1 /* Hash Tables Implementation.
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
53 * around when there is a child performing saving operations.
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize
= 1;
59 static unsigned int dict_force_resize_ratio
= 5;
61 /* -------------------------- private prototypes ---------------------------- */
63 static int _dictExpandIfNeeded(dict
*ht
);
64 static unsigned long _dictNextPower(unsigned long size
);
65 static int _dictKeyIndex(dict
*ht
, const void *key
);
66 static int _dictInit(dict
*ht
, dictType
*type
, void *privDataPtr
);
68 /* -------------------------- hash functions -------------------------------- */
70 /* Thomas Wang's 32 bit Mix Function */
71 unsigned int dictIntHashFunction(unsigned int key
)
82 /* Identity hash function for integer keys */
83 unsigned int dictIdentityHashFunction(unsigned int key
)
88 static int dict_hash_function_seed
= 5183;
90 void dictSetHashFunctionSeed(unsigned int seed
) {
91 dict_hash_function_seed
= seed
;
94 unsigned int dictGetHashFunctionSeed(void) {
95 return dict_hash_function_seed
;
98 /* Generic hash function (a popular one from Bernstein).
99 * I tested a few and this was the best. */
100 unsigned int dictGenHashFunction(const unsigned char *buf
, int len
) {
101 unsigned int hash
= dict_hash_function_seed
;
104 hash
= ((hash
<< 5) + hash
) + (*buf
++); /* hash * 33 + c */
108 /* And a case insensitive version */
109 unsigned int dictGenCaseHashFunction(const unsigned char *buf
, int len
) {
110 unsigned int hash
= dict_hash_function_seed
;
113 hash
= ((hash
<< 5) + hash
) + (tolower(*buf
++)); /* hash * 33 + c */
117 /* ----------------------------- API implementation ------------------------- */
119 /* Reset an hashtable already initialized with ht_init().
120 * NOTE: This function should only called by ht_destroy(). */
121 static void _dictReset(dictht
*ht
)
129 /* Create a new hash table */
130 dict
*dictCreate(dictType
*type
,
133 dict
*d
= zmalloc(sizeof(*d
));
135 _dictInit(d
,type
,privDataPtr
);
139 /* Initialize the hash table */
140 int _dictInit(dict
*d
, dictType
*type
,
143 _dictReset(&d
->ht
[0]);
144 _dictReset(&d
->ht
[1]);
146 d
->privdata
= privDataPtr
;
152 /* Resize the table to the minimal size that contains all the elements,
153 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
154 int dictResize(dict
*d
)
158 if (!dict_can_resize
|| dictIsRehashing(d
)) return DICT_ERR
;
159 minimal
= d
->ht
[0].used
;
160 if (minimal
< DICT_HT_INITIAL_SIZE
)
161 minimal
= DICT_HT_INITIAL_SIZE
;
162 return dictExpand(d
, minimal
);
165 /* Expand or create the hashtable */
166 int dictExpand(dict
*d
, unsigned long size
)
168 dictht n
; /* the new hashtable */
169 unsigned long realsize
= _dictNextPower(size
);
171 /* the size is invalid if it is smaller than the number of
172 * elements already inside the hashtable */
173 if (dictIsRehashing(d
) || d
->ht
[0].used
> size
)
176 /* Allocate the new hashtable and initialize all pointers to NULL */
178 n
.sizemask
= realsize
-1;
179 n
.table
= zcalloc(realsize
*sizeof(dictEntry
*));
182 /* Is this the first initialization? If so it's not really a rehashing
183 * we just set the first hash table so that it can accept keys. */
184 if (d
->ht
[0].table
== NULL
) {
189 /* Prepare a second hash table for incremental rehashing */
195 /* Performs N steps of incremental rehashing. Returns 1 if there are still
196 * keys to move from the old to the new hash table, otherwise 0 is returned.
