1 # Redis configuration file example
3 # Note on units: when memory size is needed, it is possible to specify
4 # it in the usual form of 1k 5GB 4M and so forth:
9 # 1mb => 1024*1024 bytes
10 # 1g => 1000000000 bytes
11 # 1gb => 1024*1024*1024 bytes
13 # units are case insensitive so 1GB 1Gb 1gB are all the same.
15 # By default Redis does not run as a daemon. Use 'yes' if you need it.
16 # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
19 # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
20 # default. You can specify a custom pid file location here.
21 pidfile /var/run/redis.pid
23 # Accept connections on the specified port, default is 6379.
24 # If port 0 is specified Redis will not listen on a TCP socket.
27 # If you want you can bind a single interface, if the bind option is not
28 # specified all the interfaces will listen for incoming connections.
32 # Specify the path for the unix socket that will be used to listen for
33 # incoming connections. There is no default, so Redis will not listen
34 # on a unix socket when not specified.
36 # unixsocket /tmp/redis.sock
39 # Close the connection after a client is idle for N seconds (0 to disable)
42 # Set server verbosity to 'debug'
44 # debug (a lot of information, useful for development/testing)
45 # verbose (many rarely useful info, but not a mess like the debug level)
46 # notice (moderately verbose, what you want in production probably)
47 # warning (only very important / critical messages are logged)
50 # Specify the log file name. Also 'stdout' can be used to force
51 # Redis to log on the standard output. Note that if you use standard
52 # output for logging but daemonize, logs will be sent to /dev/null
55 # To enable logging to the system logger, just set 'syslog-enabled' to yes,
56 # and optionally update the other syslog parameters to suit your needs.
59 # Specify the syslog identity.
62 # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
63 # syslog-facility local0
65 # Set the number of databases. The default database is DB 0, you can select
66 # a different one on a per-connection basis using SELECT <dbid> where
67 # dbid is a number between 0 and 'databases'-1
70 ################################ SNAPSHOTTING #################################
72 # Save the DB on disk:
74 # save <seconds> <changes>
76 # Will save the DB if both the given number of seconds and the given
77 # number of write operations against the DB occurred.
79 # In the example below the behaviour will be to save:
80 # after 900 sec (15 min) if at least 1 key changed
81 # after 300 sec (5 min) if at least 10 keys changed
82 # after 60 sec if at least 10000 keys changed
84 # Note: you can disable saving at all commenting all the "save" lines.
86 # It is also possible to remove all the previously configured save
87 # points by adding a save directive with a single empty string argument
88 # like in the following example:
96 # Compress string objects using LZF when dump .rdb databases?
97 # For default that's set to 'yes' as it's almost always a win.
98 # If you want to save some CPU in the saving child set it to 'no' but
99 # the dataset will likely be bigger if you have compressible values or keys.
102 # The filename where to dump the DB
105 # The working directory.
107 # The DB will be written inside this directory, with the filename specified
108 # above using the 'dbfilename' configuration directive.
110 # Also the Append Only File will be created inside this directory.
112 # Note that you must specify a directory here, not a file name.
115 ################################# REPLICATION #################################
117 # Master-Slave replication. Use slaveof to make a Redis instance a copy of
118 # another Redis server. Note that the configuration is local to the slave
119 # so for example it is possible to configure the slave to save the DB with a
120 # different interval, or to listen to another port, and so on.
122 # slaveof <masterip> <masterport>
124 # If the master is password protected (using the "requirepass" configuration
125 # directive below) it is possible to tell the slave to authenticate before
126 # starting the replication synchronization process, otherwise the master will
127 # refuse the slave request.
129 # masterauth <master-password>
131 # When a slave lost the connection with the master, or when the replication
132 # is still in progress, the slave can act in two different ways:
134 # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
135 # still reply to client requests, possibly with out of date data, or the
136 # data set may just be empty if this is the first synchronization.
138 # 2) if slave-serve-stale data is set to 'no' the slave will reply with
139 # an error "SYNC with master in progress" to all the kind of commands
140 # but to INFO and SLAVEOF.
142 slave-serve-stale-data yes
144 # Slaves send PINGs to server in a predefined interval. It's possible to change
145 # this interval with the repl_ping_slave_period option. The default value is 10
148 # repl-ping-slave-period 10
150 # The following option sets a timeout for both Bulk transfer I/O timeout and
151 # master data or ping response timeout. The default value is 60 seconds.
