1 # Redis configuration file example
3 # Note on units: when memory size is needed, it is possible to specify
4 # it in the usual form of 1k 5GB 4M and so forth:
9 # 1mb => 1024*1024 bytes
10 # 1g => 1000000000 bytes
11 # 1gb => 1024*1024*1024 bytes
13 # units are case insensitive so 1GB 1Gb 1gB are all the same.
15 # By default Redis does not run as a daemon. Use 'yes' if you need it.
16 # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
19 # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
20 # default. You can specify a custom pid file location here.
21 pidfile /var/run/redis.pid
23 # Accept connections on the specified port, default is 6379.
24 # If port 0 is specified Redis will not listen on a TCP socket.
27 # If you want you can bind a single interface, if the bind option is not
28 # specified all the interfaces will listen for incoming connections.
32 # Specify the path for the unix socket that will be used to listen for
33 # incoming connections. There is no default, so Redis will not listen
34 # on a unix socket when not specified.
36 # unixsocket /tmp/redis.sock
39 # Close the connection after a client is idle for N seconds (0 to disable)
42 # Set server verbosity to 'debug'
44 # debug (a lot of information, useful for development/testing)
45 # verbose (many rarely useful info, but not a mess like the debug level)
46 # notice (moderately verbose, what you want in production probably)
47 # warning (only very important / critical messages are logged)
50 # Specify the log file name. Also 'stdout' can be used to force
51 # Redis to log on the standard output. Note that if you use standard
52 # output for logging but daemonize, logs will be sent to /dev/null
55 # To enable logging to the system logger, just set 'syslog-enabled' to yes,
56 # and optionally update the other syslog parameters to suit your needs.
59 # Specify the syslog identity.
62 # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
63 # syslog-facility local0
65 # Set the number of databases. The default database is DB 0, you can select
66 # a different one on a per-connection basis using SELECT <dbid> where
67 # dbid is a number between 0 and 'databases'-1
70 ################################ SNAPSHOTTING #################################
72 # Save the DB on disk:
74 # save <seconds> <changes>
76 # Will save the DB if both the given number of seconds and the given
77 # number of write operations against the DB occurred.
79 # In the example below the behaviour will be to save:
80 # after 900 sec (15 min) if at least 1 key changed
81 # after 300 sec (5 min) if at least 10 keys changed
82 # after 60 sec if at least 10000 keys changed
84 # Note: you can disable saving at all commenting all the "save" lines.
86 # It is also possible to remove all the previously configured save
87 # points by adding a save directive with a single empty string argument
88 # like in the following example:
96 # Compress string objects using LZF when dump .rdb databases?
97 # For default that's set to 'yes' as it's almost always a win.
98 # If you want to save some CPU in the saving child set it to 'no' but
99 # the dataset will likely be bigger if you have compressible values or keys.
102 # The filename where to dump the DB
105 # The working directory.
107 # The DB will be written inside this directory, with the filename specified
108 # above using the 'dbfilename' configuration directive.
110 # Also the Append Only File will be created inside this directory.
112 # Note that you must specify a directory here, not a file name.
115 ################################# REPLICATION #################################
117 # Master-Slave replication. Use slaveof to make a Redis instance a copy of
118 # another Redis server. Note that the configuration is local to the slave
119 # so for example it is possible to configure the slave to save the DB with a
120 # different interval, or to listen to another port, and so on.
122 # slaveof <masterip> <masterport>
124 # If the master is password protected (using the "requirepass" configuration
125 # directive below) it is possible to tell the slave to authenticate before
126 # starting the replication synchronization process, otherwise the master will
127 # refuse the slave request.
129 # masterauth <master-password>
131 # When a slave lost the connection with the master, or when the replication
132 # is still in progress, the slave can act in two different ways:
134 # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
135 # still reply to client requests, possibly with out of date data, or the
136 # data set may just be empty if this is the first synchronization.
