]> git.saurik.com Git - redis.git/blob - src/dict.c
client buffer handling refactoring and optimization
[redis.git] / src / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44 #include <sys/time.h>
45 #include <ctype.h>
46
47 #include "dict.h"
48 #include "zmalloc.h"
49
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize = 1;
59 static unsigned int dict_force_resize_ratio = 5;
60
61 /* -------------------------- private prototypes ---------------------------- */
62
63 static int _dictExpandIfNeeded(dict *ht);
64 static unsigned long _dictNextPower(unsigned long size);
65 static int _dictKeyIndex(dict *ht, const void *key);
66 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68 /* -------------------------- hash functions -------------------------------- */
69
70 /* Thomas Wang's 32 bit Mix Function */
71 unsigned int dictIntHashFunction(unsigned int key)
72 {
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80 }
81
82 /* Identity hash function for integer keys */
83 unsigned int dictIdentityHashFunction(unsigned int key)
84 {
85 return key;
86 }
87
88 static int dict_hash_function_seed = 5381;
89
90 void dictSetHashFunctionSeed(unsigned int seed) {
91 dict_hash_function_seed = seed;
92 }
93
94 unsigned int dictGetHashFunctionSeed(void) {
95 return dict_hash_function_seed;
96 }
97
98 /* Generic hash function (a popular one from Bernstein).
99 * I tested a few and this was the best. */
100 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
101 unsigned int hash = dict_hash_function_seed;
102
103 while (len--)
104 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
105 return hash;
106 }
107
108 /* And a case insensitive version */
109 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
110 unsigned int hash = dict_hash_function_seed;
111
112 while (len--)
113 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
114 return hash;
115 }
116
117 /* ----------------------------- API implementation ------------------------- */
118
119 /* Reset an hashtable already initialized with ht_init().
120 * NOTE: This function should only called by ht_destroy(). */
121 static void _dictReset(dictht *ht)
122 {
123 ht->table = NULL;
124 ht->size = 0;
125 ht->sizemask = 0;
126 ht->used = 0;
127 }
128
129 /* Create a new hash table */
130 dict *dictCreate(dictType *type,
131 void *privDataPtr)
132 {
133 dict *d = zmalloc(sizeof(*d));
134
135 _dictInit(d,type,privDataPtr);
136 return d;
137 }
138
139 /* Initialize the hash table */
140 int _dictInit(dict *d, dictType *type,
141 void *privDataPtr)
142 {
143 _dictReset(&d->ht[0]);
144 _dictReset(&d->ht[1]);
145 d->type = type;
146 d->privdata = privDataPtr;
147 d->rehashidx = -1;
148 d->iterators = 0;
149 return DICT_OK;
150 }
151
152 /* Resize the table to the minimal size that contains all the elements,
153 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
154 int dictResize(dict *d)
155 {
156 int minimal;
157
158 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
159 minimal = d->ht[0].used;
160 if (minimal < DICT_HT_INITIAL_SIZE)
161 minimal = DICT_HT_INITIAL_SIZE;
162 return dictExpand(d, minimal);
163 }
164
165 /* Expand or create the hashtable */
166 int dictExpand(dict *d, unsigned long size)
167 {
168 dictht n; /* the new hashtable */
169 unsigned long realsize = _dictNextPower(size);
170
171 /* the size is invalid if it is smaller than the number of
172 * elements already inside the hashtable */
173 if (dictIsRehashing(d) || d->ht[0].used > size)
174 return DICT_ERR;
175
176 /* Allocate the new hashtable and initialize all pointers to NULL */
177 n.size = realsize;
178 n.sizemask = realsize-1;
179 n.table = zcalloc(realsize*sizeof(dictEntry*));
180 n.used = 0;
181
182 /* Is this the first initialization? If so it's not really a rehashing
183 * we just set the first hash table so that it can accept keys. */
184 if (d->ht[0].table == NULL) {
185 d->ht[0] = n;
186 return DICT_OK;
187 }
188
189 /* Prepare a second hash table for incremental rehashing */
190 d->ht[1] = n;
191 d->rehashidx = 0;
192 return DICT_OK;
193 }
194
195 /* Performs N steps of incremental rehashing. Returns 1 if there are still
196 * keys to move from the old to the new hash table, otherwise 0 is returned.
