]> git.saurik.com Git - redis.git/blob - src/dscache.c
added new RDB codes for ziplist encoded lists and intset encodeed sets
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
25 *
26 * - What happens when an object is destroyed?
27 *
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
32 *
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
36 *
37 * - What happens with MULTI/EXEC?
38 *
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
43 *
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
46 * to check.
47 *
48 * - Check if/why INCR will not update the LRU info for the object.
49 *
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
55 *
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
63 *
64 * Are there other patterns like this where we load stale data?
65 *
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
69 *
70 * - dsSet() should use rename(2) in order to avoid corruptions.
71 *
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
74 *
75 * - Serialize special encoded things in a raw form.
76 *
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
82 *
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
86 */
87
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
95 *
96 * Redis VM design:
97 *
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
104 *
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
107 */
108
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int flags);
111 int processActiveIOJobs(int max);
112
113 /* =================== Virtual Memory - Blocking Side ====================== */
114
115 void dsInit(void) {
116 int pipefds[2];
117 size_t stacksize;
118
119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
120
121 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK) {
124 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
125 exit(1);
126 };
127
128 /* Initialize threaded I/O for Object Cache */
129 server.io_newjobs = listCreate();
130 server.io_processing = listCreate();
131 server.io_processed = listCreate();
132 server.io_ready_clients = listCreate();
133 pthread_mutex_init(&server.io_mutex,NULL);
134 pthread_cond_init(&server.io_condvar,NULL);
135 pthread_mutex_init(&server.bgsavethread_mutex,NULL);
136 server.io_active_threads = 0;
137 if (pipe(pipefds) == -1) {
138 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
139 ,strerror(errno));
140 exit(1);
141 }
142 server.io_ready_pipe_read = pipefds[0];
143 server.io_ready_pipe_write = pipefds[1];
144 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
145 /* LZF requires a lot of stack */
146 pthread_attr_init(&server.io_threads_attr);
147 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
148
149 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
150 * multiplying it by 2 in the while loop later will not really help ;) */
151 if (!stacksize) stacksize = 1;
152
153 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
154 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
155 /* Listen for events in the threaded I/O pipe */
156 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
157 vmThreadedIOCompletedJob, NULL) == AE_ERR)
158 oom("creating file event");
159
160 /* Spawn our I/O thread */
161 spawnIOThread();
162 }
163
164 /* Compute how good candidate the specified object is for eviction.
165 * An higher number means a better candidate. */
166 double computeObjectSwappability(robj *o) {
167 /* actual age can be >= minage, but not < minage. As we use wrapping
168 * 21 bit clocks with minutes resolution for the LRU. */
169 return (double) estimateObjectIdleTime(o);
170 }
171
172 /* Try to free one entry from the diskstore object cache */
173 int cacheFreeOneEntry(void) {
174 int j, i;
175 struct dictEntry *best = NULL;
176 double best_swappability = 0;
177 redisDb *best_db = NULL;
178 robj *val;
179 sds key;
180
181 for (j = 0; j < server.dbnum; j++) {
182 redisDb *db = server.db+j;
183 /* Why maxtries is set to 100?