138 # 2) if slave-serve-stale data is set to 'no' the slave will reply with
139 # an error "SYNC with master in progress" to all the kind of commands
140 # but to INFO and SLAVEOF.
142 slave-serve-stale-data yes
144 # Slaves send PINGs to server in a predefined interval. It's possible to change
145 # this interval with the repl_ping_slave_period option. The default value is 10
148 # repl-ping-slave-period 10
150 # The following option sets a timeout for both Bulk transfer I/O timeout and
151 # master data or ping response timeout. The default value is 60 seconds.
153 # It is important to make sure that this value is greater than the value
154 # specified for repl-ping-slave-period otherwise a timeout will be detected
155 # every time there is low traffic between the master and the slave.
159 ################################## SECURITY ###################################
161 # Require clients to issue AUTH <PASSWORD> before processing any other
162 # commands. This might be useful in environments in which you do not trust
163 # others with access to the host running redis-server.
165 # This should stay commented out for backward compatibility and because most
166 # people do not need auth (e.g. they run their own servers).
168 # Warning: since Redis is pretty fast an outside user can try up to
169 # 150k passwords per second against a good box. This means that you should
170 # use a very strong password otherwise it will be very easy to break.
172 # requirepass foobared
176 # It is possible to change the name of dangerous commands in a shared
177 # environment. For instance the CONFIG command may be renamed into something
178 # of hard to guess so that it will be still available for internal-use
179 # tools but not available for general clients.
183 # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
185 # It is also possible to completely kill a command renaming it into
188 # rename-command CONFIG ""
190 ################################### LIMITS ####################################
192 # Set the max number of connected clients at the same time. By default
193 # this limit is set to 10000 clients, however if the Redis server is not
194 # able ot configure the process file limit to allow for the specified limit
195 # the max number of allowed clients is set to the current file limit
196 # minus 32 (as Redis reserves a few file descriptors for internal uses).
198 # Once the limit is reached Redis will close all the new connections sending
199 # an error 'max number of clients reached'.
203 # Don't use more memory than the specified amount of bytes.
204 # When the memory limit is reached Redis will try to remove keys with an
205 # EXPIRE set. It will try to start freeing keys that are going to expire
206 # in little time and preserve keys with a longer time to live.
207 # Redis will also try to remove objects from free lists if possible.
209 # If all this fails, Redis will start to reply with errors to commands
210 # that will use more memory, like SET, LPUSH, and so on, and will continue
211 # to reply to most read-only commands like GET.
213 # WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
214 # 'state' server or cache, not as a real DB. When Redis is used as a real
215 # database the memory usage will grow over the weeks, it will be obvious if
216 # it is going to use too much memory in the long run, and you'll have the time
217 # to upgrade. With maxmemory after the limit is reached you'll start to get
218 # errors for write operations, and this may even lead to DB inconsistency.
222 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
223 # is reached? You can select among five behavior:
225 # volatile-lru -> remove the key with an expire set using an LRU algorithm
226 # allkeys-lru -> remove any key accordingly to the LRU algorithm
227 # volatile-random -> remove a random key with an expire set
228 # allkeys->random -> remove a random key, any key
229 # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
230 # noeviction -> don't expire at all, just return an error on write operations
232 # Note: with all the kind of policies, Redis will return an error on write
233 # operations, when there are not suitable keys for eviction.
235 # At the date of writing this commands are: set setnx setex append
236 # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
237 # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
238 # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
239 # getset mset msetnx exec sort
243 # maxmemory-policy volatile-lru
245 # LRU and minimal TTL algorithms are not precise algorithms but approximated
246 # algorithms (in order to save memory), so you can select as well the sample
247 # size to check. For instance for default Redis will check three keys and
248 # pick the one that was used less recently, you can change the sample size
249 # using the following configuration directive.
