]> git.saurik.com Git - redis.git/blob - src/dscache.c
TODO updated
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
25 *
26 * - What happens when an object is destroyed?
27 *
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
32 *
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
36 *
37 * - What happens with MULTI/EXEC?
38 *
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
43 *
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
46 * to check.
47 *
48 * - Check if/why INCR will not update the LRU info for the object.
49 *
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
55 *
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
63 *
64 * Are there other patterns like this where we load stale data?
65 *
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
69 *
70 * - dsSet() should use rename(2) in order to avoid corruptions.
71 *
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
74 *
75 * - Serialize special encoded things in a raw form.
76 *
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
82 *
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
86 */
87
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
95 *
96 * Redis VM design:
97 *
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
104 *
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
107 */
108
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int flags);
111 int processActiveIOJobs(int max);
112
113 /* =================== Virtual Memory - Blocking Side ====================== */
114
115 void dsInit(void) {
116 int pipefds[2];
117 size_t stacksize;
118
119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
120
121 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK) {
124 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
125 exit(1);
126 };
127
128 /* Initialize threaded I/O for Object Cache */
129 server.io_newjobs = listCreate();
130 server.io_processing = listCreate();
131 server.io_processed = listCreate();
132 server.io_ready_clients = listCreate();
133 pthread_mutex_init(&server.io_mutex,NULL);
134 pthread_cond_init(&server.io_condvar,NULL);
135 server.io_active_threads = 0;
136 if (pipe(pipefds) == -1) {
137 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
138 ,strerror(errno));
139 exit(1);
140 }
141 server.io_ready_pipe_read = pipefds[0];
142 server.io_ready_pipe_write = pipefds[1];
143 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
144 /* LZF requires a lot of stack */
145 pthread_attr_init(&server.io_threads_attr);
146 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
147
148 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
149 * multiplying it by 2 in the while loop later will not really help ;) */
150 if (!stacksize) stacksize = 1;
151
152 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
153 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
154 /* Listen for events in the threaded I/O pipe */
155 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
156 vmThreadedIOCompletedJob, NULL) == AE_ERR)
157 oom("creating file event");
158
159 /* Spawn our I/O thread */
160 spawnIOThread();
161 }
162
163 /* Compute how good candidate the specified object is for eviction.
164 * An higher number means a better candidate. */
165 double computeObjectSwappability(robj *o) {
166 /* actual age can be >= minage, but not < minage. As we use wrapping
167 * 21 bit clocks with minutes resolution for the LRU. */
168 return (double) estimateObjectIdleTime(o);
169 }
170
171 /* Try to free one entry from the diskstore object cache */
172 int cacheFreeOneEntry(void) {
173 int j, i;
174 struct dictEntry *best = NULL;
175 double best_swappability = 0;
176 redisDb *best_db = NULL;
177 robj *val;
178 sds key;
179
180 for (j = 0; j < server.dbnum; j++) {
181 redisDb *db = server.db+j;
182 /* Why maxtries is set to 100?
