]> git.saurik.com Git - redis.git/blob - tests/unit/type/set.tcl
Merge pull request #544 from dvirsky/2.6
[redis.git] / tests / unit / type / set.tcl
1 start_server {
2 tags {"set"}
3 overrides {
4 "set-max-intset-entries" 512
5 }
6 } {
7 proc create_set {key entries} {
8 r del $key
9 foreach entry $entries { r sadd $key $entry }
10 }
11
12 test {SADD, SCARD, SISMEMBER, SMEMBERS basics - regular set} {
13 create_set myset {foo}
14 assert_encoding hashtable myset
15 assert_equal 1 [r sadd myset bar]
16 assert_equal 0 [r sadd myset bar]
17 assert_equal 2 [r scard myset]
18 assert_equal 1 [r sismember myset foo]
19 assert_equal 1 [r sismember myset bar]
20 assert_equal 0 [r sismember myset bla]
21 assert_equal {bar foo} [lsort [r smembers myset]]
22 }
23
24 test {SADD, SCARD, SISMEMBER, SMEMBERS basics - intset} {
25 create_set myset {17}
26 assert_encoding intset myset
27 assert_equal 1 [r sadd myset 16]
28 assert_equal 0 [r sadd myset 16]
29 assert_equal 2 [r scard myset]
30 assert_equal 1 [r sismember myset 16]
31 assert_equal 1 [r sismember myset 17]
32 assert_equal 0 [r sismember myset 18]
33 assert_equal {16 17} [lsort [r smembers myset]]
34 }
35
36 test {SADD against non set} {
37 r lpush mylist foo
38 assert_error ERR*kind* {r sadd mylist bar}
39 }
40
41 test "SADD a non-integer against an intset" {
42 create_set myset {1 2 3}
43 assert_encoding intset myset
44 assert_equal 1 [r sadd myset a]
45 assert_encoding hashtable myset
46 }
47
48 test "SADD an integer larger than 64 bits" {
49 create_set myset {213244124402402314402033402}
50 assert_encoding hashtable myset
51 assert_equal 1 [r sismember myset 213244124402402314402033402]
52 }
53
54 test "SADD overflows the maximum allowed integers in an intset" {
55 r del myset
56 for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
57 assert_encoding intset myset
58 assert_equal 1 [r sadd myset 512]
59 assert_encoding hashtable myset
60 }
61
62 test {Variadic SADD} {
63 r del myset
64 assert_equal 3 [r sadd myset a b c]
65 assert_equal 2 [r sadd myset A a b c B]
66 assert_equal [lsort {A a b c B}] [lsort [r smembers myset]]
67 }
68
69 test "Set encoding after DEBUG RELOAD" {
70 r del myintset myhashset mylargeintset
71 for {set i 0} {$i < 100} {incr i} { r sadd myintset $i }
72 for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
73 for {set i 0} {$i < 256} {incr i} { r sadd myhashset [format "i%03d" $i] }
74 assert_encoding intset myintset
75 assert_encoding hashtable mylargeintset
76 assert_encoding hashtable myhashset
77
78 r debug reload
79 assert_encoding intset myintset
80 assert_encoding hashtable mylargeintset
81 assert_encoding hashtable myhashset
82 }
83
84 test {SREM basics - regular set} {
85 create_set myset {foo bar ciao}
86 assert_encoding hashtable myset
87 assert_equal 0 [r srem myset qux]
88 assert_equal 1 [r srem myset foo]
89 assert_equal {bar ciao} [lsort [r smembers myset]]
90 }
91
92 test {SREM basics - intset} {
93 create_set myset {3 4 5}
94 assert_encoding intset myset
95 assert_equal 0 [r srem myset 6]
96 assert_equal 1 [r srem myset 4]
97 assert_equal {3 5} [lsort [r smembers myset]]
98 }
99
100 test {SREM with multiple arguments} {
101 r del myset
102 r sadd myset a b c d
103 assert_equal 0 [r srem myset k k k]
104 assert_equal 2 [r srem myset b d x y]
105 lsort [r smembers myset]
106 } {a c}
107
108 test {SREM variadic version with more args needed to destroy the key} {
109 r del myset
110 r sadd myset 1 2 3
111 r srem myset 1 2 3 4 5 6 7 8
112 } {3}
113
114 foreach {type} {hashtable intset} {
115 for {set i 1} {$i <= 5} {incr i} {
116 r del [format "set%d" $i]
117 }
118 for {set i 0} {$i < 200} {incr i} {
119 r sadd set1 $i
120 r sadd set2 [expr $i+195]
121 }
122 foreach i {199 195 1000 2000} {
123 r sadd set3 $i
124 }
125 for {set i 5} {$i < 200} {incr i} {
126 r sadd set4 $i
127 }
128 r sadd set5 0
129
130 # To make sure the sets are encoded as the type we are testing -- also
131 # when the VM is enabled and the values may be swapped in and out
132 # while the tests are running -- an extra element is added to every
133 # set that determines its encoding.