153 # It is important to make sure that this value is greater than the value
154 # specified for repl-ping-slave-period otherwise a timeout will be detected
155 # every time there is low traffic between the master and the slave.
159 ################################## SECURITY ###################################
161 # Require clients to issue AUTH <PASSWORD> before processing any other
162 # commands. This might be useful in environments in which you do not trust
163 # others with access to the host running redis-server.
165 # This should stay commented out for backward compatibility and because most
166 # people do not need auth (e.g. they run their own servers).
168 # Warning: since Redis is pretty fast an outside user can try up to
169 # 150k passwords per second against a good box. This means that you should
170 # use a very strong password otherwise it will be very easy to break.
172 # requirepass foobared
176 # It is possible to change the name of dangerous commands in a shared
177 # environment. For instance the CONFIG command may be renamed into something
178 # of hard to guess so that it will be still available for internal-use
179 # tools but not available for general clients.
183 # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
185 # It is also possible to completely kill a command renaming it into
188 # rename-command CONFIG ""
190 ################################### LIMITS ####################################
192 # Set the max number of connected clients at the same time. By default
193 # this limit is set to 10000 clients, however if the Redis server is not
194 # able ot configure the process file limit to allow for the specified limit
195 # the max number of allowed clients is set to the current file limit
196 # minus 32 (as Redis reserves a few file descriptors for internal uses).
198 # Once the limit is reached Redis will close all the new connections sending
199 # an error 'max number of clients reached'.
203 # Don't use more memory than the specified amount of bytes.
204 # When the memory limit is reached Redis will try to remove keys
205 # accordingly to the eviction policy selected (see maxmemmory-policy).
207 # If Redis can't remove keys according to the policy, or if the policy is
208 # set to 'noeviction', Redis will start to reply with errors to commands
209 # that would use more memory, like SET, LPUSH, and so on, and will continue
210 # to reply to read-only commands like GET.
212 # This option is usually useful when using Redis as an LRU cache, or to set
213 # an hard memory limit for an instance (using the 'noeviction' policy).
215 # WARNING: If you have slaves attached to an instance with maxmemory on,
216 # the size of the output buffers needed to feed the slaves are subtracted
217 # from the used memory count, so that network problems / resyncs will
218 # not trigger a loop where keys are evicted, and in turn the output
219 # buffer of slaves is full with DELs of keys evicted triggering the deletion
220 # of more keys, and so forth until the database is completely emptied.
222 # In short... if you have slaves attached it is suggested that you set a lower
223 # limit for maxmemory so that there is some free RAM on the system for slave
224 # output buffers (but this is not needed if the policy is 'noeviction').
228 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
229 # is reached? You can select among five behavior:
231 # volatile-lru -> remove the key with an expire set using an LRU algorithm
232 # allkeys-lru -> remove any key accordingly to the LRU algorithm
233 # volatile-random -> remove a random key with an expire set
234 # allkeys->random -> remove a random key, any key
235 # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
236 # noeviction -> don't expire at all, just return an error on write operations
238 # Note: with all the kind of policies, Redis will return an error on write
239 # operations, when there are not suitable keys for eviction.
241 # At the date of writing this commands are: set setnx setex append
242 # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
243 # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
244 # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
245 # getset mset msetnx exec sort
249 # maxmemory-policy volatile-lru
251 # LRU and minimal TTL algorithms are not precise algorithms but approximated
252 # algorithms (in order to save memory), so you can select as well the sample
253 # size to check. For instance for default Redis will check three keys and
254 # pick the one that was used less recently, you can change the sample size
255 # using the following configuration directive.
257 # maxmemory-samples 3
259 ############################## APPEND ONLY MODE ###############################
261 # By default Redis asynchronously dumps the dataset on disk. If you can live
262 # with the idea that the latest records will be lost if something like a crash
263 # happens this is the preferred way to run Redis. If instead you care a lot
264 # about your data and don't want to that a single record can get lost you should
265 # enable the append only mode: when this mode is enabled Redis will append
266 # every write operation received in the file appendonly.aof. This file will
267 # be read on startup in order to rebuild the full dataset in memory.
269 # Note that you can have both the async dumps and the append only file if you
270 # like (you have to comment the "save" statements above to disable the dumps).
271 # Still if append only mode is enabled Redis will load the data from the
272 # log file at startup ignoring the dump.rdb file.