197 * Note that a rehashing step consists in moving a bucket (that may have more
198 * thank one key as we use chaining) from the old to the new hash table. */
199 int dictRehash(dict
*d
, int n
) {
200 if (!dictIsRehashing(d
)) return 0;
203 dictEntry
*de
, *nextde
;
205 /* Check if we already rehashed the whole table... */
206 if (d
->ht
[0].used
== 0) {
207 zfree(d
->ht
[0].table
);
209 _dictReset(&d
->ht
[1]);
214 /* Note that rehashidx can't overflow as we are sure there are more
215 * elements because ht[0].used != 0 */
216 assert(d
->ht
[0].size
> (unsigned)d
->rehashidx
);
217 while(d
->ht
[0].table
[d
->rehashidx
] == NULL
) d
->rehashidx
++;
218 de
= d
->ht
[0].table
[d
->rehashidx
];
219 /* Move all the keys in this bucket from the old to the new hash HT */
224 /* Get the index in the new hash table */
225 h
= dictHashKey(d
, de
->key
) & d
->ht
[1].sizemask
;
226 de
->next
= d
->ht
[1].table
[h
];
227 d
->ht
[1].table
[h
] = de
;
232 d
->ht
[0].table
[d
->rehashidx
] = NULL
;
238 long long timeInMilliseconds(void) {
241 gettimeofday(&tv
,NULL
);
242 return (((long long)tv
.tv_sec
)*1000)+(tv
.tv_usec
/1000);
245 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
246 int dictRehashMilliseconds(dict
*d
, int ms
) {
247 long long start
= timeInMilliseconds();
250 while(dictRehash(d
,100)) {
252 if (timeInMilliseconds()-start
> ms
) break;
257 /* This function performs just a step of rehashing, and only if there are
258 * no safe iterators bound to our hash table. When we have iterators in the
259 * middle of a rehashing we can't mess with the two hash tables otherwise
260 * some element can be missed or duplicated.
262 * This function is called by common lookup or update operations in the
263 * dictionary so that the hash table automatically migrates from H1 to H2
264 * while it is actively used. */
265 static void _dictRehashStep(dict
*d
) {
266 if (d
->iterators
== 0) dictRehash(d
,1);
269 /* Add an element to the target hash table */
270 int dictAdd(dict
*d
, void *key
, void *val
)
272 dictEntry
*entry
= dictAddRaw(d
,key
);
274 if (!entry
) return DICT_ERR
;
275 dictSetVal(d
, entry
, val
);
279 /* Low level add. This function adds the entry but instead of setting
280 * a value returns the dictEntry structure to the user, that will make
281 * sure to fill the value field as he wishes.
283 * This function is also directly expoed to user API to be called
284 * mainly in order to store non-pointers inside the hash value, example:
286 * entry = dictAddRaw(dict,mykey);
287 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
291 * If key already exists NULL is returned.
292 * If key was added, the hash entry is returned to be manipulated by the caller.
294 dictEntry
*dictAddRaw(dict
*d
, void *key
)
300 if (dictIsRehashing(d
)) _dictRehashStep(d
);
302 /* Get the index of the new element, or -1 if
303 * the element already exists. */
304 if ((index
= _dictKeyIndex(d
, key
)) == -1)
307 /* Allocate the memory and store the new entry */
308 ht
= dictIsRehashing(d
) ? &d
->ht
[1] : &d
->ht
[0];
309 entry
= zmalloc(sizeof(*entry
));
310 entry
->next
= ht
->table
[index
];
311 ht
->table
[index
] = entry
;
314 /* Set the hash entry fields. */
315 dictSetKey(d
, entry
, key
);
319 /* Add an element, discarding the old if the key already exists.
320 * Return 1 if the key was added from scratch, 0 if there was already an
321 * element with such key and dictReplace() just performed a value update
323 int dictReplace(dict
*d
, void *key
, void *val
)
325 dictEntry
*entry
, auxentry
;
327 /* Try to add the element. If the key
328 * does not exists dictAdd will suceed. */
329 if (dictAdd(d
, key
, val
) == DICT_OK
)
331 /* It already exists, get the entry */
332 entry
= dictFind(d
, key
);
333 /* Set the new value and free the old one. Note that it is important
334 * to do that in this order, as the value may just be exactly the same
335 * as the previous one. In this context, think to reference counting,
336 * you want to increment (set), and then decrement (free), and not the
339 dictSetVal(d
, entry
, val
);
340 dictFreeVal(d
, &auxentry
);
344 /* dictReplaceRaw() is simply a version of dictAddRaw() that always
345 * returns the hash entry of the specified key, even if the key already
346 * exists and can't be added (in that case the entry of the already
347 * existing key is returned.)