134 set large 200
135 if {$type eq "hashtable"} {
136 set large foo
137 }
138
139 for {set i 1} {$i <= 5} {incr i} {
140 r sadd [format "set%d" $i] $large
141 }
142
143 test "Generated sets must be encoded as $type" {
144 for {set i 1} {$i <= 5} {incr i} {
145 assert_encoding $type [format "set%d" $i]
146 }
147 }
148
149 test "SINTER with two sets - $type" {
150 assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1 set2]]
151 }
152
153 test "SINTERSTORE with two sets - $type" {
154 r sinterstore setres set1 set2
155 assert_encoding $type setres
156 assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
157 }
158
159 test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
160 r debug reload
161 r sinterstore setres set1 set2
162 assert_encoding $type setres
163 assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
164 }
165
166 test "SUNION with two sets - $type" {
167 set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
168 assert_equal $expected [lsort [r sunion set1 set2]]
169 }
170
171 test "SUNIONSTORE with two sets - $type" {
172 r sunionstore setres set1 set2
173 assert_encoding $type setres
174 set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
175 assert_equal $expected [lsort [r smembers setres]]
176 }
177
178 test "SINTER against three sets - $type" {
179 assert_equal [list 195 199 $large] [lsort [r sinter set1 set2 set3]]
180 }
181
182 test "SINTERSTORE with three sets - $type" {
183 r sinterstore setres set1 set2 set3
184 assert_equal [list 195 199 $large] [lsort [r smembers setres]]
185 }
186
187 test "SUNION with non existing keys - $type" {
188 set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
189 assert_equal $expected [lsort [r sunion nokey1 set1 set2 nokey2]]
190 }
191
192 test "SDIFF with two sets - $type" {
193 assert_equal {0 1 2 3 4} [lsort [r sdiff set1 set4]]
194 }
195
196 test "SDIFF with three sets - $type" {
197 assert_equal {1 2 3 4} [lsort [r sdiff set1 set4 set5]]
198 }
199
200 test "SDIFFSTORE with three sets - $type" {
201 r sdiffstore setres set1 set4 set5
202 # The type is determined by type of the first key to diff against.
203 # See the implementation for more information.
