]> git.saurik.com Git - redis.git/blob - dict.c
GETSET implemented
[redis.git] / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2009, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43
44 #include "dict.h"
45 #include "zmalloc.h"
46
47 /* ---------------------------- Utility funcitons --------------------------- */
48
49 static void _dictPanic(const char *fmt, ...)
50 {
51 va_list ap;
52
53 va_start(ap, fmt);
54 fprintf(stderr, "\nDICT LIBRARY PANIC: ");
55 vfprintf(stderr, fmt, ap);
56 fprintf(stderr, "\n\n");
57 va_end(ap);
58 }
59
60 /* ------------------------- Heap Management Wrappers------------------------ */
61
62 static void *_dictAlloc(int size)
63 {
64 void *p = zmalloc(size);
65 if (p == NULL)
66 _dictPanic("Out of memory");
67 return p;
68 }
69
70 static void _dictFree(void *ptr) {
71 zfree(ptr);
72 }
73
74 /* -------------------------- private prototypes ---------------------------- */
75
76 static int _dictExpandIfNeeded(dict *ht);
77 static unsigned int _dictNextPower(unsigned int size);
78 static int _dictKeyIndex(dict *ht, const void *key);
79 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
80
81 /* -------------------------- hash functions -------------------------------- */
82
83 /* Thomas Wang's 32 bit Mix Function */
84 unsigned int dictIntHashFunction(unsigned int key)
85 {
86 key += ~(key << 15);
87 key ^= (key >> 10);
88 key += (key << 3);
89 key ^= (key >> 6);
90 key += ~(key << 11);
91 key ^= (key >> 16);
92 return key;
93 }
94
95 /* Identity hash function for integer keys */
96 unsigned int dictIdentityHashFunction(unsigned int key)
97 {
98 return key;
99 }
100
101 /* Generic hash function (a popular one from Bernstein).
102 * I tested a few and this was the best. */
103 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
104 unsigned int hash = 5381;
105
106 while (len--)
107 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
108 return hash;
109 }
110
111 /* ----------------------------- API implementation ------------------------- */
112
113 /* Reset an hashtable already initialized with ht_init().
114 * NOTE: This function should only called by ht_destroy(). */
115 static void _dictReset(dict *ht)
116 {
117 ht->table = NULL;
118 ht->size = 0;
119 ht->sizemask = 0;
120 ht->used = 0;
121 }
122
123 /* Create a new hash table */
124 dict *dictCreate(dictType *type,
125 void *privDataPtr)
126 {
127 dict *ht = _dictAlloc(sizeof(*ht));
128
129 _dictInit(ht,type,privDataPtr);
130 return ht;
131 }
132
133 /* Initialize the hash table */
134 int _dictInit(dict *ht, dictType *type,
135 void *privDataPtr)
136 {
137 _dictReset(ht);
138 ht->type = type;
139 ht->privdata = privDataPtr;
140 return DICT_OK;
141 }
142
143 /* Resize the table to the minimal size that contains all the elements,
144 * but with the invariant of a USER/BUCKETS ration near to <= 1 */
145 int dictResize(dict *ht)
146 {
147 int minimal = ht->used;
148
149 if (minimal < DICT_HT_INITIAL_SIZE)
150 minimal = DICT_HT_INITIAL_SIZE;
151 return dictExpand(ht, minimal);
152 }
153
154 /* Expand or create the hashtable */
155 int dictExpand(dict *ht, unsigned int size)
156 {
157 dict n; /* the new hashtable */
158 unsigned int realsize = _dictNextPower(size), i;
159
160 /* the size is invalid if it is smaller than the number of
161 * elements already inside the hashtable */
162 if (ht->used > size)