274 # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
275 # log file in background when it gets too big.
279 # The name of the append only file (default: "appendonly.aof")
280 # appendfilename appendonly.aof
282 # The fsync() call tells the Operating System to actually write data on disk
283 # instead to wait for more data in the output buffer. Some OS will really flush
284 # data on disk, some other OS will just try to do it ASAP.
286 # Redis supports three different modes:
288 # no: don't fsync, just let the OS flush the data when it wants. Faster.
289 # always: fsync after every write to the append only log . Slow, Safest.
290 # everysec: fsync only if one second passed since the last fsync. Compromise.
292 # The default is "everysec" that's usually the right compromise between
293 # speed and data safety. It's up to you to understand if you can relax this to
294 # "no" that will let the operating system flush the output buffer when
295 # it wants, for better performances (but if you can live with the idea of
296 # some data loss consider the default persistence mode that's snapshotting),
297 # or on the contrary, use "always" that's very slow but a bit safer than
300 # If unsure, use "everysec".
306 # When the AOF fsync policy is set to always or everysec, and a background
307 # saving process (a background save or AOF log background rewriting) is
308 # performing a lot of I/O against the disk, in some Linux configurations
309 # Redis may block too long on the fsync() call. Note that there is no fix for
310 # this currently, as even performing fsync in a different thread will block
311 # our synchronous write(2) call.
313 # In order to mitigate this problem it's possible to use the following option
314 # that will prevent fsync() from being called in the main process while a
315 # BGSAVE or BGREWRITEAOF is in progress.
317 # This means that while another child is saving the durability of Redis is
318 # the same as "appendfsync none", that in practical terms means that it is
319 # possible to lost up to 30 seconds of log in the worst scenario (with the
320 # default Linux settings).
322 # If you have latency problems turn this to "yes". Otherwise leave it as
323 # "no" that is the safest pick from the point of view of durability.
324 no-appendfsync-on-rewrite no
326 # Automatic rewrite of the append only file.
327 # Redis is able to automatically rewrite the log file implicitly calling
328 # BGREWRITEAOF when the AOF log size will growth by the specified percentage.
330 # This is how it works: Redis remembers the size of the AOF file after the
331 # latest rewrite (or if no rewrite happened since the restart, the size of
332 # the AOF at startup is used).
334 # This base size is compared to the current size. If the current size is
335 # bigger than the specified percentage, the rewrite is triggered. Also
336 # you need to specify a minimal size for the AOF file to be rewritten, this
337 # is useful to avoid rewriting the AOF file even if the percentage increase
338 # is reached but it is still pretty small.
340 # Specify a percentage of zero in order to disable the automatic AOF
343 auto-aof-rewrite-percentage 100
344 auto-aof-rewrite-min-size 64mb
346 ################################ LUA SCRIPTING ###############################
348 # Max execution time of a Lua script in milliseconds.
350 # If the maximum execution time is reached Redis will log that a script is
351 # still in execution after the maximum allowed time and will start to
352 # reply to queries with an error.
354 # When a long running script exceed the maximum execution time only the
355 # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
356 # used to stop a script that did not yet called write commands. The second
357 # is the only way to shut down the server in the case a write commands was
358 # already issue by the script but the user don't want to wait for the natural
359 # termination of the script.
361 # Set it to 0 or a negative value for unlimited execution without warnings.
364 ################################ REDIS CLUSTER ###############################
366 # Normal Redis instances can't be part of a Redis Cluster, only nodes that are
367 # started as cluster nodes can. In order to start a Redis instance as a
368 # cluster node enable the cluster support uncommenting the following:
370 # cluster-enabled yes
372 # Every cluster node has a cluster configuration file. This file is not
373 # intended to be edited by hand. It is created and updated by Redis nodes.
374 # Every Redis Cluster node requires a different cluster configuration file.
375 # Make sure that instances running in the same system does not have
376 # overlapping cluster configuration file names.
378 # cluster-config-file nodes-6379.conf
380 # In order to setup your cluster make sure to read the documentation
381 # available at http://redis.io web site.
383 ################################## SLOW LOG ###################################
385 # The Redis Slow Log is a system to log queries that exceeded a specified
386 # execution time. The execution time does not include the I/O operations
387 # like talking with the client, sending the reply and so forth,
388 # but just the time needed to actually execute the command (this is the only
389 # stage of command execution where the thread is blocked and can not serve
390 # other requests in the meantime).
