8 /* dscache.c - Disk store cache for disk store backend.
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
17 * This file implements the whole caching subsystem and contains further
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
26 * - What happens when an object is destroyed?
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
37 * - What happens with MULTI/EXEC?
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
48 * - Check if/why INCR will not update the LRU info for the object.
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
64 * Are there other patterns like this where we load stale data?
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
70 * - dsSet() should use rename(2) in order to avoid corruptions.
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
75 * - Serialize special encoded things in a raw form.
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int flags
);
111 int processActiveIOJobs(int max
);
113 /* =================== Virtual Memory - Blocking Side ====================== */
119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
121 redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
);
122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK
) {
124 redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting.");
128 /* Initialize threaded I/O for Object Cache */
129 server
.io_newjobs
= listCreate();
130 server
.io_processing
= listCreate();
131 server
.io_processed
= listCreate();
132 server
.io_ready_clients
= listCreate();
133 pthread_mutex_init(&server
.io_mutex
,NULL
);
134 pthread_cond_init(&server
.io_condvar
,NULL
);
135 pthread_mutex_init(&server
.bgsavethread_mutex
,NULL
);
136 server
.io_active_threads
= 0;
137 if (pipe(pipefds
) == -1) {
138 redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting."
142 server
.io_ready_pipe_read
= pipefds
[0];
143 server
.io_ready_pipe_write
= pipefds
[1];
144 redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
);
145 /* LZF requires a lot of stack */
146 pthread_attr_init(&server
.io_threads_attr
);
147 pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
);
149 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
150 * multiplying it by 2 in the while loop later will not really help ;) */
151 if (!stacksize
) stacksize
= 1;
153 while (stacksize
< REDIS_THREAD_STACK_SIZE
) stacksize
*= 2;
154 pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
);
155 /* Listen for events in the threaded I/O pipe */
156 if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
,
157 vmThreadedIOCompletedJob
, NULL
) == AE_ERR
)
158 oom("creating file event");
160 /* Spawn our I/O thread */
164 /* Compute how good candidate the specified object is for eviction.
165 * An higher number means a better candidate. */
166 double computeObjectSwappability(robj
*o
) {
167 /* actual age can be >= minage, but not < minage. As we use wrapping
168 * 21 bit clocks with minutes resolution for the LRU. */
169 return (double) estimateObjectIdleTime(o
);
172 /* Try to free one entry from the diskstore object cache */
173 int cacheFreeOneEntry(void) {
175 struct dictEntry
*best
= NULL
;
176 double best_swappability
= 0;
177 redisDb
*best_db
= NULL
;
181 for (j
= 0; j
< server
.dbnum
; j
++) {
182 redisDb
*db
= server
.db
+j
;
183 /* Why maxtries is set to 100?
184 * Because this way (usually) we'll find 1 object even if just 1% - 2%
185 * are swappable objects */
188 for (i
= 0; i
< 5 && dictSize(db
->dict
); i
++) {
194 if (maxtries
) maxtries
--;
195 de
= dictGetRandomKey(db
->dict
);
196 keystr
= dictGetEntryKey(de
);
197 val
= dictGetEntryVal(de
);
198 initStaticStringObject(keyobj
,keystr
);
200 /* Don't remove objects that are currently target of a
201 * read or write operation. */
202 if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) {
203 if (maxtries
) i
--; /* don't count this try */
206 swappability
= computeObjectSwappability(val
);
207 if (!best
|| swappability
> best_swappability
) {
209 best_swappability
= swappability
;
215 /* Was not able to fix a single object... we should check if our
216 * IO queues have stuff in queue, and try to consume the queue
217 * otherwise we'll use an infinite amount of memory if changes to
218 * the dataset are faster than I/O */
219 if (listLength(server
.cache_io_queue
) > 0) {
220 redisLog(REDIS_DEBUG
,"--- Busy waiting IO to reclaim memory");
221 cacheScheduleIOPushJobs(REDIS_IO_ASAP
);
222 processActiveIOJobs(1);
225 /* Nothing to free at all... */
228 key
= dictGetEntryKey(best
);
229 val
= dictGetEntryVal(best
);
231 redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f",
232 key
, best_swappability
);
234 /* Delete this key from memory */
236 robj
*kobj
= createStringObject(key
,sdslen(key
));
237 dbDelete(best_db
,kobj
);
243 /* Return true if it's safe to swap out objects in a given moment.