349 * See dictAddRaw() for more information. */
350 dictEntry
*dictReplaceRaw(dict
*d
, void *key
) {
351 dictEntry
*entry
= dictFind(d
,key
);
353 return entry
? entry
: dictAddRaw(d
,key
);
356 /* Search and remove an element */
357 static int dictGenericDelete(dict
*d
, const void *key
, int nofree
)
360 dictEntry
*he
, *prevHe
;
363 if (d
->ht
[0].size
== 0) return DICT_ERR
; /* d->ht[0].table is NULL */
364 if (dictIsRehashing(d
)) _dictRehashStep(d
);
365 h
= dictHashKey(d
, key
);
367 for (table
= 0; table
<= 1; table
++) {
368 idx
= h
& d
->ht
[table
].sizemask
;
369 he
= d
->ht
[table
].table
[idx
];
372 if (dictCompareKeys(d
, key
, he
->key
)) {
373 /* Unlink the element from the list */
375 prevHe
->next
= he
->next
;
377 d
->ht
[table
].table
[idx
] = he
->next
;
389 if (!dictIsRehashing(d
)) break;
391 return DICT_ERR
; /* not found */
394 int dictDelete(dict
*ht
, const void *key
) {
395 return dictGenericDelete(ht
,key
,0);
398 int dictDeleteNoFree(dict
*ht
, const void *key
) {
399 return dictGenericDelete(ht
,key
,1);
402 /* Destroy an entire dictionary */
403 int _dictClear(dict
*d
, dictht
*ht
)
407 /* Free all the elements */
408 for (i
= 0; i
< ht
->size
&& ht
->used
> 0; i
++) {
409 dictEntry
*he
, *nextHe
;
411 if ((he
= ht
->table
[i
]) == NULL
) continue;
421 /* Free the table and the allocated cache structure */
423 /* Re-initialize the table */
425 return DICT_OK
; /* never fails */
428 /* Clear & Release the hash table */
429 void dictRelease(dict
*d
)
431 _dictClear(d
,&d
->ht
[0]);
432 _dictClear(d
,&d
->ht
[1]);
436 dictEntry
*dictFind(dict
*d
, const void *key
)
439 unsigned int h
, idx
, table
;
441 if (d
->ht
[0].size
== 0) return NULL
; /* We don't have a table at all */
442 if (dictIsRehashing(d
)) _dictRehashStep(d
);
443 h
= dictHashKey(d
, key
);
444 for (table
= 0; table
<= 1; table
++) {
445 idx
= h
& d
->ht
[table
].sizemask
;
446 he
= d
->ht
[table
].table
[idx
];
448 if (dictCompareKeys(d
, key
, he
->key
))
452 if (!dictIsRehashing(d
)) return NULL
;
457 void *dictFetchValue(dict
*d
, const void *key
) {
460 he
= dictFind(d
,key
);
461 return he
? dictGetVal(he
) : NULL
;
464 dictIterator
*dictGetIterator(dict
*d
)
466 dictIterator
*iter
= zmalloc(sizeof(*iter
));
473 iter
->nextEntry
= NULL
;
477 dictIterator
*dictGetSafeIterator(dict
*d
) {
478 dictIterator
*i
= dictGetIterator(d
);
484 dictEntry
*dictNext(dictIterator
*iter
)
487 if (iter
->entry
== NULL
) {
488 dictht
*ht
= &iter
->d
->ht
[iter
->table
];
489 if (iter
->safe
&& iter
->index
== -1 && iter
->table
== 0)
490 iter
->d
->iterators