163 return DICT_ERR;
164
165 _dictInit(&n, ht->type, ht->privdata);
166 n.size = realsize;
167 n.sizemask = realsize-1;
168 n.table = _dictAlloc(realsize*sizeof(dictEntry*));
169
170 /* Initialize all the pointers to NULL */
171 memset(n.table, 0, realsize*sizeof(dictEntry*));
172
173 /* Copy all the elements from the old to the new table:
174 * note that if the old hash table is empty ht->size is zero,
175 * so dictExpand just creates an hash table. */
176 n.used = ht->used;
177 for (i = 0; i < ht->size && ht->used > 0; i++) {
178 dictEntry *he, *nextHe;
179
180 if (ht->table[i] == NULL) continue;
181
182 /* For each hash entry on this slot... */
183 he = ht->table[i];
184 while(he) {
185 unsigned int h;
186
187 nextHe = he->next;
188 /* Get the new element index */
189 h = dictHashKey(ht, he->key) & n.sizemask;
190 he->next = n.table[h];
191 n.table[h] = he;
192 ht->used--;
193 /* Pass to the next element */
194 he = nextHe;
195 }
196 }
197 assert(ht->used == 0);
198 _dictFree(ht->table);
199
200 /* Remap the new hashtable in the old */
201 *ht = n;
202 return DICT_OK;
203 }
204
205 /* Add an element to the target hash table */
206 int dictAdd(dict *ht, void *key, void *val)
207 {
208 int index;
209 dictEntry *entry;
210
211 /* Get the index of the new element, or -1 if
212 * the element already exists. */
213 if ((index = _dictKeyIndex(ht, key)) == -1)
214 return DICT_ERR;
215
216 /* Allocates the memory and stores key */
217 entry = _dictAlloc(sizeof(*entry));
218 entry->next = ht->table[index];
219 ht->table[index] = entry;
220
221 /* Set the hash entry fields. */
222 dictSetHashKey(ht, entry, key);
223 dictSetHashVal(ht, entry, val);
224 ht->used++;
225 return DICT_OK;
226 }
227
228 /* Add an element, discarding the old if the key already exists */
229 int dictReplace(dict *ht, void *key, void *val)
230 {
231 dictEntry *entry;
232
233 /* Try to add the element. If the key
234 * does not exists dictAdd will suceed. */
235 if (dictAdd(ht, key, val) == DICT_OK)
236 return DICT_OK;
237 /* It already exists, get the entry */
238 entry = dictFind(ht, key);
239 /* Free the old value and set the new one */
240 dictFreeEntryVal(ht, entry);
241 dictSetHashVal(ht, entry, val);
242 return DICT_OK;
243 }
244
245 /* Search and remove an element */
246 static int dictGenericDelete(dict *ht, const void *key, int nofree)
247 {
248 unsigned int h;
249 dictEntry *he, *prevHe;
250
251 if (ht->size == 0)
252 return DICT_ERR;
253 h = dictHashKey(ht, key) & ht->sizemask;
254 he = ht->table[h];
255
256 prevHe = NULL;
257 while(he) {
258 if (dictCompareHashKeys(ht, key, he->key)) {
259 /* Unlink the element from the list */
260 if (prevHe)
261 prevHe->next = he->next;
262 else
263 ht->table[h] = he->next;
264 if (!nofree) {
265 dictFreeEntryKey(ht, he);
266 dictFreeEntryVal(ht, he);
267 }
268 _dictFree(he);
269 ht->used--;
270 return DICT_OK;
271 }
272 prevHe = he;
273 he = he->next;
274 }
275 return DICT_ERR; /* not found */
276 }
277
278 int dictDelete(dict *ht, const void *key) {
279 return dictGenericDelete(ht,key,0);
280 }
281
282 int dictDeleteNoFree(dict *ht, const void *key) {
283 return dictGenericDelete(ht,key,1);
284 }
285
286 /* Destroy an entire hash table */
287 int _dictClear(dict *ht)
288 {
289 unsigned int i;
290
291 /* Free all the elements */
292 for (i = 0; i < ht->size && ht->used > 0; i++) {