244 * Basically we don't want to swap objects out while there is a BGSAVE
245 * or a BGAEOREWRITE running in backgroud. */
246 int dsCanTouchDiskStore(void) {
247 return (server
.bgsavechildpid
== -1 && server
.bgrewritechildpid
== -1);
250 /* ==================== Disk store negative caching ========================
252 * When disk store is enabled, we need negative caching, that is, to remember
253 * keys that are for sure *not* on the disk key-value store.
255 * This is usefuls because without negative caching cache misses will cost us
256 * a disk lookup, even if the same non existing key is accessed again and again.
258 * With negative caching we remember that the key is not on disk, so if it's
259 * not in memory and we have a negative cache entry, we don't try a disk
263 /* Returns true if the specified key may exists on disk, that is, we don't
264 * have an entry in our negative cache for this key */
265 int cacheKeyMayExist(redisDb
*db
, robj
*key
) {
266 return dictFind(db
->io_negcache
,key
) == NULL
;
269 /* Set the specified key as an entry that may possibily exist on disk, that is,
270 * remove the negative cache entry for this key if any. */
271 void cacheSetKeyMayExist(redisDb
*db
, robj
*key
) {
272 dictDelete(db
->io_negcache
,key
);
275 /* Set the specified key as non existing on disk, that is, create a negative
276 * cache entry for this key. */
277 void cacheSetKeyDoesNotExist(redisDb
*db
, robj
*key
) {
278 if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) {
283 /* Remove one entry from negative cache using approximated LRU. */
284 int negativeCacheEvictOneEntry(void) {
285 struct dictEntry
*de
;
287 redisDb
*best_db
= NULL
;
288 time_t time
, best_time
= 0;
291 for (j
= 0; j
< server
.dbnum
; j
++) {
292 redisDb
*db
= server
.db
+j
;
295 if (dictSize(db
->io_negcache
) == 0) continue;
296 for (i
= 0; i
< 3; i
++) {
297 de
= dictGetRandomKey(db
->io_negcache
);
298 time
= (time_t) dictGetEntryVal(de
);
300 if (best
== NULL
|| time
< best_time
) {
301 best
= dictGetEntryKey(de
);
308 dictDelete(best_db
->io_negcache
,best
);
315 /* ================== Disk store cache - Threaded I/O ====================== */
317 void freeIOJob(iojob
*j
) {
318 decrRefCount(j
->key
);
319 /* j->val can be NULL if the job is about deleting the key from disk. */
320 if (j
->val
) decrRefCount(j
->val
);
324 /* Every time a thread finished a Job, it writes a byte into the write side
325 * of an unix pipe in order to "awake" the main thread, and this function
328 * If privdata == NULL the function will try to put more jobs in the queue
329 * of IO jobs to process as more room is made. privdata is equal to NULL
330 * when the function is called from the event loop, so we want to push
331 * more IO jobs in the queue. Instead when the function is called by
332 * other functions that want to create a write-barrier to avoid race
333 * conditions we don't push new jobs in the queue. */
334 void vmThreadedIOCompletedJob(aeEventLoop
*el
, int fd
, void *privdata
,
338 int retval
, processed
= 0, toprocess
= -1;
342 /* For every byte we read in the read side of the pipe, there is one
343 * I/O job completed to process. */
344 while((retval
= read(fd
,buf
,1)) == 1) {
348 redisLog(REDIS_DEBUG
,"Processing I/O completed job");
350 /* Get the processed element (the oldest one) */
352 redisAssert(listLength(server
.io_processed
) != 0);
353 if (toprocess
== -1) {
354 toprocess
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100;
355 if (toprocess
<= 0) toprocess
= 1;
357 ln
= listFirst(server
.io_processed
);
359 listDelNode(server
.io_processed
,ln
);
362 /* Post process it in the main thread, as there are things we
363 * can do just here to avoid race conditions and/or invasive locks */
364 redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s",
365 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
366 (unsigned char*)j
->key
->ptr
);
367 if (j
->type
== REDIS_IOJOB_LOAD
) {
