]> git.saurik.com Git - redis.git/blob - src/dict.c
help.h updated
[redis.git] / src / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44 #include <sys/time.h>
45 #include <ctype.h>
46
47 #include "dict.h"
48 #include "zmalloc.h"
49
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize = 1;
59 static unsigned int dict_force_resize_ratio = 5;
60
61 /* -------------------------- private prototypes ---------------------------- */
62
63 static int _dictExpandIfNeeded(dict *ht);
64 static unsigned long _dictNextPower(unsigned long size);
65 static int _dictKeyIndex(dict *ht, const void *key);
66 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68 /* -------------------------- hash functions -------------------------------- */
69
70 /* Thomas Wang's 32 bit Mix Function */
71 unsigned int dictIntHashFunction(unsigned int key)
72 {
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80 }
81
82 /* Identity hash function for integer keys */
83 unsigned int dictIdentityHashFunction(unsigned int key)
84 {
85 return key;
86 }
87
88 /* Generic hash function (a popular one from Bernstein).
89 * I tested a few and this was the best. */
90 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
91 unsigned int hash = 5381;
92
93 while (len--)
94 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
95 return hash;
96 }
97
98 /* And a case insensitive version */
99 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
100 unsigned int hash = 5381;
101
102 while (len--)
103 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
104 return hash;
105 }
106
107 /* ----------------------------- API implementation ------------------------- */
108
109 /* Reset an hashtable already initialized with ht_init().
110 * NOTE: This function should only called by ht_destroy(). */
111 static void _dictReset(dictht *ht)
112 {
113 ht->table = NULL;
114 ht->size = 0;
115 ht->sizemask = 0;
116 ht->used = 0;
117 }
118
119 /* Create a new hash table */
120 dict *dictCreate(dictType *type,
121 void *privDataPtr)
122 {
123 dict *d = zmalloc(sizeof(*d));
124
125 _dictInit(d,type,privDataPtr);
126 return d;
127 }
128
129 /* Initialize the hash table */
130 int _dictInit(dict *d, dictType *type,
131 void *privDataPtr)
132 {
133 _dictReset(&d->ht[0]);
134 _dictReset(&d->ht[1]);
135 d->type = type;
136 d->privdata = privDataPtr;
137 d->rehashidx = -1;
138 d->iterators = 0;
139 return DICT_OK;
140 }
141
142 /* Resize the table to the minimal size that contains all the elements,
143 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
144 int dictResize(dict *d)
145 {
146 int minimal;
147
148 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
149 minimal = d->ht[0].used;
150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
152 return dictExpand(d, minimal);
153 }
154
155 /* Expand or create the hashtable */
156 int dictExpand(dict *d, unsigned long size)
157 {
158 dictht n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size);
160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
163 if (dictIsRehashing(d) || d->ht[0].used > size)
164 return DICT_ERR;
165
166 /* Allocate the new hashtable and initialize all pointers to NULL */
167 n.size = realsize;
168 n.sizemask = realsize-1;
169 n.table = zcalloc(realsize*sizeof(dictEntry*));
170 n.used = 0;
171
172 /* Is this the first initialization? If so it's not really a rehashing
173 * we just set the first hash table so that it can accept keys. */
174 if (d->ht[0].table == NULL) {
175 d->ht[0] = n;
176 return DICT_OK;
177 }
178
179 /* Prepare a second hash table for incremental rehashing */
180 d->ht[1] = n;
181 d->rehashidx = 0;
182 return DICT_OK;
183 }
184
185 /* Performs N steps of incremental rehashing. Returns 1 if there are still
186 * keys to move from the old to the new hash table, otherwise 0 is returned.