184 * Because this way (usually) we'll find 1 object even if just 1% - 2%
185 * are swappable objects */
186 int maxtries = 100;
187
188 for (i = 0; i < 5 && dictSize(db->dict); i++) {
189 dictEntry *de;
190 double swappability;
191 robj keyobj;
192 sds keystr;
193
194 if (maxtries) maxtries--;
195 de = dictGetRandomKey(db->dict);
196 keystr = dictGetEntryKey(de);
197 val = dictGetEntryVal(de);
198 initStaticStringObject(keyobj,keystr);
199
200 /* Don't remove objects that are currently target of a
201 * read or write operation. */
202 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
203 if (maxtries) i--; /* don't count this try */
204 continue;
205 }
206 swappability = computeObjectSwappability(val);
207 if (!best || swappability > best_swappability) {
208 best = de;
209 best_swappability = swappability;
210 best_db = db;
211 }
212 }
213 }
214 if (best == NULL) {
215 /* Was not able to fix a single object... we should check if our
216 * IO queues have stuff in queue, and try to consume the queue
217 * otherwise we'll use an infinite amount of memory if changes to
218 * the dataset are faster than I/O */
219 if (listLength(server.cache_io_queue) > 0) {
220 redisLog(REDIS_DEBUG,"--- Busy waiting IO to reclaim memory");
221 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
222 processActiveIOJobs(1);
223 return REDIS_OK;
224 }
225 /* Nothing to free at all... */
226 return REDIS_ERR;
227 }
228 key = dictGetEntryKey(best);
229 val = dictGetEntryVal(best);
230
231 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
232 key, best_swappability);
233
234 /* Delete this key from memory */
235 {
236 robj *kobj = createStringObject(key,sdslen(key));
237 dbDelete(best_db,kobj);
238 decrRefCount(kobj);
239 }
240 return REDIS_OK;
241 }
242
243 /* Return true if it's safe to swap out objects in a given moment.
244 * Basically we don't want to swap objects out while there is a BGSAVE
245 * or a BGAEOREWRITE running in backgroud. */
246 int dsCanTouchDiskStore(void) {
247 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
248 }
249
250 /* ==================== Disk store negative caching ========================
251 *
252 * When disk store is enabled, we need negative caching, that is, to remember
253 * keys that are for sure *not* on the disk key-value store.
254 *
255 * This is usefuls because without negative caching cache misses will cost us
256 * a disk lookup, even if the same non existing key is accessed again and again.
257 *
258 * With negative caching we remember that the key is not on disk, so if it's
259 * not in memory and we have a negative cache entry, we don't try a disk
260 * access at all.
261 */
262
263 /* Returns true if the specified key may exists on disk, that is, we don't
264 * have an entry in our negative cache for this key */
265 int cacheKeyMayExist(redisDb *db, robj *key) {
266 return dictFind(db->io_negcache,key) == NULL;
267 }
268
269 /* Set the specified key as an entry that may possibily exist on disk, that is,
270 * remove the negative cache entry for this key if any. */
271 void cacheSetKeyMayExist(redisDb *db, robj *key) {
272 dictDelete(db->io_negcache,key);
273 }
274
275 /* Set the specified key as non existing on disk, that is, create a negative
276 * cache entry for this key. */
277 void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
278 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
279 incrRefCount(key);
280 }
281 }
282
283 /* Remove one entry from negative cache using approximated LRU. */
284 int negativeCacheEvictOneEntry(void) {
285 struct dictEntry *de;
286 robj *best = NULL;
287 redisDb *best_db = NULL;
288 time_t time, best_time = 0;
289 int j;
290
291 for (j = 0; j < server.dbnum; j++) {
292 redisDb *db = server.db+j;
293 int i;
294
295 if (dictSize(db->io_negcache) == 0) continue;
296 for (i = 0; i < 3; i++) {
297 de = dictGetRandomKey(db->io_negcache);
298 time = (time_t) dictGetEntryVal(de);
299
300 if (best == NULL || time < best_time) {
301 best = dictGetEntryKey(de);
302 best_db = db;
303 best_time = time;
304 }
305 }
306 }
307 if (best) {
308 dictDelete(best_db->io_negcache,best);
309 return REDIS_OK;
310 } else {
311 return REDIS_ERR;
312 }
313 }
314
315 /* ================== Disk store cache - Threaded I/O ====================== */
316
317 void freeIOJob(iojob *j) {
318 decrRefCount(j->key);
319 /* j->val can be NULL if the job is about deleting the key from disk. */
320 if (j->val) decrRefCount(j->val);
321 zfree(j);
322 }
323
324 /* Every time a thread finished a Job, it writes a byte into the write side
325 * of an unix pipe in order to "awake" the main thread, and this function
326 * is called.