251 # maxmemory-samples 3
253 ############################## APPEND ONLY MODE ###############################
255 # By default Redis asynchronously dumps the dataset on disk. If you can live
256 # with the idea that the latest records will be lost if something like a crash
257 # happens this is the preferred way to run Redis. If instead you care a lot
258 # about your data and don't want to that a single record can get lost you should
259 # enable the append only mode: when this mode is enabled Redis will append
260 # every write operation received in the file appendonly.aof. This file will
261 # be read on startup in order to rebuild the full dataset in memory.
263 # Note that you can have both the async dumps and the append only file if you
264 # like (you have to comment the "save" statements above to disable the dumps).
265 # Still if append only mode is enabled Redis will load the data from the
266 # log file at startup ignoring the dump.rdb file.
268 # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
269 # log file in background when it gets too big.
273 # The name of the append only file (default: "appendonly.aof")
274 # appendfilename appendonly.aof
276 # The fsync() call tells the Operating System to actually write data on disk
277 # instead to wait for more data in the output buffer. Some OS will really flush
278 # data on disk, some other OS will just try to do it ASAP.
280 # Redis supports three different modes:
282 # no: don't fsync, just let the OS flush the data when it wants. Faster.
283 # always: fsync after every write to the append only log . Slow, Safest.
284 # everysec: fsync only if one second passed since the last fsync. Compromise.
286 # The default is "everysec" that's usually the right compromise between
287 # speed and data safety. It's up to you to understand if you can relax this to
288 # "no" that will let the operating system flush the output buffer when
289 # it wants, for better performances (but if you can live with the idea of
290 # some data loss consider the default persistence mode that's snapshotting),
291 # or on the contrary, use "always" that's very slow but a bit safer than
294 # If unsure, use "everysec".
300 # When the AOF fsync policy is set to always or everysec, and a background
301 # saving process (a background save or AOF log background rewriting) is
302 # performing a lot of I/O against the disk, in some Linux configurations
303 # Redis may block too long on the fsync() call. Note that there is no fix for
304 # this currently, as even performing fsync in a different thread will block
305 # our synchronous write(2) call.
307 # In order to mitigate this problem it's possible to use the following option
308 # that will prevent fsync() from being called in the main process while a
309 # BGSAVE or BGREWRITEAOF is in progress.
311 # This means that while another child is saving the durability of Redis is
312 # the same as "appendfsync none", that in practical terms means that it is
313 # possible to lost up to 30 seconds of log in the worst scenario (with the
314 # default Linux settings).
316 # If you have latency problems turn this to "yes". Otherwise leave it as
317 # "no" that is the safest pick from the point of view of durability.
318 no-appendfsync-on-rewrite no
320 # Automatic rewrite of the append only file.
321 # Redis is able to automatically rewrite the log file implicitly calling
322 # BGREWRITEAOF when the AOF log size will growth by the specified percentage.
324 # This is how it works: Redis remembers the size of the AOF file after the
325 # latest rewrite (or if no rewrite happened since the restart, the size of
326 # the AOF at startup is used).
328 # This base size is compared to the current size. If the current size is
329 # bigger than the specified percentage, the rewrite is triggered. Also
330 # you need to specify a minimal size for the AOF file to be rewritten, this
331 # is useful to avoid rewriting the AOF file even if the percentage increase
332 # is reached but it is still pretty small.
334 # Specify a percentage of zero in order to disable the automatic AOF
337 auto-aof-rewrite-percentage 100
338 auto-aof-rewrite-min-size 64mb
340 ################################ LUA SCRIPTING ###############################
342 # Max execution time of a Lua script in milliseconds.
344 # If the maximum execution time is reached Redis will log that a script is
345 # still in execution after the maximum allowed time and will start to
346 # reply to queries with an error.
348 # When a long running script exceed the maximum execution time only the
349 # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
350 # used to stop a script that did not yet called write commands. The second
351 # is the only way to shut down the server in the case a write commands was
352 # already issue by the script but the user don't want to wait for the natural
353 # termination of the script.
355 # Set it to 0 or a negative value for unlimited execution without warnings.