368 /* Create the key-value pair in the in-memory database */
369 if (j
->val
!= NULL
) {
370 /* Note: it's possible that the key is already in memory
371 * due to a blocking load operation. */
372 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) {
373 incrRefCount(j
->val
);
374 if (j
->expire
!= -1) setExpire(j
->db
,j
->key
,j
->expire
);
377 /* Key not found on disk. If it is also not in memory
378 * as a cached object, nor there is a job writing it
379 * in background, we are sure the key does not exist
382 * So we set a negative cache entry avoiding that the
383 * resumed client will block load what does not exist... */
384 if (dictFind(j
->db
->dict
,j
->key
->ptr
) == NULL
&&
385 (cacheScheduleIOGetFlags(j
->db
,j
->key
) &
386 (REDIS_IO_SAVE
|REDIS_IO_SAVEINPROG
)) == 0)
388 cacheSetKeyDoesNotExist(j
->db
,j
->key
);
391 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
);
392 handleClientsBlockedOnSwappedKey(j
->db
,j
->key
);
394 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
395 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
);
399 if (privdata
== NULL
) cacheScheduleIOPushJobs(0);
400 if (processed
== toprocess
) return;
402 if (retval
< 0 && errno
!= EAGAIN
) {
403 redisLog(REDIS_WARNING
,
404 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
409 void lockThreadedIO(void) {
410 pthread_mutex_lock(&server
.io_mutex
);
413 void unlockThreadedIO(void) {
414 pthread_mutex_unlock(&server
.io_mutex
);
417 void *IOThreadEntryPoint(void *arg
) {
423 pthread_detach(pthread_self());
426 /* Get a new job to process */
427 if (listLength(server
.io_newjobs
) == 0) {
428 /* Wait for more work to do */
429 redisLog(REDIS_DEBUG
,"[T] wait for signal");
430 pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
);
431 redisLog(REDIS_DEBUG
,"[T] signal received");
435 redisLog(REDIS_DEBUG
,"[T] %ld IO jobs to process",
436 listLength(server
.io_newjobs
));
437 ln
= listFirst(server
.io_newjobs
);
439 listDelNode(server
.io_newjobs
,ln
);
440 /* Add the job in the processing queue */
441 listAddNodeTail(server
.io_processing
,j
);
442 ln
= listLast(server
.io_processing
); /* We use ln later to remove it */
445 redisLog(REDIS_DEBUG
,"[T] %ld: new job type %s: %p about key '%s'",
446 (long) pthread_self(),
447 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
448 (void*)j
, (char*)j
->key
->ptr
);
450 /* Process the Job */
451 if (j
->type
== REDIS_IOJOB_LOAD
) {
454 j
->val
= dsGet(j
->db
,j
->key
,&expire
);
455 if (j
->val
) j
->expire
= expire
;
456 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
458 dsSet(j
->db
,j
->key
,j
->val
,j
->expire
);
464 /* Done: insert the job into the processed queue */
465 redisLog(REDIS_DEBUG
,"[T] %ld completed the job: %p (key %s)",
466 (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
);
468 redisLog(REDIS_DEBUG
,"[T] lock IO");
470 redisLog(REDIS_DEBUG
,"[T] IO locked");
471 listDelNode(server
.io_processing
,ln
);
472 listAddNodeTail(server
.io_processed
,j
);
474 /* Signal the main thread there is new stuff to process */
475 redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1);
476 redisLog(REDIS_DEBUG
,"TIME (%c): %lld\n", j
->type
== REDIS_IOJOB_LOAD
? 'L' : 'S', ustime()-start
);
478 /* never reached, but that's the full pattern... */
483 void spawnIOThread(void) {
485 sigset_t mask
, omask
;
489 sigaddset(&mask
,SIGCHLD
);
490 sigaddset(&mask
,SIGHUP
);
491 sigaddset(&mask
,SIGPIPE
);
492 pthread_sigmask(SIG_SETMASK
, &mask
, &omask
);
493 while ((err
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) {
494 redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s",
498 pthread_sigmask(SIG_SETMASK
, &omask
, NULL
);
499 server
.io_active_threads
++;
502 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
503 * From our point of view an IO job processed means that the count of
504 * server.io_processed must increase by one.
506 * If max is -1, all the pending IO jobs will be processed.
508 * Returns the number of IO jobs processed.