197 * Note that a rehashing step consists in moving a bucket (that may have more
198 * thank one key as we use chaining) from the old to the new hash table. */
199 int dictRehash(dict *d, int n) {
200 if (!dictIsRehashing(d)) return 0;
201
202 while(n--) {
203 dictEntry *de, *nextde;
204
205 /* Check if we already rehashed the whole table... */
206 if (d->ht[0].used == 0) {
207 zfree(d->ht[0].table);
208 d->ht[0] = d->ht[1];
209 _dictReset(&d->ht[1]);
210 d->rehashidx = -1;
211 return 0;
212 }
213
214 /* Note that rehashidx can't overflow as we are sure there are more
215 * elements because ht[0].used != 0 */
216 assert(d->ht[0].size > (unsigned)d->rehashidx);
217 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
218 de = d->ht[0].table[d->rehashidx];
219 /* Move all the keys in this bucket from the old to the new hash HT */
220 while(de) {
221 unsigned int h;
222
223 nextde = de->next;
224 /* Get the index in the new hash table */
225 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
226 de->next = d->ht[1].table[h];
227 d->ht[1].table[h] = de;
228 d->ht[0].used--;
229 d->ht[1].used++;
230 de = nextde;
231 }
232 d->ht[0].table[d->rehashidx] = NULL;
233 d->rehashidx++;
234 }
235 return 1;
236 }
237
238 long long timeInMilliseconds(void) {
239 struct timeval tv;
240
241 gettimeofday(&tv,NULL);
242 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
243 }
244
245 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
246 int dictRehashMilliseconds(dict *d, int ms) {
247 long long start = timeInMilliseconds();
248 int rehashes = 0;
249
250 while(dictRehash(d,100)) {
251 rehashes += 100;
252 if (timeInMilliseconds()-start > ms) break;
253 }
254 return rehashes;
255 }
256
257 /* This function performs just a step of rehashing, and only if there are
258 * no safe iterators bound to our hash table. When we have iterators in the
259 * middle of a rehashing we can't mess with the two hash tables otherwise
260 * some element can be missed or duplicated.
261 *
262 * This function is called by common lookup or update operations in the
263 * dictionary so that the hash table automatically migrates from H1 to H2
264 * while it is actively used. */
265 static void _dictRehashStep(dict *d) {
266 if (d->iterators == 0) dictRehash(d,1);
267 }
268
269 /* Add an element to the target hash table */
270 int dictAdd(dict *d, void *key, void *val)
271 {
272 dictEntry *entry = dictAddRaw(d,key);
273
274 if (!entry) return DICT_ERR;
275 dictSetVal(d, entry, val);
276 return DICT_OK;
277 }
278
279 /* Low level add. This function adds the entry but instead of setting
280 * a value returns the dictEntry structure to the user, that will make
281 * sure to fill the value field as he wishes.
282 *
283 * This function is also directly expoed to user API to be called
284 * mainly in order to store non-pointers inside the hash value, example:
285 *
286 * entry = dictAddRaw(dict,mykey);
287 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
288 *
289 * Return values:
290 *
291 * If key already exists NULL is returned.
292 * If key was added, the hash entry is returned to be manipulated by the caller.
293 */
294 dictEntry *dictAddRaw(dict *d, void *key)
295 {
296 int index;
297 dictEntry *entry;
298 dictht *ht;
299
300 if (dictIsRehashing(d)) _dictRehashStep(d);
301
302 /* Get the index of the new element, or -1 if
303 * the element already exists. */
304 if ((index = _dictKeyIndex(d, key)) == -1)
305 return NULL;
306
307 /* Allocate the memory and store the new entry */
308 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
309 entry = zmalloc(sizeof(*entry));
310 entry->next = ht->table[index];
311 ht->table[index] = entry;
312 ht->used++;
313
314 /* Set the hash entry fields. */
315 dictSetKey(d, entry, key);
316 return entry;
317 }
318
319 /* Add an element, discarding the old if the key already exists.
320 * Return 1 if the key was added from scratch, 0 if there was already an
321 * element with such key and dictReplace() just performed a value update
322 * operation. */
323 int dictReplace(dict *d, void *key, void *val)
324 {
325 dictEntry *entry, auxentry;
326
327 /* Try to add the element. If the key
328 * does not exists dictAdd will suceed. */
329 if (dictAdd(d, key, val) == DICT_OK)
330 return 1;
331 /* It already exists, get the entry */
332 entry = dictFind(d, key);
333 /* Set the new value and free the old one. Note that it is important
334 * to do that in this order, as the value may just be exactly the same
335 * as the previous one. In this context, think to reference counting,
336 * you want to increment (set), and then decrement (free), and not the
337 * reverse. */
338 auxentry = *entry;
339 dictSetVal(d, entry, val);
340 dictFreeVal(d, &auxentry);
341 return 0;
342 }
343
344 /* dictReplaceRaw() is simply a version of dictAddRaw() that always
345 * returns the hash entry of the specified key, even if the key already
346 * exists and can't be added (in that case the entry of the already
347 * existing key is returned.)