358 ################################ REDIS CLUSTER ###############################
360 # Normal Redis instances can't be part of a Redis Cluster, only nodes that are
361 # started as cluster nodes can. In order to start a Redis instance as a
362 # cluster node enable the cluster support uncommenting the following:
364 # cluster-enabled yes
366 # Every cluster node has a cluster configuration file. This file is not
367 # intended to be edited by hand. It is created and updated by Redis nodes.
368 # Every Redis Cluster node requires a different cluster configuration file.
369 # Make sure that instances running in the same system does not have
370 # overlapping cluster configuration file names.
372 # cluster-config-file nodes-6379.conf
374 # In order to setup your cluster make sure to read the documentation
375 # available at http://redis.io web site.
377 ################################## SLOW LOG ###################################
379 # The Redis Slow Log is a system to log queries that exceeded a specified
380 # execution time. The execution time does not include the I/O operations
381 # like talking with the client, sending the reply and so forth,
382 # but just the time needed to actually execute the command (this is the only
383 # stage of command execution where the thread is blocked and can not serve
384 # other requests in the meantime).
386 # You can configure the slow log with two parameters: one tells Redis
387 # what is the execution time, in microseconds, to exceed in order for the
388 # command to get logged, and the other parameter is the length of the
389 # slow log. When a new command is logged the oldest one is removed from the
390 # queue of logged commands.
392 # The following time is expressed in microseconds, so 1000000 is equivalent
393 # to one second. Note that a negative number disables the slow log, while
394 # a value of zero forces the logging of every command.
395 slowlog-log-slower-than 10000
397 # There is no limit to this length. Just be aware that it will consume memory.
398 # You can reclaim memory used by the slow log with SLOWLOG RESET.
401 ############################### ADVANCED CONFIG ###############################
403 # Hashes are encoded in a special way (much more memory efficient) when they
404 # have at max a given number of elements, and the biggest element does not
405 # exceed a given threshold. You can configure this limits with the following
406 # configuration directives.
407 hash-max-zipmap-entries 512
408 hash-max-zipmap-value 64
410 # Similarly to hashes, small lists are also encoded in a special way in order
411 # to save a lot of space. The special representation is only used when
412 # you are under the following limits:
413 list-max-ziplist-entries 512
414 list-max-ziplist-value 64
416 # Sets have a special encoding in just one case: when a set is composed
417 # of just strings that happens to be integers in radix 10 in the range
418 # of 64 bit signed integers.
419 # The following configuration setting sets the limit in the size of the
420 # set in order to use this special memory saving encoding.
421 set-max-intset-entries 512
423 # Similarly to hashes and lists, sorted sets are also specially encoded in
424 # order to save a lot of space. This encoding is only used when the length and
425 # elements of a sorted set are below the following limits:
426 zset-max-ziplist-entries 128
427 zset-max-ziplist-value 64
429 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
430 # order to help rehashing the main Redis hash table (the one mapping top-level
431 # keys to values). The hash table implementation Redis uses (see dict.c)
432 # performs a lazy rehashing: the more operation you run into an hash table
433 # that is rehashing, the more rehashing "steps" are performed, so if the
434 # server is idle the rehashing is never complete and some more memory is used
437 # The default is to use this millisecond 10 times every second in order to
438 # active rehashing the main dictionaries, freeing memory when possible.
441 # use "activerehashing no" if you have hard latency requirements and it is
442 # not a good thing in your environment that Redis can reply form time to time
443 # to queries with 2 milliseconds delay.
445 # use "activerehashing yes" if you don't have such hard requirements but
446 # want to free memory asap when possible.
449 ################################## INCLUDES ###################################
451 # Include one or more other config files here. This is useful if you
452 # have a standard template that goes to all Redis server but also need
453 # to customize a few per-server settings. Include files can include
454 # other files, so use this wisely.
456 # include /path/to/local.conf
457 # include /path/to/other.conf