293 dictEntry *he, *nextHe;
294
295 if ((he = ht->table[i]) == NULL) continue;
296 while(he) {
297 nextHe = he->next;
298 dictFreeEntryKey(ht, he);
299 dictFreeEntryVal(ht, he);
300 _dictFree(he);
301 ht->used--;
302 he = nextHe;
303 }
304 }
305 /* Free the table and the allocated cache structure */
306 _dictFree(ht->table);
307 /* Re-initialize the table */
308 _dictReset(ht);
309 return DICT_OK; /* never fails */
310 }
311
312 /* Clear & Release the hash table */
313 void dictRelease(dict *ht)
314 {
315 _dictClear(ht);
316 _dictFree(ht);
317 }
318
319 dictEntry *dictFind(dict *ht, const void *key)
320 {
321 dictEntry *he;
322 unsigned int h;
323
324 if (ht->size == 0) return NULL;
325 h = dictHashKey(ht, key) & ht->sizemask;
326 he = ht->table[h];
327 while(he) {
328 if (dictCompareHashKeys(ht, key, he->key))
329 return he;
330 he = he->next;
331 }
332 return NULL;
333 }
334
335 dictIterator *dictGetIterator(dict *ht)
336 {
337 dictIterator *iter = _dictAlloc(sizeof(*iter));
338
339 iter->ht = ht;
340 iter->index = -1;
341 iter->entry = NULL;
342 iter->nextEntry = NULL;
343 return iter;
344 }
345
346 dictEntry *dictNext(dictIterator *iter)
347 {
348 while (1) {
349 if (iter->entry == NULL) {
350 iter->index++;
351 if (iter->index >=
352 (signed)iter->ht->size) break;
353 iter->entry = iter->ht->table[iter->index];
354 } else {
355 iter->entry = iter->nextEntry;
356 }
357 if (iter->entry) {
358 /* We need to save the 'next' here, the iterator user
359 * may delete the entry we are returning. */
360 iter->nextEntry = iter->entry->next;
361 return iter->entry;
362 }
363 }
364 return NULL;
365 }
366
367 void dictReleaseIterator(dictIterator *iter)
368 {
369 _dictFree(iter);
370 }
371
372 /* Return a random entry from the hash table. Useful to
373 * implement randomized algorithms */
374 dictEntry *dictGetRandomKey(dict *ht)
375 {
376 dictEntry *he;
377 unsigned int h;
378 int listlen, listele;
379
380 if (ht->used == 0) return NULL;
381 do {
382 h = random() & ht->sizemask;
383 he = ht->table[h];
384 } while(he == NULL);
385
386 /* Now we found a non empty bucket, but it is a linked
387 * list and we need to get a random element from the list.
388 * The only sane way to do so is to count the element and
389 * select a random index. */
390 listlen = 0;
391 while(he) {
392 he = he->next;
393 listlen++;
394 }
395 listele = random() % listlen;
396 he = ht->table[h];
397 while(listele--) he = he->next;
398 return he;
399 }
400
401 /* ------------------------- private functions ------------------------------ */
402
403 /* Expand the hash table if needed */
404 static int _dictExpandIfNeeded(dict *ht)
405 {
406 /* If the hash table is empty expand it to the intial size,
407 * if the table is "full" dobule its size. */
408 if (ht->size == 0)
409 return dictExpand(ht, DICT_HT_INITIAL_SIZE);
410 if (ht->used == ht->size)
411 return dictExpand(ht, ht->size*2);
412 return DICT_OK;
413 }
414
415 /* Our hash table capability is a power of two */
416 static unsigned int _dictNextPower(unsigned int size)
417 {
418 unsigned int i = DICT_HT_INITIAL_SIZE;
419
420 if (size >= 2147483648U)
421 return 2147483648U;
422 while(1) {
423 if (i >= size)
424 return i;
425 i *= 2;
426 }
427 }
428
429 /* Returns the index of a free slot that can be populated with
430 * an hash entry for the given 'key'.