510 * NOTE: while this may appear like a busy loop, we are actually blocked
511 * by IO since we continuously acquire/release the IO lock. */
512 int processActiveIOJobs(int max
) {
515 while(max
== -1 || max
> 0) {
516 int io_processed_len
;
518 redisLog(REDIS_DEBUG
,"[P] lock IO");
520 redisLog(REDIS_DEBUG
,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server
.io_newjobs
),listLength(server
.io_processing
),listLength(server
.io_processed
));
522 if (listLength(server
.io_newjobs
) == 0 &&
523 listLength(server
.io_processing
) == 0)
525 /* There is nothing more to process */
526 redisLog(REDIS_DEBUG
,"[P] Nothing to process, unlock IO, return");
532 /* If there are new jobs we need to signal the thread to
533 * process the next one. FIXME: drop this if useless. */
534 redisLog(REDIS_DEBUG
,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d",
535 listLength(server
.io_newjobs
),
536 listLength(server
.io_processing
),
537 listLength(server
.io_processed
));
539 if (listLength(server
.io_newjobs
)) {
540 redisLog(REDIS_DEBUG
,"[P] There are new jobs, signal");
541 pthread_cond_signal(&server
.io_condvar
);
545 /* Check if we can process some finished job */
546 io_processed_len
= listLength(server
.io_processed
);
547 redisLog(REDIS_DEBUG
,"[P] Unblock IO");
549 redisLog(REDIS_DEBUG
,"[P] Wait");
551 if (io_processed_len
) {
552 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
553 (void*)0xdeadbeef,0);
555 if (max
!= -1) max
--;
561 void waitEmptyIOJobsQueue(void) {
562 processActiveIOJobs(-1);
565 /* Process up to 'max' IO Jobs already completed by threads but still waiting
566 * processing from the main thread.
568 * If max == -1 all the pending jobs are processed.
570 * The number of processed jobs is returned. */
571 int processPendingIOJobs(int max
) {
574 while(max
== -1 || max
> 0) {
575 int io_processed_len
;
578 io_processed_len
= listLength(server
.io_processed
);
580 if (io_processed_len
== 0) break;
581 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
582 (void*)0xdeadbeef,0);
583 if (max
!= -1) max
--;
589 void processAllPendingIOJobs(void) {
590 processPendingIOJobs(-1);
593 /* This function must be called while with threaded IO locked */
594 void queueIOJob(iojob
*j
) {
595 redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n",
596 (void*)j
, j
->type
, (char*)j
->key
->ptr
);
597 listAddNodeTail(server
.io_newjobs
,j
);
598 if (server
.io_active_threads
< server
.vm_max_threads
)
602 /* Consume all the IO scheduled operations, and all the thread IO jobs
603 * so that eventually the state of diskstore is a point-in-time snapshot.
605 * This is useful when we need to BGSAVE with diskstore enabled. */
606 void cacheForcePointInTime(void) {
607 redisLog(REDIS_NOTICE
,"Diskstore: synching on disk to reach point-in-time state.");
608 while (listLength(server
.cache_io_queue
) != 0) {
609 cacheScheduleIOPushJobs(REDIS_IO_ASAP
);
610 processActiveIOJobs(1);
612 waitEmptyIOJobsQueue();
613 processAllPendingIOJobs();
616 void cacheCreateIOJob(int type
, redisDb
*db
, robj
*key
, robj
*val
, time_t expire
) {
619 j
= zmalloc(sizeof(*j
));
625 if (val
) incrRefCount(val
);
630 pthread_cond_signal(&server
.io_condvar
);
634 /* ============= Disk store cache - Scheduling of IO operations =============
636 * We use a queue and an hash table to hold the state of IO operations
637 * so that's fast to lookup if there is already an IO operation in queue
640 * There are two types of IO operations for a given key:
641 * REDIS_IO_LOAD and REDIS_IO_SAVE.
643 * The function cacheScheduleIO() function pushes the specified IO operation
644 * in the queue, but avoid adding the same key for the same operation
645 * multiple times, thanks to the associated hash table.
647 * We take a set of flags per every key, so when the scheduled IO operation
648 * gets moved from the scheduled queue to the actual IO Jobs queue that
649 * is processed by the IO thread, we flag it as IO_LOADINPROG or
652 * So for every given key we always know if there is some IO operation
653 * scheduled, or in progress, for this key.