183 * Because this way (usually) we'll find 1 object even if just 1% - 2%
184 * are swappable objects */
185 int maxtries = 100;
186
187 if (dictSize(db->dict) == 0) continue;
188 for (i = 0; i < 5; i++) {
189 dictEntry *de;
190 double swappability;
191 robj keyobj;
192 sds keystr;
193
194 if (maxtries) maxtries--;
195 de = dictGetRandomKey(db->dict);
196 keystr = dictGetEntryKey(de);
197 val = dictGetEntryVal(de);
198 initStaticStringObject(keyobj,keystr);
199
200 /* Don't remove objects that are currently target of a
201 * read or write operation. */
202 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
203 if (maxtries) i--; /* don't count this try */
204 continue;
205 }
206 swappability = computeObjectSwappability(val);
207 if (!best || swappability > best_swappability) {
208 best = de;
209 best_swappability = swappability;
210 best_db = db;
211 }
212 }
213 }
214 if (best == NULL) {
215 /* Was not able to fix a single object... we should check if our
216 * IO queues have stuff in queue, and try to consume the queue
217 * otherwise we'll use an infinite amount of memory if changes to
218 * the dataset are faster than I/O */
219 if (listLength(server.cache_io_queue) > 0) {
220 redisLog(REDIS_DEBUG,"--- Busy waiting IO to reclaim memory");
221 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
222 processActiveIOJobs(1);
223 return REDIS_OK;
224 }
225 /* Nothing to free at all... */
226 return REDIS_ERR;
227 }
228 key = dictGetEntryKey(best);
229 val = dictGetEntryVal(best);
230
231 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
232 key, best_swappability);
233
234 /* Delete this key from memory */
235 {
236 robj *kobj = createStringObject(key,sdslen(key));
237 dbDelete(best_db,kobj);
238 decrRefCount(kobj);
239 }
240 return REDIS_OK;
241 }
242
243 /* Return true if it's safe to swap out objects in a given moment.
244 * Basically we don't want to swap objects out while there is a BGSAVE
245 * or a BGAEOREWRITE running in backgroud. */
246 int dsCanTouchDiskStore(void) {
247 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
248 }
249
250 /* ==================== Disk store negative caching ========================
251 *
252 * When disk store is enabled, we need negative caching, that is, to remember
253 * keys that are for sure *not* on the disk key-value store.
254 *
255 * This is usefuls because without negative caching cache misses will cost us
256 * a disk lookup, even if the same non existing key is accessed again and again.
257 *
258 * With negative caching we remember that the key is not on disk, so if it's
259 * not in memory and we have a negative cache entry, we don't try a disk
260 * access at all.
261 */
262
263 /* Returns true if the specified key may exists on disk, that is, we don't
264 * have an entry in our negative cache for this key */
265 int cacheKeyMayExist(redisDb *db, robj *key) {
266 return dictFind(db->io_negcache,key) == NULL;
267 }
268
269 /* Set the specified key as an entry that may possibily exist on disk, that is,
270 * remove the negative cache entry for this key if any. */
271 void cacheSetKeyMayExist(redisDb *db, robj *key) {
272 dictDelete(db->io_negcache,key);
273 }
274
275 /* Set the specified key as non existing on disk, that is, create a negative
276 * cache entry for this key. */
277 void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
278 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
279 incrRefCount(key);
280 }
281 }
282
283 /* Remove one entry from negative cache using approximated LRU. */
284 int negativeCacheEvictOneEntry(void) {
285 struct dictEntry *de;
286 robj *best = NULL;
287 redisDb *best_db = NULL;
288 time_t time, best_time = 0;
289 int j;
290
291 for (j = 0; j < server.dbnum; j++) {
292 redisDb *db = server.db+j;
293 int i;
294
295 if (dictSize(db->io_negcache) == 0) continue;
