]> git.saurik.com Git - redis.git/blob - dict.c
dict.c fixed to play well with enabling/disabling of the hash table
[redis.git] / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44
45 #include "dict.h"
46 #include "zmalloc.h"
47
48 /* Using dictEnableResize() / dictDisableResize() we make possible to
49 * enable/disable resizing of the hash table as needed. This is very important
50 * for Redis, as we use copy-on-write and don't want to move too much memory
51 * around when there is a child performing saving operations. */
52 static int dict_can_resize = 1;
53
54 /* ---------------------------- Utility funcitons --------------------------- */
55
56 static void _dictPanic(const char *fmt, ...)
57 {
58 va_list ap;
59
60 va_start(ap, fmt);
61 fprintf(stderr, "\nDICT LIBRARY PANIC: ");
62 vfprintf(stderr, fmt, ap);
63 fprintf(stderr, "\n\n");
64 va_end(ap);
65 }
66
67 /* ------------------------- Heap Management Wrappers------------------------ */
68
69 static void *_dictAlloc(size_t size)
70 {
71 void *p = zmalloc(size);
72 if (p == NULL)
73 _dictPanic("Out of memory");
74 return p;
75 }
76
77 static void _dictFree(void *ptr) {
78 zfree(ptr);
79 }
80
81 /* -------------------------- private prototypes ---------------------------- */
82
83 static int _dictExpandIfNeeded(dict *ht);
84 static unsigned long _dictNextPower(unsigned long size);
85 static int _dictKeyIndex(dict *ht, const void *key);
86 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
87
88 /* -------------------------- hash functions -------------------------------- */
89
90 /* Thomas Wang's 32 bit Mix Function */
91 unsigned int dictIntHashFunction(unsigned int key)
92 {
93 key += ~(key << 15);
94 key ^= (key >> 10);
95 key += (key << 3);
96 key ^= (key >> 6);
97 key += ~(key << 11);
98 key ^= (key >> 16);
99 return key;
100 }
101
102 /* Identity hash function for integer keys */
103 unsigned int dictIdentityHashFunction(unsigned int key)
104 {
105 return key;
106 }
107
108 /* Generic hash function (a popular one from Bernstein).
109 * I tested a few and this was the best. */
110 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
111 unsigned int hash = 5381;
112
113 while (len--)
114 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
115 return hash;
116 }
117
118 /* ----------------------------- API implementation ------------------------- */
119
120 /* Reset an hashtable already initialized with ht_init().
121 * NOTE: This function should only called by ht_destroy(). */
122 static void _dictReset(dict *ht)
123 {
124 ht->table = NULL;
125 ht->size = 0;
126 ht->sizemask = 0;
127 ht->used = 0;
128 }
129
130 /* Create a new hash table */
131 dict *dictCreate(dictType *type,
132 void *privDataPtr)
133 {
134 dict *ht = _dictAlloc(sizeof(*ht));
135
136 _dictInit(ht,type,privDataPtr);
137 return ht;
138 }
139
140 /* Initialize the hash table */
141 int _dictInit(dict *ht, dictType *type,
142 void *privDataPtr)
143 {
144 _dictReset(ht);
145 ht->type = type;
146 ht->privdata = privDataPtr;
147 return DICT_OK;
148 }
149
150 /* Resize the table to the minimal size that contains all the elements,
151 * but with the invariant of a USER/BUCKETS ration near to <= 1 */
152 int dictResize(dict *ht)
153 {
154 int minimal = ht->used;
155
156 if (!dict_can_resize) return DICT_ERR;
157 if (minimal < DICT_HT_INITIAL_SIZE)
158 minimal = DICT_HT_INITIAL_SIZE;
159 return dictExpand(ht, minimal);
160 }
161
162 /* Expand or create the hashtable */
163 int dictExpand(dict *ht, unsigned long size)
164 {
165 dict n; /* the new hashtable */
166 unsigned long realsize = _dictNextPower(size), i;
167
168 /* the size is invalid if it is smaller than the number of