655 * NOTE: all this is very important in order to guarantee correctness of
656 * the Disk Store Cache. Jobs are always queued here. Load jobs are
657 * queued at the head for faster execution only in the case there is not
658 * already a write operation of some kind for this job.
660 * So we have ordering, but can do exceptions when there are no already
661 * operations for a given key. Also when we need to block load a given
662 * key, for an immediate lookup operation, we can check if the key can
663 * be accessed synchronously without race conditions (no IN PROGRESS
664 * operations for this key), otherwise we blocking wait for completion. */
666 #define REDIS_IO_LOAD 1
667 #define REDIS_IO_SAVE 2
668 #define REDIS_IO_LOADINPROG 4
669 #define REDIS_IO_SAVEINPROG 8
671 void cacheScheduleIOAddFlag(redisDb
*db
, robj
*key
, long flag
) {
672 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
675 dictAdd(db
->io_queued
,key
,(void*)flag
);
679 long flags
= (long) dictGetEntryVal(de
);
682 redisLog(REDIS_WARNING
,"Adding the same flag again: was: %ld, addede: %ld",flags
,flag
);
683 redisAssert(!(flags
& flag
));
686 dictGetEntryVal(de
) = (void*) flags
;
690 void cacheScheduleIODelFlag(redisDb
*db
, robj
*key
, long flag
) {
691 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
694 redisAssert(de
!= NULL
);
695 flags
= (long) dictGetEntryVal(de
);
696 redisAssert(flags
& flag
);
699 dictDelete(db
->io_queued
,key
);
701 dictGetEntryVal(de
) = (void*) flags
;
705 int cacheScheduleIOGetFlags(redisDb
*db
, robj
*key
) {
706 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
708 return (de
== NULL
) ? 0 : ((long) dictGetEntryVal(de
));
711 void cacheScheduleIO(redisDb
*db
, robj
*key
, int type
) {
715 if ((flags
= cacheScheduleIOGetFlags(db
,key
)) & type
) return;
717 redisLog(REDIS_DEBUG
,"Scheduling key %s for %s",
718 key
->ptr
, type
== REDIS_IO_LOAD
? "loading" : "saving");
719 cacheScheduleIOAddFlag(db
,key
,type
);
720 op
= zmalloc(sizeof(*op
));
725 op
->ctime
= time(NULL
);
727 /* Give priority to load operations if there are no save already
728 * in queue for the same key. */
729 if (type
== REDIS_IO_LOAD
&& !(flags
& REDIS_IO_SAVE
)) {
730 listAddNodeHead(server
.cache_io_queue
, op
);
731 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS
);
733 /* FIXME: probably when this happens we want to at least move
734 * the write job about this queue on top, and set the creation time
735 * to a value that will force processing ASAP. */
736 listAddNodeTail(server
.cache_io_queue
, op
);
740 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
742 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
743 * useful since it's safe to push LOAD IO jobs from any place of the code, while
744 * SAVE io jobs should never be pushed while we are processing a command
745 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
748 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
749 * scheduled completion time, but just do the operation ASAP. This is useful
750 * when we need to reclaim memory from the IO queue.
752 #define MAX_IO_JOBS_QUEUE 10
753 int cacheScheduleIOPushJobs(int flags
) {
754 time_t now
= time(NULL
);
756 int jobs
, topush
= 0, pushed
= 0;
758 /* Don't push new jobs if there is a threaded BGSAVE in progress. */
759 if (server
.bgsavethread
!= (pthread_t
) -1) return 0;
761 /* Sync stuff on disk, but only if we have less
762 * than MAX_IO_JOBS_QUEUE IO jobs. */
764 jobs
= listLength(server
.io_newjobs
);
767 topush
= MAX_IO_JOBS_QUEUE
-jobs
;
768 if (topush
< 0) topush
= 0;
769 if (topush
> (signed)listLength(server
.cache_io_queue
))
770 topush
= listLength(server
.cache_io_queue
);
772 while((ln
= listFirst(server
.cache_io_queue
)) != NULL
) {
773 ioop
*op
= ln
->value
;
774 struct dictEntry
*de
;
780 if (op
->type
!= REDIS_IO_LOAD
&& flags
& REDIS_IO_ONLYLOADS
) break;
782 /* Don't execute SAVE before the scheduled time for completion */
783 if (op
->type
== REDIS_IO_SAVE
&& !(flags
& REDIS_IO_ASAP
) &&
784 (now
- op
->ctime
) < server
.cache_flush_delay
) break;
786 /* Don't add a SAVE job in the IO thread queue if there is already
787 * a save in progress for the same key. */
788 if (op
->type
== REDIS_IO_SAVE
&&
789 cacheScheduleIOGetFlags(op
->db
,op
->key
) & REDIS_IO_SAVEINPROG
)
791 /* Move the operation at the end of the list if there
792 * are other operations, so we can try to process the next one.