327 *
328 * If privdata != NULL the function will try to put more jobs in the queue
329 * of IO jobs to process as more room is made. */
330 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
331 int mask)
332 {
333 char buf[1];
334 int retval, processed = 0, toprocess = -1;
335 REDIS_NOTUSED(el);
336 REDIS_NOTUSED(mask);
337
338 /* For every byte we read in the read side of the pipe, there is one
339 * I/O job completed to process. */
340 while((retval = read(fd,buf,1)) == 1) {
341 iojob *j;
342 listNode *ln;
343
344 redisLog(REDIS_DEBUG,"Processing I/O completed job");
345
346 /* Get the processed element (the oldest one) */
347 lockThreadedIO();
348 redisAssert(listLength(server.io_processed) != 0);
349 if (toprocess == -1) {
350 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
351 if (toprocess <= 0) toprocess = 1;
352 }
353 ln = listFirst(server.io_processed);
354 j = ln->value;
355 listDelNode(server.io_processed,ln);
356 unlockThreadedIO();
357
358 /* Post process it in the main thread, as there are things we
359 * can do just here to avoid race conditions and/or invasive locks */
360 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
361 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
362 (unsigned char*)j->key->ptr);
363 if (j->type == REDIS_IOJOB_LOAD) {
364 /* Create the key-value pair in the in-memory database */
365 if (j->val != NULL) {
366 /* Note: it's possible that the key is already in memory
367 * due to a blocking load operation. */
368 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
369 incrRefCount(j->val);
370 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
371 }
372 } else {
373 /* Key not found on disk. If it is also not in memory
374 * as a cached object, nor there is a job writing it
375 * in background, we are sure the key does not exist
376 * currently.
377 *
378 * So we set a negative cache entry avoiding that the
379 * resumed client will block load what does not exist... */
380 if (dictFind(j->db->dict,j->key->ptr) == NULL &&
381 (cacheScheduleIOGetFlags(j->db,j->key) &
382 (REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
383 {
384 cacheSetKeyDoesNotExist(j->db,j->key);
385 }
386 }
387 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
388 handleClientsBlockedOnSwappedKey(j->db,j->key);
389 freeIOJob(j);
390 } else if (j->type == REDIS_IOJOB_SAVE) {
391 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
392 freeIOJob(j);
393 }
394 processed++;
395 if (privdata != NULL) cacheScheduleIOPushJobs(0);
396 if (processed == toprocess) return;
397 }
398 if (retval < 0 && errno != EAGAIN) {
399 redisLog(REDIS_WARNING,
400 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
401 strerror(errno));
402 }
403 }
404
405 void lockThreadedIO(void) {
406 pthread_mutex_lock(&server.io_mutex);
407 }
408
409 void unlockThreadedIO(void) {
410 pthread_mutex_unlock(&server.io_mutex);
411 }
412
413 void *IOThreadEntryPoint(void *arg) {
414 iojob *j;
415 listNode *ln;
416 REDIS_NOTUSED(arg);
417 long long start;
418
419 pthread_detach(pthread_self());
420 lockThreadedIO();
421 while(1) {
422 /* Get a new job to process */
423 if (listLength(server.io_newjobs) == 0) {
424 /* Wait for more work to do */
425 redisLog(REDIS_DEBUG,"[T] wait for signal");
426 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
427 redisLog(REDIS_DEBUG,"[T] signal received");
428 continue;
429 }
430 start = ustime();
431 redisLog(REDIS_DEBUG,"[T] %ld IO jobs to process",
432 listLength(server.io_newjobs));
433 ln = listFirst(server.io_newjobs);
434 j = ln->value;
435 listDelNode(server.io_newjobs,ln);
436 /* Add the job in the processing queue */
437 listAddNodeTail(server.io_processing,j);
438 ln = listLast(server.io_processing); /* We use ln later to remove it */
439 unlockThreadedIO();
440
441 redisLog(REDIS_DEBUG,"[T] %ld: new job type %s: %p about key '%s'",
442 (long) pthread_self(),