348 *
349 * See dictAddRaw() for more information. */
350 dictEntry *dictReplaceRaw(dict *d, void *key) {
351 dictEntry *entry = dictFind(d,key);
352
353 return entry ? entry : dictAddRaw(d,key);
354 }
355
356 /* Search and remove an element */
357 static int dictGenericDelete(dict *d, const void *key, int nofree)
358 {
359 unsigned int h, idx;
360 dictEntry *he, *prevHe;
361 int table;
362
363 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
364 if (dictIsRehashing(d)) _dictRehashStep(d);
365 h = dictHashKey(d, key);
366
367 for (table = 0; table <= 1; table++) {
368 idx = h & d->ht[table].sizemask;
369 he = d->ht[table].table[idx];
370 prevHe = NULL;
371 while(he) {
372 if (dictCompareKeys(d, key, he->key)) {
373 /* Unlink the element from the list */
374 if (prevHe)
375 prevHe->next = he->next;
376 else
377 d->ht[table].table[idx] = he->next;
378 if (!nofree) {
379 dictFreeKey(d, he);
380 dictFreeVal(d, he);
381 }
382 zfree(he);
383 d->ht[table].used--;
384 return DICT_OK;
385 }
386 prevHe = he;
387 he = he->next;
388 }
389 if (!dictIsRehashing(d)) break;
390 }
391 return DICT_ERR; /* not found */
392 }
393
394 int dictDelete(dict *ht, const void *key) {
395 return dictGenericDelete(ht,key,0);
396 }
397
398 int dictDeleteNoFree(dict *ht, const void *key) {
399 return dictGenericDelete(ht,key,1);
400 }
401
402 /* Destroy an entire dictionary */
403 int _dictClear(dict *d, dictht *ht)
404 {
405 unsigned long i;
406
407 /* Free all the elements */
408 for (i = 0; i < ht->size && ht->used > 0; i++) {
409 dictEntry *he, *nextHe;
410
411 if ((he = ht->table[i]) == NULL) continue;
412 while(he) {
413 nextHe = he->next;
414 dictFreeKey(d, he);
415 dictFreeVal(d, he);
416 zfree(he);
417 ht->used--;
418 he = nextHe;
419 }
420 }
421 /* Free the table and the allocated cache structure */
422 zfree(ht->table);
423 /* Re-initialize the table */
424 _dictReset(ht);
425 return DICT_OK; /* never fails */
426 }
427
428 /* Clear & Release the hash table */
429 void dictRelease(dict *d)
430 {
431 _dictClear(d,&d->ht[0]);
432 _dictClear(d,&d->ht[1]);
433 zfree(d);
434 }
435
436 dictEntry *dictFind(dict *d, const void *key)
437 {
438 dictEntry *he;
439 unsigned int h, idx, table;
440
441 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
442 if (dictIsRehashing(d)) _dictRehashStep(d);
443 h = dictHashKey(d, key);
444 for (table = 0; table <= 1; table++) {
445 idx = h & d->ht[table].sizemask;
446 he = d->ht[table].table[idx];
447 while(he) {
448 if (dictCompareKeys(d, key, he->key))
449 return he;
450 he = he->next;
451 }
452 if (!dictIsRehashing(d)) return NULL;
453 }
454 return NULL;
455 }
456
457 void *dictFetchValue(dict *d, const void *key) {
458 dictEntry *he;
459
460 he = dictFind(d,key);
461 return he ? dictGetVal(he) : NULL;
462 }
463
464 dictIterator *dictGetIterator(dict *d)
465 {
466 dictIterator *iter = zmalloc(sizeof(*iter));
467
468 iter->d = d;
469 iter->table = 0;
470 iter->index = -1;
471 iter->safe = 0;
472 iter->entry = NULL;
473 iter->nextEntry = NULL;
474 return iter;
475 }
476
477 dictIterator *dictGetSafeIterator(dict *d) {
478 dictIterator *i = dictGetIterator(d);
479
480 i->safe = 1;
481 return i;
482 }
483
484 dictEntry *dictNext(dictIterator *iter)
485 {
486 while (1) {
487 if (iter->entry == NULL) {