204 assert_encoding $type setres
205 assert_equal {1 2 3 4} [lsort [r smembers setres]]
206 }
207 }
208
209 test "SDIFF with first set empty" {
210 r del set1 set2 set3
211 r sadd set2 1 2 3 4
212 r sadd set3 a b c d
213 r sdiff set1 set2 set3
214 } {}
215
216 test "SINTER against non-set should throw error" {
217 r set key1 x
218 assert_error "ERR*wrong kind*" {r sinter key1 noset}
219 }
220
221 test "SUNION against non-set should throw error" {
222 r set key1 x
223 assert_error "ERR*wrong kind*" {r sunion key1 noset}
224 }
225
226 test "SINTER should handle non existing key as empty" {
227 r del set1 set2 set3
228 r sadd set1 a b c
229 r sadd set2 b c d
230 r sinter set1 set2 set3
231 } {}
232
233 test "SINTER with same integer elements but different encoding" {
234 r del set1 set2
235 r sadd set1 1 2 3
236 r sadd set2 1 2 3 a
237 r srem set2 a
238 assert_encoding intset set1
239 assert_encoding hashtable set2
240 lsort [r sinter set1 set2]
241 } {1 2 3}
242
243 test "SINTERSTORE against non existing keys should delete dstkey" {
244 r set setres xxx
245 assert_equal 0 [r sinterstore setres foo111 bar222]
246 assert_equal 0 [r exists setres]
247 }
248
249 test "SUNIONSTORE against non existing keys should delete dstkey" {
250 r set setres xxx
251 assert_equal 0 [r sunionstore setres foo111 bar222]
252 assert_equal 0 [r exists setres]
253 }
254
255 foreach {type contents} {hashtable {a b c} intset {1 2 3}} {
256 test "SPOP basics - $type" {
257 create_set myset $contents
258 assert_encoding $type myset
259 assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
260 assert_equal 0 [r scard myset]
261 }
262
263 test "SRANDMEMBER - $type" {
264 create_set myset $contents
265 unset -nocomplain myset
266 array set myset {}
267 for {set i 0} {$i < 100} {incr i} {
268 set myset([r srandmember myset]) 1
269 }
270 assert_equal $contents [lsort [array names myset]]
271 }
272 }
273
274 test "SRANDMEMBER with <count> against non existing key" {
275 r srandmember nonexisting_key 100
276 } {}
277
278 foreach {type contents} {
279 hashtable {
280 1 5 10 50 125 50000 33959417 4775547 65434162
281 12098459 427716 483706 2726473884 72615637475
282 MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
283 SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
284 SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
285 KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
286 BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN
287 }
288 intset {
289 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
290 20 21 22 23 24 25 26 27 28 29
291 30 31 32 33 34 35 36 37 38 39
292 40 41 42 43 44 45 46 47 48 49
293 }
294 } {
295 test "SRANDMEMBER with <count> - $type" {
296 create_set myset $contents
297 unset -nocomplain myset
298 array set myset {}
299 foreach ele [r smembers myset] {
300 set myset($ele) 1
301 }
302 assert_equal [lsort $contents] [lsort [array names myset]]
303
304 # Make sure that a count of 0 is handled correctly.
305 assert_equal [r srandmember myset 0] {}
306
307 # We'll stress different parts of the code, see the implementation
308 # of SRANDMEMBER for more information, but basically there are
309 # four different code paths.
310 #
311 # PATH 1: Use negative count.
312 #
313 # 1) Check that it returns repeated elements.
314 set res [r srandmember myset -100]
315 assert_equal [llength $res] 100
316
317 # 2) Check that all the elements actually belong to the
318 # original set.
319 foreach ele $res {
320 assert {[info exists myset($ele)]}
321 }
322
323 # 3) Check that eventually all the elements are returned.
324 unset -nocomplain auxset
325 set iterations 1000
326 while {$iterations != 0} {
327 incr iterations -1
328 set res [r srandmember myset -10]
329 foreach ele $res {
330 set auxset($ele) 1
331 }
332 if {[lsort [array names myset]] eq
333 [lsort [array names auxset]]} {
334 break;
335 }
336 }
337 assert {$iterations != 0}
338
339 # PATH 2: positive count (unique behavior) with requested size
340 # equal or greater than set size.
341 foreach size {50 100} {
342 set res [r srandmember myset $size]
343 assert_equal [llength $res] 50
344 assert_equal [lsort $res] [lsort [array names myset]]
345 }
346
347 # PATH 3: Ask almost as elements as there are in the set.
348 # In this case the implementation will duplicate the original
349 # set and will remove random elements up to the requested size.
350 #
351 # PATH 4: Ask a number of elements definitely smaller than
352 # the set size.
353 #
354 # We can test both the code paths just changing the size but
355 # using the same code.
356
357 foreach size {45 5} {
358 set res [r srandmember myset $size]
359 assert_equal [llength $res] $size
360
361 # 1) Check that all the elements actually belong to the
362 # original set.
363 foreach ele $res {
364 assert {[info exists myset($ele)]}
365 }
366
367 # 2) Check that eventually all the elements are returned.