187 * Note that a rehashing step consists in moving a bucket (that may have more
188 * thank one key as we use chaining) from the old to the new hash table. */
189 int dictRehash(dict *d, int n) {
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n--) {
193 dictEntry *de, *nextde;
194
195 /* Check if we already rehashed the whole table... */
196 if (d->ht[0].used == 0) {
197 zfree(d->ht[0].table);
198 d->ht[0] = d->ht[1];
199 _dictReset(&d->ht[1]);
200 d->rehashidx = -1;
201 return 0;
202 }
203
204 /* Note that rehashidx can't overflow as we are sure there are more
205 * elements because ht[0].used != 0 */
206 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
207 de = d->ht[0].table[d->rehashidx];
208 /* Move all the keys in this bucket from the old to the new hash HT */
209 while(de) {
210 unsigned int h;
211
212 nextde = de->next;
213 /* Get the index in the new hash table */
214 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
215 de->next = d->ht[1].table[h];
216 d->ht[1].table[h] = de;
217 d->ht[0].used--;
218 d->ht[1].used++;
219 de = nextde;
220 }
221 d->ht[0].table[d->rehashidx] = NULL;
222 d->rehashidx++;
223 }
224 return 1;
225 }
226
227 long long timeInMilliseconds(void) {
228 struct timeval tv;
229
230 gettimeofday(&tv,NULL);
231 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
232 }
233
234 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
235 int dictRehashMilliseconds(dict *d, int ms) {
236 long long start = timeInMilliseconds();
237 int rehashes = 0;
238
239 while(dictRehash(d,100)) {
240 rehashes += 100;
241 if (timeInMilliseconds()-start > ms) break;
242 }
243 return rehashes;
244 }
245
246 /* This function performs just a step of rehashing, and only if there are
247 * not iterators bound to our hash table. When we have iterators in the middle
248 * of a rehashing we can't mess with the two hash tables otherwise some element
249 * can be missed or duplicated.
250 *
251 * This function is called by common lookup or update operations in the
252 * dictionary so that the hash table automatically migrates from H1 to H2
253 * while it is actively used. */
254 static void _dictRehashStep(dict *d) {
255 if (d->iterators == 0) dictRehash(d,1);
256 }
257
258 /* Add an element to the target hash table */
259 int dictAdd(dict *d, void *key, void *val)
260 {
261 int index;
262 dictEntry *entry;
263 dictht *ht;
264
265 if (dictIsRehashing(d)) _dictRehashStep(d);
266
267 /* Get the index of the new element, or -1 if
268 * the element already exists. */
269 if ((index = _dictKeyIndex(d, key)) == -1)
270 return DICT_ERR;
271
272 /* Allocates the memory and stores key */
273 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
274 entry = zmalloc(sizeof(*entry));
275 entry->next = ht->table[index];
276 ht->table[index] = entry;
277 ht->used++;
278
279 /* Set the hash entry fields. */
280 dictSetHashKey(d, entry, key);
281 dictSetHashVal(d, entry, val);
282 return DICT_OK;
283 }
284
285 /* Add an element, discarding the old if the key already exists.
286 * Return 1 if the key was added from scratch, 0 if there was already an
287 * element with such key and dictReplace() just performed a value update
288 * operation. */
289 int dictReplace(dict *d, void *key, void *val)
290 {
291 dictEntry *entry, auxentry;
292
293 /* Try to add the element. If the key
294 * does not exists dictAdd will suceed. */