443 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
444 (void*)j, (char*)j->key->ptr);
445
446 /* Process the Job */
447 if (j->type == REDIS_IOJOB_LOAD) {
448 time_t expire;
449
450 j->val = dsGet(j->db,j->key,&expire);
451 if (j->val) j->expire = expire;
452 } else if (j->type == REDIS_IOJOB_SAVE) {
453 if (j->val) {
454 dsSet(j->db,j->key,j->val,j->expire);
455 } else {
456 dsDel(j->db,j->key);
457 }
458 }
459
460 /* Done: insert the job into the processed queue */
461 redisLog(REDIS_DEBUG,"[T] %ld completed the job: %p (key %s)",
462 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
463
464 redisLog(REDIS_DEBUG,"[T] lock IO");
465 lockThreadedIO();
466 redisLog(REDIS_DEBUG,"[T] IO locked");
467 listDelNode(server.io_processing,ln);
468 listAddNodeTail(server.io_processed,j);
469
470 /* Signal the main thread there is new stuff to process */
471 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
472 redisLog(REDIS_WARNING,"TIME (%c): %lld\n", j->type == REDIS_IOJOB_LOAD ? 'L' : 'S', ustime()-start);
473 }
474 /* never reached, but that's the full pattern... */
475 unlockThreadedIO();
476 return NULL;
477 }
478
479 void spawnIOThread(void) {
480 pthread_t thread;
481 sigset_t mask, omask;
482 int err;
483
484 sigemptyset(&mask);
485 sigaddset(&mask,SIGCHLD);
486 sigaddset(&mask,SIGHUP);
487 sigaddset(&mask,SIGPIPE);
488 pthread_sigmask(SIG_SETMASK, &mask, &omask);
489 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
490 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
491 strerror(err));
492 usleep(1000000);
493 }
494 pthread_sigmask(SIG_SETMASK, &omask, NULL);
495 server.io_active_threads++;
496 }
497
498 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
499 * From our point of view an IO job processed means that the count of
500 * server.io_processed must increase by one.
501 *
502 * If max is -1, all the pending IO jobs will be processed.
503 *
504 * Returns the number of IO jobs processed.
505 *
506 * NOTE: while this may appear like a busy loop, we are actually blocked
507 * by IO since we continuously acquire/release the IO lock. */
508 int processActiveIOJobs(int max) {
509 int processed = 0;
510
511 while(max == -1 || max > 0) {
512 int io_processed_len;
513
514 redisLog(REDIS_DEBUG,"[P] lock IO");
515 lockThreadedIO();
516 redisLog(REDIS_DEBUG,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server.io_newjobs),listLength(server.io_processing),listLength(server.io_processed));
517
518 if (listLength(server.io_newjobs) == 0 &&
519 listLength(server.io_processing) == 0)
520 {
521 /* There is nothing more to process */
522 redisLog(REDIS_DEBUG,"[P] Nothing to process, unlock IO, return");
523 unlockThreadedIO();
524 break;
525 }
526
527 #if 1
528 /* If there are new jobs we need to signal the thread to
529 * process the next one. FIXME: drop this if useless. */
530 redisLog(REDIS_DEBUG,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d",
531 listLength(server.io_newjobs),
532 listLength(server.io_processing),
533 listLength(server.io_processed));
534
535 if (listLength(server.io_newjobs)) {
536 redisLog(REDIS_DEBUG,"[P] There are new jobs, signal");
537 pthread_cond_signal(&server.io_condvar);
538 }
539 #endif
540
541 /* Check if we can process some finished job */
542 io_processed_len = listLength(server.io_processed);
543 redisLog(REDIS_DEBUG,"[P] Unblock IO");
544 unlockThreadedIO();
545 redisLog(REDIS_DEBUG,"[P] Wait");
546 usleep(10000);
547 if (io_processed_len) {
548 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
549 (void*)0xdeadbeef,0);
550 processed++;
551 if (max != -1) max--;
552 }
553 }
554 return processed;
555 }
556
557 void waitEmptyIOJobsQueue(void) {
558 processActiveIOJobs(-1);
559 }
560
561 /* Process up to 'max' IO Jobs already completed by threads but still waiting
562 * processing from the main thread.
563 *
564 * If max == -1 all the pending jobs are processed.
