]> git.saurik.com Git - redis.git/blob - redis.conf
make prototype of custom function to preload keys from the vm match the prototype...
[redis.git] / redis.conf
1 # Redis configuration file example
2
3 # Note on units: when memory size is needed, it is possible to specifiy
4 # it in the usual form of 1k 5GB 4M and so forth:
5 #
6 # 1k => 1000 bytes
7 # 1kb => 1024 bytes
8 # 1m => 1000000 bytes
9 # 1mb => 1024*1024 bytes
10 # 1g => 1000000000 bytes
11 # 1gb => 1024*1024*1024 bytes
12 #
13 # units are case insensitive so 1GB 1Gb 1gB are all the same.
14
15 # By default Redis does not run as a daemon. Use 'yes' if you need it.
16 # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
17 daemonize no
18
19 # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
20 # default. You can specify a custom pid file location here.
21 pidfile /var/run/redis.pid
22
23 # Accept connections on the specified port, default is 6379
24 port 6379
25
26 # If you want you can bind a single interface, if the bind option is not
27 # specified all the interfaces will listen for incoming connections.
28 #
29 # bind 127.0.0.1
30
31 # Close the connection after a client is idle for N seconds (0 to disable)
32 timeout 300
33
34 # Set server verbosity to 'debug'
35 # it can be one of:
36 # debug (a lot of information, useful for development/testing)
37 # verbose (many rarely useful info, but not a mess like the debug level)
38 # notice (moderately verbose, what you want in production probably)
39 # warning (only very important / critical messages are logged)
40 loglevel verbose
41
42 # Specify the log file name. Also 'stdout' can be used to force
43 # Redis to log on the standard output. Note that if you use standard
44 # output for logging but daemonize, logs will be sent to /dev/null
45 logfile stdout
46
47 # Set the number of databases. The default database is DB 0, you can select
48 # a different one on a per-connection basis using SELECT <dbid> where
49 # dbid is a number between 0 and 'databases'-1
50 databases 16
51
52 ################################ SNAPSHOTTING #################################
53 #
54 # Save the DB on disk:
55 #
56 # save <seconds> <changes>
57 #
58 # Will save the DB if both the given number of seconds and the given
59 # number of write operations against the DB occurred.
60 #
61 # In the example below the behaviour will be to save:
62 # after 900 sec (15 min) if at least 1 key changed
63 # after 300 sec (5 min) if at least 10 keys changed
64 # after 60 sec if at least 10000 keys changed
65 #
66 # Note: you can disable saving at all commenting all the "save" lines.
67
68 save 900 1
69 save 300 10
70 save 60 10000
71
72 # Compress string objects using LZF when dump .rdb databases?
73 # For default that's set to 'yes' as it's almost always a win.
74 # If you want to save some CPU in the saving child set it to 'no' but
75 # the dataset will likely be bigger if you have compressible values or keys.
76 rdbcompression yes
77
78 # The filename where to dump the DB
79 dbfilename dump.rdb
80
81 # The working directory.
82 #
83 # The DB will be written inside this directory, with the filename specified
84 # above using the 'dbfilename' configuration directive.
85 #
86 # Also the Append Only File will be created inside this directory.
87 #
88 # Note that you must specify a directory here, not a file name.
89 dir ./
90
91 ################################# REPLICATION #################################
92
93 # Master-Slave replication. Use slaveof to make a Redis instance a copy of
94 # another Redis server. Note that the configuration is local to the slave
95 # so for example it is possible to configure the slave to save the DB with a
96 # different interval, or to listen to another port, and so on.
97 #
98 # slaveof <masterip> <masterport>
99
100 # If the master is password protected (using the "requirepass" configuration
101 # directive below) it is possible to tell the slave to authenticate before
102 # starting the replication synchronization process, otherwise the master will
103 # refuse the slave request.
104 #
105 # masterauth <master-password>
106
107 ################################## SECURITY ###################################
108
109 # Require clients to issue AUTH <PASSWORD> before processing any other
110 # commands. This might be useful in environments in which you do not trust
111 # others with access to the host running redis-server.
112 #
113 # This should stay commented out for backward compatibility and because most
114 # people do not need auth (e.g. they run their own servers).