295 if (dictAdd(d, key, val) == DICT_OK)
296 return 1;
297 /* It already exists, get the entry */
298 entry = dictFind(d, key);
299 /* Free the old value and set the new one */
300 /* Set the new value and free the old one. Note that it is important
301 * to do that in this order, as the value may just be exactly the same
302 * as the previous one. In this context, think to reference counting,
303 * you want to increment (set), and then decrement (free), and not the
304 * reverse. */
305 auxentry = *entry;
306 dictSetHashVal(d, entry, val);
307 dictFreeEntryVal(d, &auxentry);
308 return 0;
309 }
310
311 /* Search and remove an element */
312 static int dictGenericDelete(dict *d, const void *key, int nofree)
313 {
314 unsigned int h, idx;
315 dictEntry *he, *prevHe;
316 int table;
317
318 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
319 if (dictIsRehashing(d)) _dictRehashStep(d);
320 h = dictHashKey(d, key);
321
322 for (table = 0; table <= 1; table++) {
323 idx = h & d->ht[table].sizemask;
324 he = d->ht[table].table[idx];
325 prevHe = NULL;
326 while(he) {
327 if (dictCompareHashKeys(d, key, he->key)) {
328 /* Unlink the element from the list */
329 if (prevHe)
330 prevHe->next = he->next;
331 else
332 d->ht[table].table[idx] = he->next;
333 if (!nofree) {
334 dictFreeEntryKey(d, he);
335 dictFreeEntryVal(d, he);
336 }
337 zfree(he);
338 d->ht[table].used--;
339 return DICT_OK;
340 }
341 prevHe = he;
342 he = he->next;
343 }
344 if (!dictIsRehashing(d)) break;
345 }
346 return DICT_ERR; /* not found */
347 }
348
349 int dictDelete(dict *ht, const void *key) {
350 return dictGenericDelete(ht,key,0);
351 }
352
353 int dictDeleteNoFree(dict *ht, const void *key) {
354 return dictGenericDelete(ht,key,1);
355 }
356
357 /* Destroy an entire dictionary */
358 int _dictClear(dict *d, dictht *ht)
359 {
360 unsigned long i;
361
362 /* Free all the elements */
363 for (i = 0; i < ht->size && ht->used > 0; i++) {
364 dictEntry *he, *nextHe;
365
366 if ((he = ht->table[i]) == NULL) continue;
367 while(he) {
368 nextHe = he->next;
369 dictFreeEntryKey(d, he);
370 dictFreeEntryVal(d, he);
371 zfree(he);
372 ht->used--;
373 he = nextHe;
374 }
375 }
376 /* Free the table and the allocated cache structure */
377 zfree(ht->table);
378 /* Re-initialize the table */
379 _dictReset(ht);
380 return DICT_OK; /* never fails */
381 }
382
383 /* Clear & Release the hash table */
384 void dictRelease(dict *d)
385 {
386 _dictClear(d,&d->ht[0]);
387 _dictClear(d,&d->ht[1]);
388 zfree(d);
389 }
390
391 dictEntry *dictFind(dict *d, const void *key)
392 {
393 dictEntry *he;
394 unsigned int h, idx, table;
395
396 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
397 if (dictIsRehashing(d)) _dictRehashStep(d);
398 h = dictHashKey(d, key);
399 for (table = 0; table <= 1; table++) {
400 idx = h & d->ht[table].sizemask;
401 he = d->ht[table].table[idx];
402 while(he) {
403 if (dictCompareHashKeys(d, key, he->key))
404 return he;
405 he = he->next;
406 }
407 if (!dictIsRehashing(d)) return NULL;
408 }
409 return NULL;
410 }
411
412 void *dictFetchValue(dict *d, const void *key) {
413 dictEntry *he;
414
415 he = dictFind(d,key);
416 return he ? dictGetEntryVal(he) : NULL;
417 }
418
419 dictIterator *dictGetIterator(dict *d)
420 {
421 dictIterator *iter = zmalloc(sizeof(*iter));
422
423 iter->d = d;
424 iter->table = 0;
425 iter->index = -1;