++;
492 if (iter
->index
>= (signed) ht
->size
) {
493 if (dictIsRehashing(iter
->d
) && iter
->table
== 0) {
496 ht
= &iter
->d
->ht
[1];
501 iter
->entry
= ht
->table
[iter
->index
];
503 iter
->entry
= iter
->nextEntry
;
506 /* We need to save the 'next' here, the iterator user
507 * may delete the entry we are returning. */
508 iter
->nextEntry
= iter
->entry
->next
;
515 void dictReleaseIterator(dictIterator
*iter
)
517 if (iter
->safe
&& !(iter
->index
== -1 && iter
->table
== 0))
518 iter
->d
->iterators
--;
522 /* Return a random entry from the hash table. Useful to
523 * implement randomized algorithms */
524 dictEntry
*dictGetRandomKey(dict
*d
)
526 dictEntry
*he
, *orighe
;
528 int listlen
, listele
;
530 if (dictSize(d
) == 0) return NULL
;
531 if (dictIsRehashing(d
)) _dictRehashStep(d
);
532 if (dictIsRehashing(d
)) {
534 h
= random() % (d
->ht
[0].size
+d
->ht
[1].size
);
535 he
= (h
>= d
->ht
[0].size
) ? d
->ht
[1].table
[h
- d
->ht
[0].size
] :
540 h
= random() & d
->ht
[0].sizemask
;
541 he
= d
->ht
[0].table
[h
];
545 /* Now we found a non empty bucket, but it is a linked
546 * list and we need to get a random element from the list.
547 * The only sane way to do so is counting the elements and
548 * select a random index. */
555 listele
= random() % listlen
;
557 while(listele
--) he
= he
->next
;
561 /* ------------------------- private functions ------------------------------ */
563 /* Expand the hash table if needed */
564 static int _dictExpandIfNeeded(dict
*d
)
566 /* Incremental rehashing already in progress. Return. */
567 if (dictIsRehashing(d
)) return DICT_OK
;
569 /* If the hash table is empty expand it to the intial size. */
570 if (d
->ht
[0].size
== 0) return dictExpand(d
, DICT_HT_INITIAL_SIZE
);
572 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
573 * table (global setting) or we should avoid it but the ratio between
574 * elements/buckets is over the "safe" threshold, we resize doubling
575 * the number of buckets. */
576 if (d
->ht
[0].used
>= d
->ht
[0].size
&&
578 d
->ht
[0].used
/d
->ht
[0].size
> dict_force_resize_ratio
))
580 return dictExpand(d
, ((d
->ht
[0].size
> d
->ht
[0].used
) ?
581 d
->ht
[0].size
: d
->ht
[0].used
)*2);
586 /* Our hash table capability is a power of two */
587 static unsigned long _dictNextPower(unsigned long size
)
589 unsigned long i
= DICT_HT_INITIAL_SIZE
;
591 if (size
>= LONG_MAX
) return LONG_MAX
;
599 /* Returns the index of a free slot that can be populated with
600 * an hash entry for the given 'key'.
601 * If the key already exists, -1 is returned.