565 *
566 * The number of processed jobs is returned. */
567 int processPendingIOJobs(int max) {
568 int processed = 0;
569
570 while(max == -1 || max > 0) {
571 int io_processed_len;
572
573 lockThreadedIO();
574 io_processed_len = listLength(server.io_processed);
575 unlockThreadedIO();
576 if (io_processed_len == 0) break;
577 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
578 (void*)0xdeadbeef,0);
579 if (max != -1) max--;
580 processed++;
581 }
582 return processed;
583 }
584
585 void processAllPendingIOJobs(void) {
586 processPendingIOJobs(-1);
587 }
588
589 /* This function must be called while with threaded IO locked */
590 void queueIOJob(iojob *j) {
591 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
592 (void*)j, j->type, (char*)j->key->ptr);
593 listAddNodeTail(server.io_newjobs,j);
594 if (server.io_active_threads < server.vm_max_threads)
595 spawnIOThread();
596 }
597
598 /* Consume all the IO scheduled operations, and all the thread IO jobs
599 * so that eventually the state of diskstore is a point-in-time snapshot.
600 *
601 * This is useful when we need to BGSAVE with diskstore enabled. */
602 void cacheForcePointInTime(void) {
603 redisLog(REDIS_NOTICE,"Diskstore: synching on disk to reach point-in-time state.");
604 while (listLength(server.cache_io_queue) != 0) {
605 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
606 processActiveIOJobs(1);
607 }
608 waitEmptyIOJobsQueue();
609 processAllPendingIOJobs();
610 }
611
612 void cacheCreateIOJob(int type, redisDb *db, robj *key, robj *val, time_t expire) {
613 iojob *j;
614
615 j = zmalloc(sizeof(*j));
616 j->type = type;
617 j->db = db;
618 j->key = key;
619 incrRefCount(key);
620 j->val = val;
621 if (val) incrRefCount(val);
622 j->expire = expire;
623
624 lockThreadedIO();
625 queueIOJob(j);
626 pthread_cond_signal(&server.io_condvar);
627 unlockThreadedIO();
628 }
629
630 /* ============= Disk store cache - Scheduling of IO operations =============
631 *
632 * We use a queue and an hash table to hold the state of IO operations
633 * so that's fast to lookup if there is already an IO operation in queue
634 * for a given key.
635 *
636 * There are two types of IO operations for a given key:
637 * REDIS_IO_LOAD and REDIS_IO_SAVE.
638 *
639 * The function cacheScheduleIO() function pushes the specified IO operation
640 * in the queue, but avoid adding the same key for the same operation
641 * multiple times, thanks to the associated hash table.
642 *
643 * We take a set of flags per every key, so when the scheduled IO operation
644 * gets moved from the scheduled queue to the actual IO Jobs queue that
645 * is processed by the IO thread, we flag it as IO_LOADINPROG or
646 * IO_SAVEINPROG.
647 *
648 * So for every given key we always know if there is some IO operation
649 * scheduled, or in progress, for this key.
650 *
651 * NOTE: all this is very important in order to guarantee correctness of
652 * the Disk Store Cache. Jobs are always queued here. Load jobs are
653 * queued at the head for faster execution only in the case there is not
654 * already a write operation of some kind for this job.