296 for (i = 0; i < 3; i++) {
297 de = dictGetRandomKey(db->io_negcache);
298 time = (time_t) dictGetEntryVal(de);
299
300 if (best == NULL || time < best_time) {
301 best = dictGetEntryKey(de);
302 best_db = db;
303 best_time = time;
304 }
305 }
306 }
307 if (best) {
308 dictDelete(best_db->io_negcache,best);
309 return REDIS_OK;
310 } else {
311 return REDIS_ERR;
312 }
313 }
314
315 /* ================== Disk store cache - Threaded I/O ====================== */
316
317 void freeIOJob(iojob *j) {
318 decrRefCount(j->key);
319 /* j->val can be NULL if the job is about deleting the key from disk. */
320 if (j->val) decrRefCount(j->val);
321 zfree(j);
322 }
323
324 /* Every time a thread finished a Job, it writes a byte into the write side
325 * of an unix pipe in order to "awake" the main thread, and this function
326 * is called. */
327 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
328 int mask)
329 {
330 char buf[1];
331 int retval, processed = 0, toprocess = -1;
332 REDIS_NOTUSED(el);
333 REDIS_NOTUSED(mask);
334 REDIS_NOTUSED(privdata);
335
336 /* For every byte we read in the read side of the pipe, there is one
337 * I/O job completed to process. */
338 while((retval = read(fd,buf,1)) == 1) {
339 iojob *j;
340 listNode *ln;
341
342 redisLog(REDIS_DEBUG,"Processing I/O completed job");
343
344 /* Get the processed element (the oldest one) */
345 lockThreadedIO();
346 redisAssert(listLength(server.io_processed) != 0);
347 if (toprocess == -1) {
348 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
349 if (toprocess <= 0) toprocess = 1;
350 }
351 ln = listFirst(server.io_processed);
352 j = ln->value;
353 listDelNode(server.io_processed,ln);
354 unlockThreadedIO();
355
356 /* Post process it in the main thread, as there are things we
357 * can do just here to avoid race conditions and/or invasive locks */
358 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
359 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
360 (unsigned char*)j->key->ptr);
361 if (j->type == REDIS_IOJOB_LOAD) {
362 /* Create the key-value pair in the in-memory database */
363 if (j->val != NULL) {
364 /* Note: it's possible that the key is already in memory
365 * due to a blocking load operation. */
366 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
367 incrRefCount(j->val);
368 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
369 }
370 } else {
371 /* Key not found on disk. If it is also not in memory
372 * as a cached object, nor there is a job writing it
373 * in background, we are sure the key does not exist
374 * currently.
375 *
376 * So we set a negative cache entry avoiding that the
377 * resumed client will block load what does not exist... */
378 if (dictFind(j->db->dict,j->key->ptr) == NULL &&
379 (cacheScheduleIOGetFlags(j->db,j->key) &
380 (REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
381 {
382 cacheSetKeyDoesNotExist(j->db,j->key);
383 }
384 }
385 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
386 handleClientsBlockedOnSwappedKey(j->db,j->key);
387 freeIOJob(j);
388 } else if (j->type == REDIS_IOJOB_SAVE) {
389 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
390 freeIOJob(j);
391 }
392 processed++;
393 if (processed == toprocess) return;
394 }
395 if (retval < 0 && errno != EAGAIN) {
396 redisLog(REDIS_WARNING,
397 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
398 strerror(errno));
399 }
400 }
401
402 void lockThreadedIO(void) {
403 pthread_mutex_lock(&server.io_mutex);
404 }
405
406 void unlockThreadedIO(void) {
407 pthread_mutex_unlock(&server.io_mutex);
408 }
409
410 void *IOThreadEntryPoint(void *arg) {
411 iojob *j;
412 listNode *ln;
413 REDIS_NOTUSED(arg);
414
415 pthread_detach(pthread_self());
416 lockThreadedIO();
417 while(1) {
418 /* Get a new job to process */