603 * Note that if we are in the process of rehashing the hash table, the
604 * index is always returned in the context of the second (new) hash table. */
605 static int _dictKeyIndex(dict
*d
, const void *key
)
607 unsigned int h
, idx
, table
;
610 /* Expand the hashtable if needed */
611 if (_dictExpandIfNeeded(d
) == DICT_ERR
)
613 /* Compute the key hash value */
614 h
= dictHashKey(d
, key
);
615 for (table
= 0; table
<= 1; table
++) {
616 idx
= h
& d
->ht
[table
].sizemask
;
617 /* Search if this slot does not already contain the given key */
618 he
= d
->ht
[table
].table
[idx
];
620 if (dictCompareKeys(d
, key
, he
->key
))
624 if (!dictIsRehashing(d
)) break;
629 void dictEmpty(dict
*d
) {
630 _dictClear(d
,&d
->ht
[0]);
631 _dictClear(d
,&d
->ht
[1]);
636 #define DICT_STATS_VECTLEN 50
637 static void _dictPrintStatsHt(dictht
*ht
) {
638 unsigned long i
, slots
= 0, chainlen
, maxchainlen
= 0;
639 unsigned long totchainlen
= 0;
640 unsigned long clvector
[DICT_STATS_VECTLEN
];
643 printf("No stats available for empty dictionaries\n");
647 for (i
= 0; i
< DICT_STATS_VECTLEN
; i
++) clvector
[i
] = 0;
648 for (i
= 0; i
< ht
->size
; i
++) {
651 if (ht
->table
[i
] == NULL
) {
656 /* For each hash entry on this slot... */
663 clvector
[(chainlen
< DICT_STATS_VECTLEN
) ? chainlen
: (DICT_STATS_VECTLEN
-1)]++;
664 if (chainlen
> maxchainlen
) maxchainlen
= chainlen
;
665 totchainlen
+= chainlen
;
667 printf("Hash table stats:\n");
668 printf(" table size: %ld\n", ht
->size
);
669 printf(" number of elements: %ld\n", ht
->used
);
670 printf(" different slots: %ld\n", slots
);
671 printf(" max chain length: %ld\n", maxchainlen
);
672 printf(" avg chain length (counted): %.02f\n", (float)totchainlen
/slots
);
673 printf(" avg chain length (computed): %.02f\n", (float)ht
->used
/slots
);
674 printf(" Chain length distribution:\n");
675 for (i
= 0; i
< DICT_STATS_VECTLEN
-1; i
++) {
676 if (clvector
[i
] == 0) continue;
677 printf(" %s%ld: %ld (%.02f%%)\n",(i
== DICT_STATS_VECTLEN
-1)?">= ":"", i
, clvector
[i
], ((float)clvector
[i
]/ht
->size
)*100);
681 void dictPrintStats(dict
*d
) {
682 _dictPrintStatsHt(&d
->ht
[0]);
683 if (dictIsRehashing(d
)) {
684 printf("-- Rehashing into ht[1]:\n");
685 _dictPrintStatsHt(&d
->ht
[1]);
689 void dictEnableResize(void) {
693 void dictDisableResize(void) {
699 /* The following are just example hash table types implementations.
700 * Not useful for Redis so they are commented out.
703 /* ----------------------- StringCopy Hash Table Type ------------------------*/
705 static unsigned int _dictStringCopyHTHashFunction(const void *key
)
707 return dictGenHashFunction(key
, strlen(key
));
710 static void *_dictStringDup(void *privdata
, const void *key
)
712 int len
= strlen(key
);
713 char *copy
= zmalloc(len
+1);
714 DICT_NOTUSED(privdata
);
716 memcpy(copy
, key
, len
);
721 static int _dictStringCopyHTKeyCompare(void *privdata
, const void *key1
,
724 DICT_NOTUSED(privdata
);
726 return strcmp(key1
, key2
) == 0;
729 static void _dictStringDestructor(void *privdata
, void *key
)
731 DICT_NOTUSED(privdata
);
736 dictType dictTypeHeapStringCopyKey
= {
737 _dictStringCopyHTHashFunction
, /* hash function */
738 _dictStringDup
, /* key dup */
740 _dictStringCopyHTKeyCompare
, /* key compare */
741 _dictStringDestructor
, /* key destructor */
742 NULL
/* val destructor */
745 /* This is like StringCopy but does not auto-duplicate the key.
746 * It's used for intepreter's shared strings. */
747 dictType dictTypeHeapStrings
= {
748 _dictStringCopyHTHashFunction
, /* hash function */
751 _dictStringCopyHTKeyCompare
, /* key compare */
752 _dictStringDestructor
, /* key destructor */
753 NULL
/* val destructor */
756 /* This is like StringCopy but also automatically handle dynamic
757 * allocated C strings as values. */
758 dictType dictTypeHeapStringCopyKeyValue
= {
759 _dictStringCopyHTHashFunction
, /* hash function */
760 _dictStringDup
, /* key dup */
761 _dictStringDup
, /* val dup */
762 _dictStringCopyHTKeyCompare
, /* key compare */
763 _dictStringDestructor
, /* key destructor */
764 _dictStringDestructor
, /* val destructor */