655 *
656 * So we have ordering, but can do exceptions when there are no already
657 * operations for a given key. Also when we need to block load a given
658 * key, for an immediate lookup operation, we can check if the key can
659 * be accessed synchronously without race conditions (no IN PROGRESS
660 * operations for this key), otherwise we blocking wait for completion. */
661
662 #define REDIS_IO_LOAD 1
663 #define REDIS_IO_SAVE 2
664 #define REDIS_IO_LOADINPROG 4
665 #define REDIS_IO_SAVEINPROG 8
666
667 void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
668 struct dictEntry *de = dictFind(db->io_queued,key);
669
670 if (!de) {
671 dictAdd(db->io_queued,key,(void*)flag);
672 incrRefCount(key);
673 return;
674 } else {
675 long flags = (long) dictGetEntryVal(de);
676
677 if (flags & flag) {
678 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
679 redisAssert(!(flags & flag));
680 }
681 flags |= flag;
682 dictGetEntryVal(de) = (void*) flags;
683 }
684 }
685
686 void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
687 struct dictEntry *de = dictFind(db->io_queued,key);
688 long flags;
689
690 redisAssert(de != NULL);
691 flags = (long) dictGetEntryVal(de);
692 redisAssert(flags & flag);
693 flags &= ~flag;
694 if (flags == 0) {
695 dictDelete(db->io_queued,key);
696 } else {
697 dictGetEntryVal(de) = (void*) flags;
698 }
699 }
700
701 int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
702 struct dictEntry *de = dictFind(db->io_queued,key);
703
704 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
705 }
706
707 void cacheScheduleIO(redisDb *db, robj *key, int type) {
708 ioop *op;
709 long flags;
710
711 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
712
713 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
714 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
715 cacheScheduleIOAddFlag(db,key,type);
716 op = zmalloc(sizeof(*op));
717 op->type = type;
718 op->db = db;
719 op->key = key;
720 incrRefCount(key);
721 op->ctime = time(NULL);
722
723 /* Give priority to load operations if there are no save already
724 * in queue for the same key. */
725 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
726 listAddNodeHead(server.cache_io_queue, op);
727 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS);
728 } else {
729 /* FIXME: probably when this happens we want to at least move
730 * the write job about this queue on top, and set the creation time
731 * to a value that will force processing ASAP. */
732 listAddNodeTail(server.cache_io_queue, op);
733 }
734 }
735
736 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
737 *
738 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
739 * useful since it's safe to push LOAD IO jobs from any place of the code, while
740 * SAVE io jobs should never be pushed while we are processing a command
741 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
742 * state.
743 *
744 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
745 * scheduled completion time, but just do the operation ASAP. This is useful
746 * when we need to reclaim memory from the IO queue.
747 */
748 #define MAX_IO_JOBS_QUEUE 10
749 int cacheScheduleIOPushJobs(int flags) {
750 time_t now = time(NULL);
751 listNode *ln;
752 int jobs, topush = 0, pushed = 0;
753
754 /* Don't push new jobs if there is a threaded BGSAVE in progress. */
755 if (server.bgsavethread != (pthread_t) -1) return 0;
756
757 /* Sync stuff on disk, but only if we have less
758 * than MAX_IO_JOBS_QUEUE IO jobs. */
759 lockThreadedIO();
760 jobs = listLength(server.io_newjobs);
761 unlockThreadedIO();
762
763 topush = MAX_IO_JOBS_QUEUE-jobs;
764 if (topush < 0) topush = 0;
765 if (topush > (signed)listLength(server.cache_io_queue))
766 topush = listLength(server.cache_io_queue);
767
768 while((ln = listFirst(server.cache_io_queue)) != NULL) {
769 ioop *op = ln->value;
770 struct dictEntry *de;
771 robj *val;
772
773 if (!topush) break;
774 topush--;
775
776 if (op->type != REDIS_IO_LOAD && flags & REDIS_IO_ONLYLOADS) break;
777
778 /* Don't execute SAVE before the scheduled time for completion */
779 if (op->type == REDIS_IO_SAVE && !(flags & REDIS_IO_ASAP) &&
780 (now - op->ctime) < server.cache_flush_delay) break;
781
782 /* Don't add a SAVE job in the IO thread queue if there is already
783 * a save in progress for the same key. */
784 if (op->type == REDIS_IO_SAVE &&
785 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
786 {
787 /* Move the operation at the end of the list if there
788 * are other operations, so we can try to process the next one.