426 iter->entry = NULL;
427 iter->nextEntry = NULL;
428 return iter;
429 }
430
431 dictEntry *dictNext(dictIterator *iter)
432 {
433 while (1) {
434 if (iter->entry == NULL) {
435 dictht *ht = &iter->d->ht[iter->table];
436 if (iter->index == -1 && iter->table == 0) iter->d->iterators++;
437 iter->index++;
438 if (iter->index >= (signed) ht->size) {
439 if (dictIsRehashing(iter->d) && iter->table == 0) {
440 iter->table++;
441 iter->index = 0;
442 ht = &iter->d->ht[1];
443 } else {
444 break;
445 }
446 }
447 iter->entry = ht->table[iter->index];
448 } else {
449 iter->entry = iter->nextEntry;
450 }
451 if (iter->entry) {
452 /* We need to save the 'next' here, the iterator user
453 * may delete the entry we are returning. */
454 iter->nextEntry = iter->entry->next;
455 return iter->entry;
456 }
457 }
458 return NULL;
459 }
460
461 void dictReleaseIterator(dictIterator *iter)
462 {
463 if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--;
464 zfree(iter);
465 }
466
467 /* Return a random entry from the hash table. Useful to
468 * implement randomized algorithms */
469 dictEntry *dictGetRandomKey(dict *d)
470 {
471 dictEntry *he, *orighe;
472 unsigned int h;
473 int listlen, listele;
474
475 if (dictSize(d) == 0) return NULL;
476 if (dictIsRehashing(d)) _dictRehashStep(d);
477 if (dictIsRehashing(d)) {
478 do {
479 h = random() % (d->ht[0].size+d->ht[1].size);
480 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
481 d->ht[0].table[h];
482 } while(he == NULL);
483 } else {
484 do {
485 h = random() & d->ht[0].sizemask;
486 he = d->ht[0].table[h];
487 } while(he == NULL);
488 }
489
490 /* Now we found a non empty bucket, but it is a linked
491 * list and we need to get a random element from the list.
492 * The only sane way to do so is counting the elements and
493 * select a random index. */
494 listlen = 0;
495 orighe = he;
496 while(he) {
497 he = he->next;
498 listlen++;
499 }
500 listele = random() % listlen;
501 he = orighe;
502 while(listele--) he = he->next;
503 return he;
504 }
505
506 /* ------------------------- private functions ------------------------------ */
507
508 /* Expand the hash table if needed */
509 static int _dictExpandIfNeeded(dict *d)
510 {
511 /* Incremental rehashing already in progress. Return. */
512 if (dictIsRehashing(d)) return DICT_OK;
513
514 /* If the hash table is empty expand it to the intial size. */
515 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
516
517 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
518 * table (global setting) or we should avoid it but the ratio between
519 * elements/buckets is over the "safe" threshold, we resize doubling
520 * the number of buckets. */
521 if (d->ht[0].used >= d->ht[0].size &&
522 (dict_can_resize ||
523 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
524 {
525 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
526 d->ht[0].size : d->ht[0].used)*2);
527 }
528 return DICT_OK;
529 }
530
531 /* Our hash table capability is a power of two */
532 static unsigned long _dictNextPower(unsigned long size)
533 {
534 unsigned long i = DICT_HT_INITIAL_SIZE;
535
536 if (size >= LONG_MAX) return LONG_MAX;
537 while(1) {
538 if (i >= size)
539 return i;
540 i *= 2;
541 }
542 }
543
544 /* Returns the index of a free slot that can be populated with
545 * an hash entry for the given 'key'.
546 * If the key already exists, -1 is returned.