488 dictht *ht = &iter->d->ht[iter->table];
489 if (iter->safe && iter->index == -1 && iter->table == 0)
490 iter->d->iterators++;
491 iter->index++;
492 if (iter->index >= (signed) ht->size) {
493 if (dictIsRehashing(iter->d) && iter->table == 0) {
494 iter->table++;
495 iter->index = 0;
496 ht = &iter->d->ht[1];
497 } else {
498 break;
499 }
500 }
501 iter->entry = ht->table[iter->index];
502 } else {
503 iter->entry = iter->nextEntry;
504 }
505 if (iter->entry) {
506 /* We need to save the 'next' here, the iterator user
507 * may delete the entry we are returning. */
508 iter->nextEntry = iter->entry->next;
509 return iter->entry;
510 }
511 }
512 return NULL;
513 }
514
515 void dictReleaseIterator(dictIterator *iter)
516 {
517 if (iter->safe && !(iter->index == -1 && iter->table == 0))
518 iter->d->iterators--;
519 zfree(iter);
520 }
521
522 /* Return a random entry from the hash table. Useful to
523 * implement randomized algorithms */
524 dictEntry *dictGetRandomKey(dict *d)
525 {
526 dictEntry *he, *orighe;
527 unsigned int h;
528 int listlen, listele;
529
530 if (dictSize(d) == 0) return NULL;
531 if (dictIsRehashing(d)) _dictRehashStep(d);
532 if (dictIsRehashing(d)) {
533 do {
534 h = random() % (d->ht[0].size+d->ht[1].size);
535 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
536 d->ht[0].table[h];
537 } while(he == NULL);
538 } else {
539 do {
540 h = random() & d->ht[0].sizemask;
541 he = d->ht[0].table[h];
542 } while(he == NULL);
543 }
544
545 /* Now we found a non empty bucket, but it is a linked
546 * list and we need to get a random element from the list.
547 * The only sane way to do so is counting the elements and
548 * select a random index. */
549 listlen = 0;
550 orighe = he;
551 while(he) {
552 he = he->next;
553 listlen++;
554 }
555 listele = random() % listlen;
556 he = orighe;
557 while(listele--) he = he->next;
558 return he;
559 }
560
561 /* ------------------------- private functions ------------------------------ */
562
563 /* Expand the hash table if needed */
564 static int _dictExpandIfNeeded(dict *d)
565 {
566 /* Incremental rehashing already in progress. Return. */
567 if (dictIsRehashing(d)) return DICT_OK;
568
569 /* If the hash table is empty expand it to the intial size. */
570 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
571
572 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
573 * table (global setting) or we should avoid it but the ratio between
574 * elements/buckets is over the "safe" threshold, we resize doubling
575 * the number of buckets. */
576 if (d->ht[0].used >= d->ht[0].size &&
577 (dict_can_resize ||
578 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
579 {
580 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
581 d->ht[0].size : d->ht[0].used)*2);
582 }
583 return DICT_OK;
584 }
585
586 /* Our hash table capability is a power of two */
587 static unsigned long _dictNextPower(unsigned long size)
588 {
589 unsigned long i = DICT_HT_INITIAL_SIZE;
590
591 if (size >= LONG_MAX) return LONG_MAX;
592 while(1) {
593 if (i >= size)
594 return i;
595 i *= 2;
596 }
597 }
598
599 /* Returns the index of a free slot that can be populated with
600 * an hash entry for the given 'key'.
601 * If the key already exists, -1 is returned.