789 * Otherwise break, nothing to do here. */
790 if (listLength(server.cache_io_queue) > 1) {
791 listDelNode(server.cache_io_queue,ln);
792 listAddNodeTail(server.cache_io_queue,op);
793 continue;
794 } else {
795 break;
796 }
797 }
798
799 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
800 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
801
802 if (op->type == REDIS_IO_LOAD) {
803 cacheCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL,0);
804 } else {
805 time_t expire = -1;
806
807 /* Lookup the key, in order to put the current value in the IO
808 * Job. Otherwise if the key does not exists we schedule a disk
809 * store delete operation, setting the value to NULL. */
810 de = dictFind(op->db->dict,op->key->ptr);
811 if (de) {
812 val = dictGetEntryVal(de);
813 expire = getExpire(op->db,op->key);
814 } else {
815 /* Setting the value to NULL tells the IO thread to delete
816 * the key on disk. */
817 val = NULL;
818 }
819 cacheCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val,expire);
820 }
821 /* Mark the operation as in progress. */
822 cacheScheduleIODelFlag(op->db,op->key,op->type);
823 cacheScheduleIOAddFlag(op->db,op->key,
824 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
825 REDIS_IO_SAVEINPROG);
826 /* Finally remove the operation from the queue.
827 * But we'll have trace of it in the hash table. */
828 listDelNode(server.cache_io_queue,ln);
829 decrRefCount(op->key);
830 zfree(op);
831 pushed++;
832 }
833 return pushed;
834 }
835
836 void cacheCron(void) {
837 /* Push jobs */
838 cacheScheduleIOPushJobs(0);
839
840 /* Reclaim memory from the object cache */
841 while (server.ds_enabled && zmalloc_used_memory() >
842 server.cache_max_memory)
843 {
844 int done = 0;
845
846 if (cacheFreeOneEntry() == REDIS_OK) done++;
847 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
848 if (done == 0) break; /* nothing more to free */
849 }
850 }
851
852 /* ========== Disk store cache - Blocking clients on missing keys =========== */
853
854 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
855 * If the key is already in memory we don't need to block.
856 *
857 * FIXME: we should try if it's actually better to suspend the client
858 * accessing an object that is being saved, and awake it only when
859 * the saving was completed.
860 *
861 * Otherwise if the key is not in memory, we block the client and start
862 * an IO Job to load it:
863 *
864 * the key is added to the io_keys list in the client structure, and also
865 * in the hash table mapping swapped keys to waiting clients, that is,
866 * server.io_waited_keys. */
867 int waitForSwappedKey(redisClient *c, robj *key) {
868 struct dictEntry *de;
869 list *l;
870
871 /* Return ASAP if the key is in memory */
872 de = dictFind(c->db->dict,key->ptr);
873 if (de != NULL) return 0;
874
875 /* Don't wait for keys we are sure are not on disk either */
876 if (!cacheKeyMayExist(c->db,key)) return 0;
877
878 /* Add the key to the list of keys this client is waiting for.
879 * This maps clients to keys they are waiting for. */
880 listAddNodeTail(c->io_keys,key);
881 incrRefCount(key);
882
883 /* Add the client to the swapped keys => clients waiting map. */
884 de = dictFind(c->db->io_keys,key);
885 if (de == NULL) {
886 int retval;
887
888 /* For every key we take a list of clients blocked for it */
889 l = listCreate();
890 retval = dictAdd(c->db->io_keys,key,l);
891 incrRefCount(key);
892 redisAssert(retval == DICT_OK);
893 } else {
894 l = dictGetEntryVal(de);
895 }
896 listAddNodeTail(l,c);
897
898 /* Are we already loading the key from disk? If not create a job */
899 if (de == NULL)
900 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
901 return 1;
902 }
903
904 /* Preload keys for any command with first, last and step values for
905 * the command keys prototype, as defined in the command table. */
906 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
907 int j, last;
908 if (cmd->vm_firstkey == 0) return;
909 last = cmd->vm_lastkey;
910 if (last < 0) last = argc+last;
911 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
912 redisAssert(j < argc);
913 waitForSwappedKey(c,argv[j]);
914 }
915 }
916
917 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
918 * Note that the number of keys to preload is user-defined, so we need to
919 * apply a sanity check against argc. */
920 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
921 int i, num;
922 REDIS_NOTUSED(cmd);
923
924 num = atoi(argv[2]->ptr);
925 if (num > (argc-3)) return;
926 for (i = 0; i < num; i++) {
927 waitForSwappedKey(c,argv[3+i]);
928 }
929 }
930
931 /* Preload keys needed to execute the entire MULTI/EXEC block.