419 if (listLength(server.io_newjobs) == 0) {
420 /* Wait for more work to do */
421 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
422 continue;
423 }
424 redisLog(REDIS_DEBUG,"%ld IO jobs to process",
425 listLength(server.io_newjobs));
426 ln = listFirst(server.io_newjobs);
427 j = ln->value;
428 listDelNode(server.io_newjobs,ln);
429 /* Add the job in the processing queue */
430 listAddNodeTail(server.io_processing,j);
431 ln = listLast(server.io_processing); /* We use ln later to remove it */
432 unlockThreadedIO();
433
434 redisLog(REDIS_DEBUG,"Thread %ld: new job type %s: %p about key '%s'",
435 (long) pthread_self(),
436 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
437 (void*)j, (char*)j->key->ptr);
438
439 /* Process the Job */
440 if (j->type == REDIS_IOJOB_LOAD) {
441 time_t expire;
442
443 j->val = dsGet(j->db,j->key,&expire);
444 if (j->val) j->expire = expire;
445 } else if (j->type == REDIS_IOJOB_SAVE) {
446 if (j->val) {
447 dsSet(j->db,j->key,j->val);
448 } else {
449 dsDel(j->db,j->key);
450 }
451 }
452
453 /* Done: insert the job into the processed queue */
454 redisLog(REDIS_DEBUG,"Thread %ld completed the job: %p (key %s)",
455 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
456
457 lockThreadedIO();
458 listDelNode(server.io_processing,ln);
459 listAddNodeTail(server.io_processed,j);
460
461 /* Signal the main thread there is new stuff to process */
462 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
463 }
464 /* never reached, but that's the full pattern... */
465 unlockThreadedIO();
466 return NULL;
467 }
468
469 void spawnIOThread(void) {
470 pthread_t thread;
471 sigset_t mask, omask;
472 int err;
473
474 sigemptyset(&mask);
475 sigaddset(&mask,SIGCHLD);
476 sigaddset(&mask,SIGHUP);
477 sigaddset(&mask,SIGPIPE);
478 pthread_sigmask(SIG_SETMASK, &mask, &omask);
479 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
480 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
481 strerror(err));
482 usleep(1000000);
483 }
484 pthread_sigmask(SIG_SETMASK, &omask, NULL);
485 server.io_active_threads++;
486 }
487
488 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
489 * From our point of view an IO job processed means that the count of
490 * server.io_processed must increase by one.
491 *
492 * If max is -1, all the pending IO jobs will be processed.
493 *
494 * Returns the number of IO jobs processed.
495 *
496 * NOTE: while this may appear like a busy loop, we are actually blocked
497 * by IO since we continuously acquire/release the IO lock. */
498 int processActiveIOJobs(int max) {
499 int processed = 0;
500
501 while(max == -1 || max > 0) {
502 int io_processed_len;
503
504 lockThreadedIO();
505 if (listLength(server.io_newjobs) == 0 &&
506 listLength(server.io_processing) == 0)
507 {
508 /* There is nothing more to process */
509 unlockThreadedIO();
510 break;
511 }
512
513 #if 0
514 /* If there are new jobs we need to signal the thread to
515 * process the next one. */
516 redisLog(REDIS_DEBUG,"waitEmptyIOJobsQueue: new %d, processing %d",
517 listLength(server.io_newjobs),
518 listLength(server.io_processing));
519
520 if (listLength(server.io_newjobs)) {
521 pthread_cond_signal(&server.io_condvar);
522 }
523 #endif
524
525 /* Check if we can process some finished job */
526 io_processed_len = listLength(server.io_processed);
527 unlockThreadedIO();
528 if (io_processed_len) {
529 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
530 (void*)0xdeadbeef,0);
531 processed++;
532 if (max != -1) max--;
533 }
534 }
535 return processed;
536 }
537
538 void waitEmptyIOJobsQueue(void) {
539 processActiveIOJobs(-1);
540 }
541
542 /* Process up to 'max' IO Jobs already completed by threads but still waiting
543 * processing from the main thread.
544 *
545 * If max == -1 all the pending jobs are processed.