115 #
116 # requirepass foobared
117
118 ################################### LIMITS ####################################
119
120 # Set the max number of connected clients at the same time. By default there
121 # is no limit, and it's up to the number of file descriptors the Redis process
122 # is able to open. The special value '0' means no limits.
123 # Once the limit is reached Redis will close all the new connections sending
124 # an error 'max number of clients reached'.
125 #
126 # maxclients 128
127
128 # Don't use more memory than the specified amount of bytes.
129 # When the memory limit is reached Redis will try to remove keys with an
130 # EXPIRE set. It will try to start freeing keys that are going to expire
131 # in little time and preserve keys with a longer time to live.
132 # Redis will also try to remove objects from free lists if possible.
133 #
134 # If all this fails, Redis will start to reply with errors to commands
135 # that will use more memory, like SET, LPUSH, and so on, and will continue
136 # to reply to most read-only commands like GET.
137 #
138 # WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
139 # 'state' server or cache, not as a real DB. When Redis is used as a real
140 # database the memory usage will grow over the weeks, it will be obvious if
141 # it is going to use too much memory in the long run, and you'll have the time
142 # to upgrade. With maxmemory after the limit is reached you'll start to get
143 # errors for write operations, and this may even lead to DB inconsistency.
144 #
145 # maxmemory <bytes>
146
147 ############################## APPEND ONLY MODE ###############################
148
149 # By default Redis asynchronously dumps the dataset on disk. If you can live
150 # with the idea that the latest records will be lost if something like a crash
151 # happens this is the preferred way to run Redis. If instead you care a lot
152 # about your data and don't want to that a single record can get lost you should
153 # enable the append only mode: when this mode is enabled Redis will append
154 # every write operation received in the file appendonly.aof. This file will
155 # be read on startup in order to rebuild the full dataset in memory.
156 #
157 # Note that you can have both the async dumps and the append only file if you
158 # like (you have to comment the "save" statements above to disable the dumps).
159 # Still if append only mode is enabled Redis will load the data from the
160 # log file at startup ignoring the dump.rdb file.
161 #
162 # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
163 # log file in background when it gets too big.
164
165 appendonly no
166
167 # The name of the append only file (default: "appendonly.aof")
168 # appendfilename appendonly.aof
169
170 # The fsync() call tells the Operating System to actually write data on disk
171 # instead to wait for more data in the output buffer. Some OS will really flush
172 # data on disk, some other OS will just try to do it ASAP.
173 #
174 # Redis supports three different modes:
175 #
176 # no: don't fsync, just let the OS flush the data when it wants. Faster.
177 # always: fsync after every write to the append only log . Slow, Safest.
178 # everysec: fsync only if one second passed since the last fsync. Compromise.
179 #
180 # The default is "everysec" that's usually the right compromise between
181 # speed and data safety. It's up to you to understand if you can relax this to
182 # "no" that will will let the operating system flush the output buffer when
183 # it wants, for better performances (but if you can live with the idea of
184 # some data loss consider the default persistence mode that's snapshotting),
185 # or on the contrary, use "always" that's very slow but a bit safer than
186 # everysec.
187 #
188 # If unsure, use "everysec".
189
190 # appendfsync always
191 appendfsync everysec
192 # appendfsync no
193
194 ################################ VIRTUAL MEMORY ###############################
195
196 # Virtual Memory allows Redis to work with datasets bigger than the actual
197 # amount of RAM needed to hold the whole dataset in memory.
198 # In order to do so very used keys are taken in memory while the other keys
199 # are swapped into a swap file, similarly to what operating systems do
200 # with memory pages.
201 #
202 # To enable VM just set 'vm-enabled' to yes, and set the following three
203 # VM parameters accordingly to your needs.
204
205 vm-enabled no
206 # vm-enabled yes
207
208 # This is the path of the Redis swap file. As you can guess, swap files
209 # can't be shared by different Redis instances, so make sure to use a swap
210 # file for every redis process you are running. Redis will complain if the
211 # swap file is already in use.
212 #
213 # The best kind of storage for the Redis swap file (that's accessed at random)
214 # is a Solid State Disk (SSD).