602 *
603 * Note that if we are in the process of rehashing the hash table, the
604 * index is always returned in the context of the second (new) hash table. */
605 static int _dictKeyIndex(dict *d, const void *key)
606 {
607 unsigned int h, idx, table;
608 dictEntry *he;
609
610 /* Expand the hashtable if needed */
611 if (_dictExpandIfNeeded(d) == DICT_ERR)
612 return -1;
613 /* Compute the key hash value */
614 h = dictHashKey(d, key);
615 for (table = 0; table <= 1; table++) {
616 idx = h & d->ht[table].sizemask;
617 /* Search if this slot does not already contain the given key */
618 he = d->ht[table].table[idx];
619 while(he) {
620 if (dictCompareKeys(d, key, he->key))
621 return -1;
622 he = he->next;
623 }
624 if (!dictIsRehashing(d)) break;
625 }
626 return idx;
627 }
628
629 void dictEmpty(dict *d) {
630 _dictClear(d,&d->ht[0]);
631 _dictClear(d,&d->ht[1]);
632 d->rehashidx = -1;
633 d->iterators = 0;
634 }
635
636 #define DICT_STATS_VECTLEN 50
637 static void _dictPrintStatsHt(dictht *ht) {
638 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
639 unsigned long totchainlen = 0;
640 unsigned long clvector[DICT_STATS_VECTLEN];
641
642 if (ht->used == 0) {
643 printf("No stats available for empty dictionaries\n");
644 return;
645 }
646
647 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
648 for (i = 0; i < ht->size; i++) {
649 dictEntry *he;
650
651 if (ht->table[i] == NULL) {
652 clvector[0]++;
653 continue;
654 }
655 slots++;
656 /* For each hash entry on this slot... */
657 chainlen = 0;
658 he = ht->table[i];
659 while(he) {
660 chainlen++;
661 he = he->next;
662 }
663 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
664 if (chainlen > maxchainlen) maxchainlen = chainlen;
665 totchainlen += chainlen;
666 }
667 printf("Hash table stats:\n");
668 printf(" table size: %ld\n", ht->size);
669 printf(" number of elements: %ld\n", ht->used);
670 printf(" different slots: %ld\n", slots);
671 printf(" max chain length: %ld\n", maxchainlen);
672 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
673 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
674 printf(" Chain length distribution:\n");
675 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
676 if (clvector[i] == 0) continue;
677 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
678 }
679 }
680
681 void dictPrintStats(dict *d) {
682 _dictPrintStatsHt(&d->ht[0]);
683 if (dictIsRehashing(d)) {
684 printf("-- Rehashing into ht[1]:\n");
685 _dictPrintStatsHt(&d->ht[1]);
686 }
687 }
688
689 void dictEnableResize(void) {
690 dict_can_resize = 1;
691 }
692
693 void dictDisableResize(void) {
694 dict_can_resize = 0;
695 }
696
697 #if 0
698
699 /* The following are just example hash table types implementations.
700 * Not useful for Redis so they are commented out.
701 */
702
703 /* ----------------------- StringCopy Hash Table Type ------------------------*/
704
705 static unsigned int _dictStringCopyHTHashFunction(const void *key)
706 {
707 return dictGenHashFunction(key, strlen(key));
708 }
709
710 static void *_dictStringDup(void *privdata, const void *key)
711 {
712 int len = strlen(key);
713 char *copy = zmalloc(len+1);
714 DICT_NOTUSED(privdata);
715
716 memcpy(copy, key, len);
717 copy[len] = '\0';
718 return copy;
719 }
720
721 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
722 const void *key2)
723 {
724 DICT_NOTUSED(privdata);
725
726 return strcmp(key1, key2) == 0;
727 }
728
729 static void _dictStringDestructor(void *privdata, void *key)
730 {
731 DICT_NOTUSED(privdata);
732
733 zfree(key);
734 }
735
736 dictType dictTypeHeapStringCopyKey = {
737 _dictStringCopyHTHashFunction, /* hash function */
738 _dictStringDup, /* key dup */
739 NULL, /* val dup */
740 _dictStringCopyHTKeyCompare, /* key compare */
741 _dictStringDestructor, /* key destructor */
742 NULL /* val destructor */
743 };
744
745 /* This is like StringCopy but does not auto-duplicate the key.
746 * It's used for intepreter's shared strings. */
747 dictType dictTypeHeapStrings = {
748 _dictStringCopyHTHashFunction, /* hash function */
749 NULL, /* key dup */
750 NULL, /* val dup */
751 _dictStringCopyHTKeyCompare, /* key compare */
752 _dictStringDestructor, /* key destructor */
753 NULL /* val destructor */
754 };
755
756 /* This is like StringCopy but also automatically handle dynamic
757 * allocated C strings as values. */
758 dictType dictTypeHeapStringCopyKeyValue = {
759 _dictStringCopyHTHashFunction, /* hash function */
760 _dictStringDup, /* key dup */
761 _dictStringDup, /* val dup */
762 _dictStringCopyHTKeyCompare, /* key compare */
763 _dictStringDestructor, /* key destructor */
764 _dictStringDestructor, /* val destructor */
765 };
766 #endif