431 * If the key already exists, -1 is returned. */
432 static int _dictKeyIndex(dict *ht, const void *key)
433 {
434 unsigned int h;
435 dictEntry *he;
436
437 /* Expand the hashtable if needed */
438 if (_dictExpandIfNeeded(ht) == DICT_ERR)
439 return -1;
440 /* Compute the key hash value */
441 h = dictHashKey(ht, key) & ht->sizemask;
442 /* Search if this slot does not already contain the given key */
443 he = ht->table[h];
444 while(he) {
445 if (dictCompareHashKeys(ht, key, he->key))
446 return -1;
447 he = he->next;
448 }
449 return h;
450 }
451
452 void dictEmpty(dict *ht) {
453 _dictClear(ht);
454 }
455
456 #define DICT_STATS_VECTLEN 50
457 void dictPrintStats(dict *ht) {
458 unsigned int i, slots = 0, chainlen, maxchainlen = 0;
459 unsigned int totchainlen = 0;
460 unsigned int clvector[DICT_STATS_VECTLEN];
461
462 if (ht->used == 0) {
463 printf("No stats available for empty dictionaries\n");
464 return;
465 }
466
467 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
468 for (i = 0; i < ht->size; i++) {
469 dictEntry *he;
470
471 if (ht->table[i] == NULL) {
472 clvector[0]++;
473 continue;
474 }
475 slots++;
476 /* For each hash entry on this slot... */
477 chainlen = 0;
478 he = ht->table[i];
479 while(he) {
480 chainlen++;
481 he = he->next;
482 }
483 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
484 if (chainlen > maxchainlen) maxchainlen = chainlen;
485 totchainlen += chainlen;
486 }
487 printf("Hash table stats:\n");
488 printf(" table size: %d\n", ht->size);
489 printf(" number of elements: %d\n", ht->used);
490 printf(" different slots: %d\n", slots);
491 printf(" max chain length: %d\n", maxchainlen);
492 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
493 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
494 printf(" Chain length distribution:\n");
495 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
496 if (clvector[i] == 0) continue;
497 printf(" %s%d: %d (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
498 }
499 }
500
501 /* ----------------------- StringCopy Hash Table Type ------------------------*/
502
503 static unsigned int _dictStringCopyHTHashFunction(const void *key)
504 {
505 return dictGenHashFunction(key, strlen(key));
506 }
507
508 static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
509 {
510 int len = strlen(key);
511 char *copy = _dictAlloc(len+1);
512 DICT_NOTUSED(privdata);
513
514 memcpy(copy, key, len);
515 copy[len] = '\0';
516 return copy;
517 }
518
519 static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
520 {
521 int len = strlen(val);
522 char *copy = _dictAlloc(len+1);
523 DICT_NOTUSED(privdata);
524
525 memcpy(copy, val, len);
526 copy[len] = '\0';
527 return copy;
528 }
529
530 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
531 const void *key2)
532 {
533 DICT_NOTUSED(privdata);
534
535 return strcmp(key1, key2) == 0;
536 }
537
538 static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
539 {
540 DICT_NOTUSED(privdata);
541
542 _dictFree((void*)key); /* ATTENTION: const cast */
543 }
544
545 static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
546 {
547 DICT_NOTUSED(privdata);
548
549 _dictFree((void*)val); /* ATTENTION: const cast */
550 }
551
552 dictType dictTypeHeapStringCopyKey = {
553 _dictStringCopyHTHashFunction, /* hash function */
554 _dictStringCopyHTKeyDup, /* key dup */
555 NULL, /* val dup */
556 _dictStringCopyHTKeyCompare, /* key compare */
557 _dictStringCopyHTKeyDestructor, /* key destructor */
558 NULL /* val destructor */
559 };
560
561 /* This is like StringCopy but does not auto-duplicate the key.
562 * It's used for intepreter's shared strings. */
563 dictType dictTypeHeapStrings = {
564 _dictStringCopyHTHashFunction, /* hash function */
565 NULL, /* key dup */
566 NULL, /* val dup */
567 _dictStringCopyHTKeyCompare, /* key compare */
568 _dictStringCopyHTKeyDestructor, /* key destructor */
569 NULL /* val destructor */
570 };
571
572 /* This is like StringCopy but also automatically handle dynamic
573 * allocated C strings as values. */
574 dictType dictTypeHeapStringCopyKeyValue = {
575 _dictStringCopyHTHashFunction, /* hash function */
576 _dictStringCopyHTKeyDup, /* key dup */
577 _dictStringKeyValCopyHTValDup, /* val dup */
578 _dictStringCopyHTKeyCompare, /* key compare */
579 _dictStringCopyHTKeyDestructor, /* key destructor */
580 _dictStringKeyValCopyHTValDestructor, /* val destructor */
581 };