215 #
216 # *** WARNING *** if you are using a shared hosting the default of putting
217 # the swap file under /tmp is not secure. Create a dir with access granted
218 # only to Redis user and configure Redis to create the swap file there.
219 vm-swap-file /tmp/redis.swap
220
221 # vm-max-memory configures the VM to use at max the specified amount of
222 # RAM. Everything that deos not fit will be swapped on disk *if* possible, that
223 # is, if there is still enough contiguous space in the swap file.
224 #
225 # With vm-max-memory 0 the system will swap everything it can. Not a good
226 # default, just specify the max amount of RAM you can in bytes, but it's
227 # better to leave some margin. For instance specify an amount of RAM
228 # that's more or less between 60 and 80% of your free RAM.
229 vm-max-memory 0
230
231 # Redis swap files is split into pages. An object can be saved using multiple
232 # contiguous pages, but pages can't be shared between different objects.
233 # So if your page is too big, small objects swapped out on disk will waste
234 # a lot of space. If you page is too small, there is less space in the swap
235 # file (assuming you configured the same number of total swap file pages).
236 #
237 # If you use a lot of small objects, use a page size of 64 or 32 bytes.
238 # If you use a lot of big objects, use a bigger page size.
239 # If unsure, use the default :)
240 vm-page-size 32
241
242 # Number of total memory pages in the swap file.
243 # Given that the page table (a bitmap of free/used pages) is taken in memory,
244 # every 8 pages on disk will consume 1 byte of RAM.
245 #
246 # The total swap size is vm-page-size * vm-pages
247 #
248 # With the default of 32-bytes memory pages and 134217728 pages Redis will
249 # use a 4 GB swap file, that will use 16 MB of RAM for the page table.
250 #
251 # It's better to use the smallest acceptable value for your application,
252 # but the default is large in order to work in most conditions.
253 vm-pages 134217728
254
255 # Max number of VM I/O threads running at the same time.
256 # This threads are used to read/write data from/to swap file, since they
257 # also encode and decode objects from disk to memory or the reverse, a bigger
258 # number of threads can help with big objects even if they can't help with
259 # I/O itself as the physical device may not be able to couple with many
260 # reads/writes operations at the same time.
261 #
262 # The special value of 0 turn off threaded I/O and enables the blocking
263 # Virtual Memory implementation.
264 vm-max-threads 4
265
266 ############################### ADVANCED CONFIG ###############################
267
268 # Glue small output buffers together in order to send small replies in a
269 # single TCP packet. Uses a bit more CPU but most of the times it is a win
270 # in terms of number of queries per second. Use 'yes' if unsure.
271 glueoutputbuf yes
272
273 # Hashes are encoded in a special way (much more memory efficient) when they
274 # have at max a given numer of elements, and the biggest element does not
275 # exceed a given threshold. You can configure this limits with the following
276 # configuration directives.
277 hash-max-zipmap-entries 64
278 hash-max-zipmap-value 512
279
280 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
281 # order to help rehashing the main Redis hash table (the one mapping top-level
282 # keys to values). The hash table implementation redis uses (see dict.c)
283 # performs a lazy rehashing: the more operation you run into an hash table
284 # that is rhashing, the more rehashing "steps" are performed, so if the
285 # server is idle the rehashing is never complete and some more memory is used
286 # by the hash table.
287 #
288 # The default is to use this millisecond 10 times every second in order to
289 # active rehashing the main dictionaries, freeing memory when possible.
290 #
291 # If unsure:
292 # use "activerehashing no" if you have hard latency requirements and it is
293 # not a good thing in your environment that Redis can reply form time to time
294 # to queries with 2 milliseconds delay.
295 #
296 # use "activerehashing yes" if you don't have such hard requirements but
297 # want to free memory asap when possible.
298 activerehashing yes
299
300 ################################## INCLUDES ###################################
301
302 # Include one or more other config files here. This is useful if you
303 # have a standard template that goes to all redis server but also need
304 # to customize a few per-server settings. Include files can include
305 # other files, so use this wisely.
306 #
307 # include /path/to/local.conf
308 # include /path/to/other.conf