793 * Otherwise break, nothing to do here. */
794 if (listLength(server
.cache_io_queue
) > 1) {
795 listDelNode(server
.cache_io_queue
,ln
);
796 listAddNodeTail(server
.cache_io_queue
,op
);
803 redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s",
804 op
->type
== REDIS_IO_LOAD
? "load" : "save", op
->key
->ptr
);
806 if (op
->type
== REDIS_IO_LOAD
) {
807 cacheCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
,0);
811 /* Lookup the key, in order to put the current value in the IO
812 * Job. Otherwise if the key does not exists we schedule a disk
813 * store delete operation, setting the value to NULL. */
814 de
= dictFind(op
->db
->dict
,op
->key
->ptr
);
816 val
= dictGetEntryVal(de
);
817 expire
= getExpire(op
->db
,op
->key
);
819 /* Setting the value to NULL tells the IO thread to delete
820 * the key on disk. */
823 cacheCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
,expire
);
825 /* Mark the operation as in progress. */
826 cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
);
827 cacheScheduleIOAddFlag(op
->db
,op
->key
,
828 (op
->type
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG
:
829 REDIS_IO_SAVEINPROG
);
830 /* Finally remove the operation from the queue.
831 * But we'll have trace of it in the hash table. */
832 listDelNode(server
.cache_io_queue
,ln
);
833 decrRefCount(op
->key
);
840 void cacheCron(void) {
842 cacheScheduleIOPushJobs(0);
844 /* Reclaim memory from the object cache */
845 while (server
.ds_enabled
&& zmalloc_used_memory() >
846 server
.cache_max_memory
)
850 if (cacheFreeOneEntry() == REDIS_OK
) done
++;
851 if (negativeCacheEvictOneEntry() == REDIS_OK
) done
++;
852 if (done
== 0) break; /* nothing more to free */
856 /* ========== Disk store cache - Blocking clients on missing keys =========== */
858 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
859 * If the key is already in memory we don't need to block.
861 * FIXME: we should try if it's actually better to suspend the client
862 * accessing an object that is being saved, and awake it only when
863 * the saving was completed.
865 * Otherwise if the key is not in memory, we block the client and start
866 * an IO Job to load it:
868 * the key is added to the io_keys list in the client structure, and also
869 * in the hash table mapping swapped keys to waiting clients, that is,
870 * server.io_waited_keys. */
871 int waitForSwappedKey(redisClient
*c
, robj
*key
) {
872 struct dictEntry
*de
;
875 /* Return ASAP if the key is in memory */
876 de
= dictFind(c
->db
->dict
,key
->ptr
);
877 if (de
!= NULL
) return 0;
879 /* Don't wait for keys we are sure are not on disk either */
880 if (!cacheKeyMayExist(c
->db
,key
)) return 0;
882 /* Add the key to the list of keys this client is waiting for.
883 * This maps clients to keys they are waiting for. */
884 listAddNodeTail(c
->io_keys
,key
);
887 /* Add the client to the swapped keys => clients waiting map. */
888 de
= dictFind(c
->db
->io_keys
,key
);
892 /* For every key we take a list of clients blocked for it */
894 retval
= dictAdd(c
->db
->io_keys
,key
,l
);
896 redisAssert(retval
== DICT_OK
);
898 l
= dictGetEntryVal(de
);
900 listAddNodeTail(l
,c
);
902 /* Are we already loading the key from disk? If not create a job */
904 cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
);
908 /* Preload keys for any command with first, last and step values for
909 * the command keys prototype, as defined in the command table. */
910 void waitForMultipleSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
912 if (cmd
->vm_firstkey
== 0) return;
913 last
= cmd
->vm_lastkey
;
914 if (last
< 0) last
= argc
+last
;
915 for (j
= cmd
->vm_firstkey
; j
<= last
; j
+= cmd
->vm_keystep
) {
916 redisAssert(j
< argc
);
917 waitForSwappedKey(c
,argv
[j
]);
921 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
922 * Note that the number of keys to preload is user-defined, so we need to
923 * apply a sanity check against argc. */
924 void zunionInterBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
928 num
= atoi(argv
[2]->ptr
);
929 if (num
> (argc
-3)) return;
930 for (i
= 0; i
< num
; i
++) {
931 waitForSwappedKey(c
,argv
[3+i
]);
935 /* Preload keys needed to execute the entire MULTI/EXEC block.