546 *
547 * The number of processed jobs is returned. */
548 int processPendingIOJobs(int max) {
549 int processed = 0;
550
551 while(max == -1 || max > 0) {
552 int io_processed_len;
553
554 lockThreadedIO();
555 io_processed_len = listLength(server.io_processed);
556 unlockThreadedIO();
557 if (io_processed_len == 0) break;
558 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
559 (void*)0xdeadbeef,0);
560 if (max != -1) max--;
561 processed++;
562 }
563 return processed;
564 }
565
566 void processAllPendingIOJobs(void) {
567 processPendingIOJobs(-1);
568 }
569
570 /* This function must be called while with threaded IO locked */
571 void queueIOJob(iojob *j) {
572 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
573 (void*)j, j->type, (char*)j->key->ptr);
574 listAddNodeTail(server.io_newjobs,j);
575 if (server.io_active_threads < server.vm_max_threads)
576 spawnIOThread();
577 }
578
579 void dsCreateIOJob(int type, redisDb *db, robj *key, robj *val) {
580 iojob *j;
581
582 j = zmalloc(sizeof(*j));
583 j->type = type;
584 j->db = db;
585 j->key = key;
586 incrRefCount(key);
587 j->val = val;
588 if (val) incrRefCount(val);
589
590 lockThreadedIO();
591 queueIOJob(j);
592 pthread_cond_signal(&server.io_condvar);
593 unlockThreadedIO();
594 }
595
596 /* ============= Disk store cache - Scheduling of IO operations =============
597 *
598 * We use a queue and an hash table to hold the state of IO operations
599 * so that's fast to lookup if there is already an IO operation in queue
600 * for a given key.
601 *
602 * There are two types of IO operations for a given key:
603 * REDIS_IO_LOAD and REDIS_IO_SAVE.
604 *
605 * The function cacheScheduleIO() function pushes the specified IO operation
606 * in the queue, but avoid adding the same key for the same operation
607 * multiple times, thanks to the associated hash table.
608 *
609 * We take a set of flags per every key, so when the scheduled IO operation
610 * gets moved from the scheduled queue to the actual IO Jobs queue that
611 * is processed by the IO thread, we flag it as IO_LOADINPROG or
612 * IO_SAVEINPROG.
613 *
614 * So for every given key we always know if there is some IO operation
615 * scheduled, or in progress, for this key.
616 *
617 * NOTE: all this is very important in order to guarantee correctness of
618 * the Disk Store Cache. Jobs are always queued here. Load jobs are
619 * queued at the head for faster execution only in the case there is not
620 * already a write operation of some kind for this job.
621 *
622 * So we have ordering, but can do exceptions when there are no already
623 * operations for a given key. Also when we need to block load a given
624 * key, for an immediate lookup operation, we can check if the key can
625 * be accessed synchronously without race conditions (no IN PROGRESS
626 * operations for this key), otherwise we blocking wait for completion. */
627
628 #define REDIS_IO_LOAD 1
629 #define REDIS_IO_SAVE 2
630 #define REDIS_IO_LOADINPROG 4
631 #define REDIS_IO_SAVEINPROG 8
632
633 void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
634 struct dictEntry *de = dictFind(db->io_queued,key);
635
636 if (!de) {
637 dictAdd(db->io_queued,key,(void*)flag);
638 incrRefCount(key);
639 return;
640 } else {
641 long flags = (long) dictGetEntryVal(de);
642
643 if (flags & flag) {
644 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
645 redisAssert(!(flags & flag));
646 }
647 flags |= flag;
648 dictGetEntryVal(de) = (void*) flags;
649 }
650 }
651
652 void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
653 struct dictEntry *de = dictFind(db->io_queued,key);
654 long flags;
655
656 redisAssert(de != NULL);
657 flags = (long) dictGetEntryVal(de);
658 redisAssert(flags & flag);
659 flags &= ~flag;
660 if (flags == 0) {
661 dictDelete(db->io_queued,key);
662 } else {
663 dictGetEntryVal(de) = (void*) flags;
664 }
665 }
666
667 int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
668 struct dictEntry *de = dictFind(db->io_queued,key);
669
670 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
671 }
672
673 void cacheScheduleIO(redisDb *db, robj *key, int type) {
674 ioop *op;
675 long flags;
676
677 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
678
679 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
680 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
681 cacheScheduleIOAddFlag(db,key,type);
682 op = zmalloc(sizeof(*op));
683 op->type = type;
684 op->db = db;
685 op->key = key;
686 incrRefCount(key);
687 op->ctime = time(NULL);
688
689 /* Give priority to load operations if there are no save already
690 * in queue for the same key. */
691 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
692 listAddNodeHead(server.cache_io_queue, op);
693 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS);
694 } else {
695 /* FIXME: probably when this happens we want to at least move
696 * the write job about this queue on top, and set the creation time
697 * to a value that will force processing ASAP. */
698 listAddNodeTail(server.cache_io_queue, op);
699 }
700 }
701
702 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
703 *
704 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
705 * useful since it's safe to push LOAD IO jobs from any place of the code, while
706 * SAVE io jobs should never be pushed while we are processing a command
707 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
708 * state.