169 * elements already inside the hashtable */
170 if (ht->used > size)
171 return DICT_ERR;
172
173 _dictInit(&n, ht->type, ht->privdata);
174 n.size = realsize;
175 n.sizemask = realsize-1;
176 n.table = _dictAlloc(realsize*sizeof(dictEntry*));
177
178 /* Initialize all the pointers to NULL */
179 memset(n.table, 0, realsize*sizeof(dictEntry*));
180
181 /* Copy all the elements from the old to the new table:
182 * note that if the old hash table is empty ht->size is zero,
183 * so dictExpand just creates an hash table. */
184 n.used = ht->used;
185 for (i = 0; i < ht->size && ht->used > 0; i++) {
186 dictEntry *he, *nextHe;
187
188 if (ht->table[i] == NULL) continue;
189
190 /* For each hash entry on this slot... */
191 he = ht->table[i];
192 while(he) {
193 unsigned int h;
194
195 nextHe = he->next;
196 /* Get the new element index */
197 h = dictHashKey(ht, he->key) & n.sizemask;
198 he->next = n.table[h];
199 n.table[h] = he;
200 ht->used--;
201 /* Pass to the next element */
202 he = nextHe;
203 }
204 }
205 assert(ht->used == 0);
206 _dictFree(ht->table);
207
208 /* Remap the new hashtable in the old */
209 *ht = n;
210 return DICT_OK;
211 }
212
213 /* Add an element to the target hash table */
214 int dictAdd(dict *ht, void *key, void *val)
215 {
216 int index;
217 dictEntry *entry;
218
219 /* Get the index of the new element, or -1 if
220 * the element already exists. */
221 if ((index = _dictKeyIndex(ht, key)) == -1)
222 return DICT_ERR;
223
224 /* Allocates the memory and stores key */
225 entry = _dictAlloc(sizeof(*entry));
226 entry->next = ht->table[index];
227 ht->table[index] = entry;
228
229 /* Set the hash entry fields. */
230 dictSetHashKey(ht, entry, key);
231 dictSetHashVal(ht, entry, val);
232 ht->used++;
233 return DICT_OK;
234 }
235
236 /* Add an element, discarding the old if the key already exists.
237 * Return 1 if the key was added from scratch, 0 if there was already an
238 * element with such key and dictReplace() just performed a value update
239 * operation. */
240 int dictReplace(dict *ht, void *key, void *val)
241 {
242 dictEntry *entry, auxentry;
243
244 /* Try to add the element. If the key
245 * does not exists dictAdd will suceed. */
246 if (dictAdd(ht, key, val) == DICT_OK)
247 return 1;
248 /* It already exists, get the entry */
249 entry = dictFind(ht, key);
250 /* Free the old value and set the new one */
251 /* Set the new value and free the old one. Note that it is important
252 * to do that in this order, as the value may just be exactly the same
253 * as the previous one. In this context, think to reference counting,
254 * you want to increment (set), and then decrement (free), and not the
255 * reverse. */
256 auxentry = *entry;
257 dictSetHashVal(ht, entry, val);
258 dictFreeEntryVal(ht, &auxentry);
259 return 0;
260 }
261
262 /* Search and remove an element */
263 static int dictGenericDelete(dict *ht, const void *key, int nofree)
264 {
265 unsigned int h;
266 dictEntry *he, *prevHe;
267
268 if (ht->size == 0)
269 return DICT_ERR;
270 h = dictHashKey(ht, key) & ht->sizemask;
271 he = ht->table[h];
272
273 prevHe = NULL;
274 while(he) {
275 if (dictCompareHashKeys(ht, key, he->key)) {
276 /* Unlink the element from the list */
277 if (prevHe)
278 prevHe->next = he->next;
279 else
280 ht->table[h] = he->next;
281 if (!nofree) {
282 dictFreeEntryKey(ht, he);
283 dictFreeEntryVal(ht, he);
284 }
285 _dictFree(he);
286 ht->used--;
287 return DICT_OK;
288 }
289 prevHe = he;
290 he = he->next;
291 }
292 return DICT_ERR; /* not found */
293 }
294
295 int dictDelete(dict *ht, const void *key) {
296 return dictGenericDelete(ht,key,0);
297 }
298