937 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
938 * and will block the client when any command requires a swapped out value. */
939 void execBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
941 struct redisCommand
*mcmd
;
947 if (!(c
->flags
& REDIS_MULTI
)) return;
948 for (i
= 0; i
< c
->mstate
.count
; i
++) {
949 mcmd
= c
->mstate
.commands
[i
].cmd
;
950 margc
= c
->mstate
.commands
[i
].argc
;
951 margv
= c
->mstate
.commands
[i
].argv
;
953 if (mcmd
->vm_preload_proc
!= NULL
) {
954 mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
);
956 waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
);
961 /* Is this client attempting to run a command against swapped keys?
962 * If so, block it ASAP, load the keys in background, then resume it.
964 * The important idea about this function is that it can fail! If keys will
965 * still be swapped when the client is resumed, this key lookups will
966 * just block loading keys from disk. In practical terms this should only
967 * happen with SORT BY command or if there is a bug in this function.
969 * Return 1 if the client is marked as blocked, 0 if the client can
970 * continue as the keys it is going to access appear to be in memory. */
971 int blockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
) {
972 if (cmd
->vm_preload_proc
!= NULL
) {
973 cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
);
975 waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
);
978 /* If the client was blocked for at least one key, mark it as blocked. */
979 if (listLength(c
->io_keys
)) {
980 c
->flags
|= REDIS_IO_WAIT
;
981 aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
);
982 server
.cache_blocked_clients
++;
989 /* Remove the 'key' from the list of blocked keys for a given client.
991 * The function returns 1 when there are no longer blocking keys after
992 * the current one was removed (and the client can be unblocked). */
993 int dontWaitForSwappedKey(redisClient
*c
, robj
*key
) {
997 struct dictEntry
*de
;
999 /* The key object might be destroyed when deleted from the c->io_keys
1000 * list (and the "key" argument is physically the same object as the
1001 * object inside the list), so we need to protect it. */
1004 /* Remove the key from the list of keys this client is waiting for. */
1005 listRewind(c
->io_keys
,&li
);
1006 while ((ln
= listNext(&li
)) != NULL
) {
1007 if (equalStringObjects(ln
->value
,key
)) {
1008 listDelNode(c
->io_keys
,ln
);
1012 redisAssert(ln
!= NULL
);
1014 /* Remove the client form the key => waiting clients map. */
1015 de
= dictFind(c
->db
->io_keys
,key
);
1016 redisAssert(de
!= NULL
);
1017 l
= dictGetEntryVal(de
);
1018 ln
= listSearchKey(l
,c
);
1019 redisAssert(ln
!= NULL
);
1021 if (listLength(l
) == 0)
1022 dictDelete(c
->db
->io_keys
,key
);
1025 return listLength(c
->io_keys
) == 0;
1028 /* Every time we now a key was loaded back in memory, we handle clients
1029 * waiting for this key if any. */
1030 void handleClientsBlockedOnSwappedKey(redisDb
*db
, robj
*key
) {
1031 struct dictEntry
*de
;
1036 de
= dictFind(db
->io_keys
,key
);
1039 l
= dictGetEntryVal(de
);
1040 len
= listLength(l
);
1041 /* Note: we can't use something like while(listLength(l)) as the list
1042 * can be freed by the calling function when we remove the last element. */
1045 redisClient
*c
= ln
->value
;
1047 if (dontWaitForSwappedKey(c
,key
)) {
1048 /* Put the client in the list of clients ready to go as we
1049 * loaded all the keys about it. */
1050 listAddNodeTail(server
.io_ready_clients
,c
);