547 *
548 * Note that if we are in the process of rehashing the hash table, the
549 * index is always returned in the context of the second (new) hash table. */
550 static int _dictKeyIndex(dict *d, const void *key)
551 {
552 unsigned int h, idx, table;
553 dictEntry *he;
554
555 /* Expand the hashtable if needed */
556 if (_dictExpandIfNeeded(d) == DICT_ERR)
557 return -1;
558 /* Compute the key hash value */
559 h = dictHashKey(d, key);
560 for (table = 0; table <= 1; table++) {
561 idx = h & d->ht[table].sizemask;
562 /* Search if this slot does not already contain the given key */
563 he = d->ht[table].table[idx];
564 while(he) {
565 if (dictCompareHashKeys(d, key, he->key))
566 return -1;
567 he = he->next;
568 }
569 if (!dictIsRehashing(d)) break;
570 }
571 return idx;
572 }
573
574 void dictEmpty(dict *d) {
575 _dictClear(d,&d->ht[0]);
576 _dictClear(d,&d->ht[1]);
577 d->rehashidx = -1;
578 d->iterators = 0;
579 }
580
581 #define DICT_STATS_VECTLEN 50
582 static void _dictPrintStatsHt(dictht *ht) {
583 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
584 unsigned long totchainlen = 0;
585 unsigned long clvector[DICT_STATS_VECTLEN];
586
587 if (ht->used == 0) {
588 printf("No stats available for empty dictionaries\n");
589 return;
590 }
591
592 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
593 for (i = 0; i < ht->size; i++) {
594 dictEntry *he;
595
596 if (ht->table[i] == NULL) {
597 clvector[0]++;
598 continue;
599 }
600 slots++;
601 /* For each hash entry on this slot... */
602 chainlen = 0;
603 he = ht->table[i];
604 while(he) {
605 chainlen++;
606 he = he->next;
607 }
608 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
609 if (chainlen > maxchainlen) maxchainlen = chainlen;
610 totchainlen += chainlen;
611 }
612 printf("Hash table stats:\n");
613 printf(" table size: %ld\n", ht->size);
614 printf(" number of elements: %ld\n", ht->used);
615 printf(" different slots: %ld\n", slots);
616 printf(" max chain length: %ld\n", maxchainlen);
617 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
618 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
619 printf(" Chain length distribution:\n");
620 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
621 if (clvector[i] == 0) continue;
622 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
623 }
624 }
625
626 void dictPrintStats(dict *d) {
627 _dictPrintStatsHt(&d->ht[0]);
628 if (dictIsRehashing(d)) {
629 printf("-- Rehashing into ht[1]:\n");
630 _dictPrintStatsHt(&d->ht[1]);
631 }
632 }
633
634 void dictEnableResize(void) {
635 dict_can_resize = 1;
636 }
637
638 void dictDisableResize(void) {
639 dict_can_resize = 0;
640 }
641
642 #if 0
643
644 /* The following are just example hash table types implementations.
645 * Not useful for Redis so they are commented out.
646 */
647
648 /* ----------------------- StringCopy Hash Table Type ------------------------*/
649
650 static unsigned int _dictStringCopyHTHashFunction(const void *key)
651 {
652 return dictGenHashFunction(key, strlen(key));
653 }
654
655 static void *_dictStringDup(void *privdata, const void *key)
656 {
657 int len = strlen(key);
658 char *copy = zmalloc(len+1);
659 DICT_NOTUSED(privdata);
660
661 memcpy(copy, key, len);
662 copy[len] = '\0';
663 return copy;
664 }
665
666 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
667 const void *key2)
668 {
669 DICT_NOTUSED(privdata);
670
671 return strcmp(key1, key2) == 0;
672 }
673
674 static void _dictStringDestructor(void *privdata, void *key)
675 {
676 DICT_NOTUSED(privdata);
677
678 zfree(key);
679 }
680
681 dictType dictTypeHeapStringCopyKey = {
682 _dictStringCopyHTHashFunction, /* hash function */
683 _dictStringDup, /* key dup */
684 NULL, /* val dup */
685 _dictStringCopyHTKeyCompare, /* key compare */
686 _dictStringDestructor, /* key destructor */
687 NULL /* val destructor */
688 };
689
690 /* This is like StringCopy but does not auto-duplicate the key.
691 * It's used for intepreter's shared strings. */
692 dictType dictTypeHeapStrings = {
693 _dictStringCopyHTHashFunction, /* hash function */
694 NULL, /* key dup */
695 NULL, /* val dup */
696 _dictStringCopyHTKeyCompare, /* key compare */
697 _dictStringDestructor, /* key destructor */
698 NULL /* val destructor */
699 };
700
701 /* This is like StringCopy but also automatically handle dynamic
702 * allocated C strings as values. */
703 dictType dictTypeHeapStringCopyKeyValue = {
704 _dictStringCopyHTHashFunction, /* hash function */
705 _dictStringDup, /* key dup */
706 _dictStringDup, /* val dup */
707 _dictStringCopyHTKeyCompare, /* key compare */
708 _dictStringDestructor, /* key destructor */
709 _dictStringDestructor, /* val destructor */
710 };
711 #endif