932 *
933 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
934 * and will block the client when any command requires a swapped out value. */
935 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
936 int i, margc;
937 struct redisCommand *mcmd;
938 robj **margv;
939 REDIS_NOTUSED(cmd);
940 REDIS_NOTUSED(argc);
941 REDIS_NOTUSED(argv);
942
943 if (!(c->flags & REDIS_MULTI)) return;
944 for (i = 0; i < c->mstate.count; i++) {
945 mcmd = c->mstate.commands[i].cmd;
946 margc = c->mstate.commands[i].argc;
947 margv = c->mstate.commands[i].argv;
948
949 if (mcmd->vm_preload_proc != NULL) {
950 mcmd->vm_preload_proc(c,mcmd,margc,margv);
951 } else {
952 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
953 }
954 }
955 }
956
957 /* Is this client attempting to run a command against swapped keys?
958 * If so, block it ASAP, load the keys in background, then resume it.
959 *
960 * The important idea about this function is that it can fail! If keys will
961 * still be swapped when the client is resumed, this key lookups will
962 * just block loading keys from disk. In practical terms this should only
963 * happen with SORT BY command or if there is a bug in this function.
964 *
965 * Return 1 if the client is marked as blocked, 0 if the client can
966 * continue as the keys it is going to access appear to be in memory. */
967 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
968 if (cmd->vm_preload_proc != NULL) {
969 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
970 } else {
971 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
972 }
973
974 /* If the client was blocked for at least one key, mark it as blocked. */
975 if (listLength(c->io_keys)) {
976 c->flags |= REDIS_IO_WAIT;
977 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
978 server.cache_blocked_clients++;
979 return 1;
980 } else {
981 return 0;
982 }
983 }
984
985 /* Remove the 'key' from the list of blocked keys for a given client.
986 *
987 * The function returns 1 when there are no longer blocking keys after
988 * the current one was removed (and the client can be unblocked). */
989 int dontWaitForSwappedKey(redisClient *c, robj *key) {
990 list *l;
991 listNode *ln;
992 listIter li;
993 struct dictEntry *de;
994
995 /* The key object might be destroyed when deleted from the c->io_keys
996 * list (and the "key" argument is physically the same object as the
997 * object inside the list), so we need to protect it. */
998 incrRefCount(key);
999
1000 /* Remove the key from the list of keys this client is waiting for. */
1001 listRewind(c->io_keys,&li);
1002 while ((ln = listNext(&li)) != NULL) {
1003 if (equalStringObjects(ln->value,key)) {
1004 listDelNode(c->io_keys,ln);
1005 break;
1006 }
1007 }
1008 redisAssert(ln != NULL);
1009
1010 /* Remove the client form the key => waiting clients map. */
1011 de = dictFind(c->db->io_keys,key);
1012 redisAssert(de != NULL);
1013 l = dictGetEntryVal(de);
1014 ln = listSearchKey(l,c);
1015 redisAssert(ln != NULL);
1016 listDelNode(l,ln);
1017 if (listLength(l) == 0)
1018 dictDelete(c->db->io_keys,key);
1019
1020 decrRefCount(key);
1021 return listLength(c->io_keys) == 0;
1022 }
1023
1024 /* Every time we now a key was loaded back in memory, we handle clients
1025 * waiting for this key if any. */
1026 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
1027 struct dictEntry *de;
1028 list *l;
1029 listNode *ln;
1030 int len;
1031
1032 de = dictFind(db->io_keys,key);
1033 if (!de) return;
1034
1035 l = dictGetEntryVal(de);
1036 len = listLength(l);
1037 /* Note: we can't use something like while(listLength(l)) as the list
1038 * can be freed by the calling function when we remove the last element. */
1039 while (len--) {
1040 ln = listFirst(l);
1041 redisClient *c = ln->value;
1042
1043 if (dontWaitForSwappedKey(c,key)) {
1044 /* Put the client in the list of clients ready to go as we
1045 * loaded all the keys about it. */
1046 listAddNodeTail(server.io_ready_clients,c);
1047 }
1048 }
1049 }