368 unset -nocomplain auxset
369 set iterations 1000
370 while {$iterations != 0} {
371 incr iterations -1
372 set res [r srandmember myset -10]
373 foreach ele $res {
374 set auxset($ele) 1
375 }
376 if {[lsort [array names myset]] eq
377 [lsort [array names auxset]]} {
378 break;
379 }
380 }
381 assert {$iterations != 0}
382 }
383 }
384 }
385
386 proc setup_move {} {
387 r del myset3 myset4
388 create_set myset1 {1 a b}
389 create_set myset2 {2 3 4}
390 assert_encoding hashtable myset1
391 assert_encoding intset myset2
392 }
393
394 test "SMOVE basics - from regular set to intset" {
395 # move a non-integer element to an intset should convert encoding
396 setup_move
397 assert_equal 1 [r smove myset1 myset2 a]
398 assert_equal {1 b} [lsort [r smembers myset1]]
399 assert_equal {2 3 4 a} [lsort [r smembers myset2]]
400 assert_encoding hashtable myset2
401
402 # move an integer element should not convert the encoding
403 setup_move
404 assert_equal 1 [r smove myset1 myset2 1]
405 assert_equal {a b} [lsort [r smembers myset1]]
406 assert_equal {1 2 3 4} [lsort [r smembers myset2]]
407 assert_encoding intset myset2
408 }
409
410 test "SMOVE basics - from intset to regular set" {
411 setup_move
412 assert_equal 1 [r smove myset2 myset1 2]
413 assert_equal {1 2 a b} [lsort [r smembers myset1]]
414 assert_equal {3 4} [lsort [r smembers myset2]]
415 }
416
417 test "SMOVE non existing key" {
418 setup_move
419 assert_equal 0 [r smove myset1 myset2 foo]
420 assert_equal {1 a b} [lsort [r smembers myset1]]
421 assert_equal {2 3 4} [lsort [r smembers myset2]]
422 }
423
424 test "SMOVE non existing src set" {
425 setup_move
426 assert_equal 0 [r smove noset myset2 foo]
427 assert_equal {2 3 4} [lsort [r smembers myset2]]
428 }
429
430 test "SMOVE from regular set to non existing destination set" {
431 setup_move
432 assert_equal 1 [r smove myset1 myset3 a]
433 assert_equal {1 b} [lsort [r smembers myset1]]
434 assert_equal {a} [lsort [r smembers myset3]]
435 assert_encoding hashtable myset3
436 }
437
438 test "SMOVE from intset to non existing destination set" {
439 setup_move
440 assert_equal 1 [r smove myset2 myset3 2]
441 assert_equal {3 4} [lsort [r smembers myset2]]
442 assert_equal {2} [lsort [r smembers myset3]]
443 assert_encoding intset myset3
444 }
445
446 test "SMOVE wrong src key type" {
447 r set x 10
448 assert_error "ERR*wrong kind*" {r smove x myset2 foo}
449 }
450
451 test "SMOVE wrong dst key type" {
452 r set x 10
453 assert_error "ERR*wrong kind*" {r smove myset2 x foo}
454 }
455
456 test "SMOVE with identical source and destination" {
457 r del set
458 r sadd set a b c
459 r smove set set b
460 lsort [r smembers set]
461 } {a b c}
462
463 tags {slow} {
464 test {intsets implementation stress testing} {
465 for {set j 0} {$j < 20} {incr j} {
466 unset -nocomplain s
467 array set s {}
468 r del s
469 set len [randomInt 1024]
470 for {set i 0} {$i < $len} {incr i} {
471 randpath {
472 set data [randomInt 65536]
473 } {
474 set data [randomInt 4294967296]
475 } {
476 set data [randomInt 18446744073709551616]
477 }
478 set s($data) {}
479 r sadd s $data
480 }
481 assert_equal [lsort [r smembers s]] [lsort [array names s]]
482 set len [array size s]
483 for {set i 0} {$i < $len} {incr i} {
484 set e [r spop s]
485 if {![info exists s($e)]} {
486 puts "Can't find '$e' on local array"
487 puts "Local array: [lsort [r smembers s]]"
488 puts "Remote array: [lsort [array names s]]"
489 error "exception"
490 }
491 array unset s $e
492 }
493 assert_equal [r scard s] 0
494 assert_equal [array size s] 0
495 }
496 }
497 }
498 }