299 int dictDeleteNoFree(dict *ht, const void *key) {
300 return dictGenericDelete(ht,key,1);
301 }
302
303 /* Destroy an entire hash table */
304 int _dictClear(dict *ht)
305 {
306 unsigned long i;
307
308 /* Free all the elements */
309 for (i = 0; i < ht->size && ht->used > 0; i++) {
310 dictEntry *he, *nextHe;
311
312 if ((he = ht->table[i]) == NULL) continue;
313 while(he) {
314 nextHe = he->next;
315 dictFreeEntryKey(ht, he);
316 dictFreeEntryVal(ht, he);
317 _dictFree(he);
318 ht->used--;
319 he = nextHe;
320 }
321 }
322 /* Free the table and the allocated cache structure */
323 _dictFree(ht->table);
324 /* Re-initialize the table */
325 _dictReset(ht);
326 return DICT_OK; /* never fails */
327 }
328
329 /* Clear & Release the hash table */
330 void dictRelease(dict *ht)
331 {
332 _dictClear(ht);
333 _dictFree(ht);
334 }
335
336 dictEntry *dictFind(dict *ht, const void *key)
337 {
338 dictEntry *he;
339 unsigned int h;
340
341 if (ht->size == 0) return NULL;
342 h = dictHashKey(ht, key) & ht->sizemask;
343 he = ht->table[h];
344 while(he) {
345 if (dictCompareHashKeys(ht, key, he->key))
346 return he;
347 he = he->next;
348 }
349 return NULL;
350 }
351
352 dictIterator *dictGetIterator(dict *ht)
353 {
354 dictIterator *iter = _dictAlloc(sizeof(*iter));
355
356 iter->ht = ht;
357 iter->index = -1;
358 iter->entry = NULL;
359 iter->nextEntry = NULL;
360 return iter;
361 }
362
363 dictEntry *dictNext(dictIterator *iter)
364 {
365 while (1) {
366 if (iter->entry == NULL) {
367 iter->index++;
368 if (iter->index >=
369 (signed)iter->ht->size) break;
370 iter->entry = iter->ht->table[iter->index];
371 } else {
372 iter->entry = iter->nextEntry;
373 }
374 if (iter->entry) {
375 /* We need to save the 'next' here, the iterator user
376 * may delete the entry we are returning. */
377 iter->nextEntry = iter->entry->next;
378 return iter->entry;
379 }
380 }
381 return NULL;
382 }
383
384 void dictReleaseIterator(dictIterator *iter)
385 {
386 _dictFree(iter);
387 }
388
389 /* Return a random entry from the hash table. Useful to
390 * implement randomized algorithms */
391 dictEntry *dictGetRandomKey(dict *ht)
392 {
393 dictEntry *he;
394 unsigned int h;
395 int listlen, listele;
396
397 if (ht->used == 0) return NULL;
398 do {
399 h = random() & ht->sizemask;
400 he = ht->table[h];
401 } while(he == NULL);
402
403 /* Now we found a non empty bucket, but it is a linked
404 * list and we need to get a random element from the list.
405 * The only sane way to do so is to count the element and
406 * select a random index. */
407 listlen = 0;
408 while(he) {
409 he = he->next;
410 listlen++;
411 }
412 listele = random() % listlen;
413 he = ht->table[h];
414 while(listele--) he = he->next;
415 return he;
416 }
417
418 /* ------------------------- private functions ------------------------------ */
419
420 /* Expand the hash table if needed */
421 static int _dictExpandIfNeeded(dict *ht)
422 {
423 /* If the hash table is empty expand it to the intial size,
424 * if the table is "full" dobule its size. */
425 if (ht->size == 0)
426 return dictExpand(ht, DICT_HT_INITIAL_SIZE);
427 if (ht->used >= ht->size && dict_can_resize)
428 return dictExpand(ht, ((ht->size > ht->used) ? ht->size : ht->used)*2);
429 return DICT_OK;
430 }
431
432 /* Our hash table capability is a power of two */
433 static unsigned long _dictNextPower(unsigned long size)
434 {
435 unsigned long i = DICT_HT_INITIAL_SIZE;
436
437 if (size >= LONG_MAX) return LONG_MAX;
438 while(1) {
439 if (i >= size)
440 return i;
441 i *= 2;
442 }
443 }
444
445 /* Returns the index of a free slot that can be populated with
446 * an hash entry for the given 'key'.