392 # You can configure the slow log with two parameters: one tells Redis
393 # what is the execution time, in microseconds, to exceed in order for the
394 # command to get logged, and the other parameter is the length of the
395 # slow log. When a new command is logged the oldest one is removed from the
396 # queue of logged commands.
398 # The following time is expressed in microseconds, so 1000000 is equivalent
399 # to one second. Note that a negative number disables the slow log, while
400 # a value of zero forces the logging of every command.
401 slowlog-log-slower-than 10000
403 # There is no limit to this length. Just be aware that it will consume memory.
404 # You can reclaim memory used by the slow log with SLOWLOG RESET.
407 ############################### ADVANCED CONFIG ###############################
409 # Hashes are encoded in a special way (much more memory efficient) when they
410 # have at max a given number of elements, and the biggest element does not
411 # exceed a given threshold. You can configure this limits with the following
412 # configuration directives.
413 hash-max-zipmap-entries 512
414 hash-max-zipmap-value 64
416 # Similarly to hashes, small lists are also encoded in a special way in order
417 # to save a lot of space. The special representation is only used when
418 # you are under the following limits:
419 list-max-ziplist-entries 512
420 list-max-ziplist-value 64
422 # Sets have a special encoding in just one case: when a set is composed
423 # of just strings that happens to be integers in radix 10 in the range
424 # of 64 bit signed integers.
425 # The following configuration setting sets the limit in the size of the
426 # set in order to use this special memory saving encoding.
427 set-max-intset-entries 512
429 # Similarly to hashes and lists, sorted sets are also specially encoded in
430 # order to save a lot of space. This encoding is only used when the length and
431 # elements of a sorted set are below the following limits:
432 zset-max-ziplist-entries 128
433 zset-max-ziplist-value 64
435 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
436 # order to help rehashing the main Redis hash table (the one mapping top-level
437 # keys to values). The hash table implementation Redis uses (see dict.c)
438 # performs a lazy rehashing: the more operation you run into an hash table
439 # that is rehashing, the more rehashing "steps" are performed, so if the
440 # server is idle the rehashing is never complete and some more memory is used
443 # The default is to use this millisecond 10 times every second in order to
444 # active rehashing the main dictionaries, freeing memory when possible.
447 # use "activerehashing no" if you have hard latency requirements and it is
448 # not a good thing in your environment that Redis can reply form time to time
449 # to queries with 2 milliseconds delay.
451 # use "activerehashing yes" if you don't have such hard requirements but
452 # want to free memory asap when possible.
455 # The client output buffer limits can be used to force disconnection of clients
456 # that are not reading data from the server fast enough for some reason (a
457 # common reason is that a Pub/Sub client can't consume messages as fast as the
458 # publisher can produce them).
460 # The limit can be set differently for the three different classes of clients:
462 # normal -> normal clients
463 # slave -> slave clients and MONITOR clients
464 # pubsub -> clients subcribed to at least one pubsub channel or pattern
466 # The syntax of every client-output-buffer-limit directive is the following:
468 # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
470 # A client is immediately disconnected once the hard limit is reached, or if
471 # the soft limit is reached and remains reached for the specified number of
472 # seconds (continuously).
473 # So for instance if the hard limit is 32 megabytes and the soft limit is
474 # 16 megabytes / 10 seconds, the client will get disconnected immediately
475 # if the size of the output buffers reach 32 megabytes, but will also get
476 # disconnected if the client reaches 16 megabytes and continuously overcomes
477 # the limit for 10 seconds.
479 # By default normal clients are not limited because they don't receive data
480 # without asking (in a push way), but just after a request, so only
481 # asynchronous clients may create a scenario where data is requested faster
484 # Instead there is a default limit for pubsub and slave clients, since
485 # subscribers and slaves receive data in a push fashion.
487 # Both the hard or the soft limit can be disabled just setting it to zero.
488 client-output-buffer-limit normal 0 0 0
489 client-output-buffer-limit slave 256mb 64mb 60
490 client-output-buffer-limit pubsub 32mb 8mb 60
492 ################################## INCLUDES ###################################
494 # Include one or more other config files here. This is useful if you
495 # have a standard template that goes to all Redis server but also need
496 # to customize a few per-server settings. Include files can include
497 # other files, so use this wisely.
499 # include /path/to/local.conf
500 # include /path/to/other.conf