
1253 listSetFreeMethod(ref,sdsfree);
1254 len = rand() % 256;
1255
1256 /* Create lists */
1257 for (j = 0; j < len; j++) {
1258 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1259 switch(rand() % 4) {
1260 case 0:
1261 sprintf(buf,"%lld",(0LL + rand()) >> 20);
1262 break;
1263 case 1:
1264 sprintf(buf,"%lld",(0LL + rand()));
1265 break;
1266 case 2:
1267 sprintf(buf,"%lld",(0LL + rand()) << 20);
1268 break;
1269 case 3:
1270 randstring(buf,0,256);
1271 break;
1272 default:
1273 assert(NULL);
1274 }
1275
1276 /* Add to ziplist */
1277 zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), where);
1278
1279 /* Add to reference list */
1280 if (where == ZIPLIST_HEAD) {
1281 listAddNodeHead(ref,sdsnew(buf));
1282 } else if (where == ZIPLIST_TAIL) {
1283 listAddNodeTail(ref,sdsnew(buf));
1284 } else {
1285 assert(NULL);
1286 }
1287 }
1288
1289 assert(listLength(ref) == ziplistLen(zl));
1290 for (j = 0; j < len; j++) {
1291 /* Naive way to get elements, but similar to the stresser
1292 * executed from the Tcl test suite. */
1293 p = ziplistIndex(zl,j);
1294 refnode = listIndex(ref,j);
1295
1296 assert(ziplistGet(p,&sstr,&slen,&sval));
1297 if (sstr == NULL) {
1298 sprintf(buf,"%lld",sval);
1299 } else {
1300 memcpy(buf,sstr,slen);
1301 buf[slen] = '\0';
1302 }
1303 assert(strcmp(buf,listNodeValue(refnode)) == 0);
1304 }
1305 zfree(zl);
1306 listRelease(ref);
1307 }
1308 printf("SUCCESS\n\n");
1309 }
1310
1311 printf("Stress with variable ziplist size:\n");
1312 {
1313 stress(ZIPLIST_HEAD,100000,16384,256);
1314 stress(ZIPLIST_TAIL,100000,16384,256);
1315 }
1316
1317 return 0;
1318 }
1319
1320 #endif