447 * If the key already exists, -1 is returned. */
448 static int _dictKeyIndex(dict *ht, const void *key)
449 {
450 unsigned int h;
451 dictEntry *he;
452
453 /* Expand the hashtable if needed */
454 if (_dictExpandIfNeeded(ht) == DICT_ERR)
455 return -1;
456 /* Compute the key hash value */
457 h = dictHashKey(ht, key) & ht->sizemask;
458 /* Search if this slot does not already contain the given key */
459 he = ht->table[h];
460 while(he) {
461 if (dictCompareHashKeys(ht, key, he->key))
462 return -1;
463 he = he->next;
464 }
465 return h;
466 }
467
468 void dictEmpty(dict *ht) {
469 _dictClear(ht);
470 }
471
472 #define DICT_STATS_VECTLEN 50
473 void dictPrintStats(dict *ht) {
474 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
475 unsigned long totchainlen = 0;
476 unsigned long clvector[DICT_STATS_VECTLEN];
477
478 if (ht->used == 0) {
479 printf("No stats available for empty dictionaries\n");
480 return;
481 }
482
483 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
484 for (i = 0; i < ht->size; i++) {
485 dictEntry *he;
486
487 if (ht->table[i] == NULL) {
488 clvector[0]++;
489 continue;
490 }
491 slots++;
492 /* For each hash entry on this slot... */
493 chainlen = 0;
494 he = ht->table[i];
495 while(he) {
496 chainlen++;
497 he = he->next;
498 }
499 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
500 if (chainlen > maxchainlen) maxchainlen = chainlen;
501 totchainlen += chainlen;
502 }
503 printf("Hash table stats:\n");
504 printf(" table size: %ld\n", ht->size);
505 printf(" number of elements: %ld\n", ht->used);
506 printf(" different slots: %ld\n", slots);
507 printf(" max chain length: %ld\n", maxchainlen);
508 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
509 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
510 printf(" Chain length distribution:\n");
511 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
512 if (clvector[i] == 0) continue;
513 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
514 }
515 }
516
517 void dictEnableResize(void) {
518 dict_can_resize = 1;
519 }
520
521 void dictDisableResize(void) {
522 dict_can_resize = 0;
523 }
524
525 /* ----------------------- StringCopy Hash Table Type ------------------------*/
526
527 static unsigned int _dictStringCopyHTHashFunction(const void *key)
528 {
529 return dictGenHashFunction(key, strlen(key));
530 }
531
532 static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
533 {
534 int len = strlen(key);
535 char *copy = _dictAlloc(len+1);
536 DICT_NOTUSED(privdata);
537
538 memcpy(copy, key, len);
539 copy[len] = '\0';
540 return copy;
541 }
542
543 static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
544 {
545 int len = strlen(val);
546 char *copy = _dictAlloc(len+1);
547 DICT_NOTUSED(privdata);
548
549 memcpy(copy, val, len);
550 copy[len] = '\0';
551 return copy;
552 }
553
554 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
555 const void *key2)
556 {
557 DICT_NOTUSED(privdata);
558
559 return strcmp(key1, key2) == 0;
560 }
561
562 static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
563 {
564 DICT_NOTUSED(privdata);
565
566 _dictFree((void*)key); /* ATTENTION: const cast */
567 }
568
569 static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
570 {
571 DICT_NOTUSED(privdata);
572
573 _dictFree((void*)val); /* ATTENTION: const cast */
574 }
575
576 dictType dictTypeHeapStringCopyKey = {
577 _dictStringCopyHTHashFunction, /* hash function */
578 _dictStringCopyHTKeyDup, /* key dup */
579 NULL, /* val dup */
580 _dictStringCopyHTKeyCompare, /* key compare */
581 _dictStringCopyHTKeyDestructor, /* key destructor */
582 NULL /* val destructor */
583 };
584
585 /* This is like StringCopy but does not auto-duplicate the key.
586 * It's used for intepreter's shared strings. */
587 dictType dictTypeHeapStrings = {
588 _dictStringCopyHTHashFunction, /* hash function */
589 NULL, /* key dup */
590 NULL, /* val dup */
591 _dictStringCopyHTKeyCompare, /* key compare */
592 _dictStringCopyHTKeyDestructor, /* key destructor */
593 NULL /* val destructor */
594 };
595
596 /* This is like StringCopy but also automatically handle dynamic
597 * allocated C strings as values. */
598 dictType dictTypeHeapStringCopyKeyValue = {
599 _dictStringCopyHTHashFunction, /* hash function */
600 _dictStringCopyHTKeyDup, /* key dup */
601 _dictStringKeyValCopyHTValDup, /* val dup */
602 _dictStringCopyHTKeyCompare, /* key compare */
603 _dictStringCopyHTKeyDestructor, /* key destructor */
604 _dictStringKeyValCopyHTValDestructor, /* val destructor */
605 };