709 *
710 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
711 * scheduled completion time, but just do the operation ASAP. This is useful
712 * when we need to reclaim memory from the IO queue.
713 */
714 #define MAX_IO_JOBS_QUEUE 100
715 int cacheScheduleIOPushJobs(int flags) {
716 time_t now = time(NULL);
717 listNode *ln;
718 int jobs, topush = 0, pushed = 0;
719
720 /* Sync stuff on disk, but only if we have less
721 * than MAX_IO_JOBS_QUEUE IO jobs. */
722 lockThreadedIO();
723 jobs = listLength(server.io_newjobs);
724 unlockThreadedIO();
725
726 topush = MAX_IO_JOBS_QUEUE-jobs;
727 if (topush < 0) topush = 0;
728 if (topush > (signed)listLength(server.cache_io_queue))
729 topush = listLength(server.cache_io_queue);
730
731 while((ln = listFirst(server.cache_io_queue)) != NULL) {
732 ioop *op = ln->value;
733 struct dictEntry *de;
734 robj *val;
735
736 if (!topush) break;
737 topush--;
738
739 if (op->type != REDIS_IO_LOAD && flags & REDIS_IO_ONLYLOADS) break;
740
741 if (!(flags & REDIS_IO_ASAP) &&
742 (now - op->ctime) < server.cache_flush_delay) break;
743
744 /* Don't add a SAVE job in the IO thread queue if there is already
745 * a save in progress for the same key. */
746 if (op->type == REDIS_IO_SAVE &&
747 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
748 {
749 /* Move the operation at the end of the list if there
750 * are other operations, so we can try to process the next one.
751 * Otherwise break, nothing to do here. */
752 if (listLength(server.cache_io_queue) > 1) {
753 listDelNode(server.cache_io_queue,ln);
754 listAddNodeTail(server.cache_io_queue,op);
755 continue;
756 } else {
757 break;
758 }
759 }
760
761 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
762 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
763
764 if (op->type == REDIS_IO_LOAD) {
765 dsCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL);
766 } else {
767 /* Lookup the key, in order to put the current value in the IO
768 * Job. Otherwise if the key does not exists we schedule a disk
769 * store delete operation, setting the value to NULL. */
770 de = dictFind(op->db->dict,op->key->ptr);
771 if (de) {
772 val = dictGetEntryVal(de);
773 } else {
774 /* Setting the value to NULL tells the IO thread to delete
775 * the key on disk. */
776 val = NULL;
777 }
778 dsCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val);
779 }
780 /* Mark the operation as in progress. */
781 cacheScheduleIODelFlag(op->db,op->key,op->type);
782 cacheScheduleIOAddFlag(op->db,op->key,
783 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
784 REDIS_IO_SAVEINPROG);
785 /* Finally remove the operation from the queue.
786 * But we'll have trace of it in the hash table. */
787 listDelNode(server.cache_io_queue,ln);
788 decrRefCount(op->key);
789 zfree(op);
790 pushed++;
791 }
792 return pushed;
793 }
794
795 void cacheCron(void) {
796 /* Push jobs */
797 cacheScheduleIOPushJobs(0);
798
799 /* Reclaim memory from the object cache */
800 while (server.ds_enabled && zmalloc_used_memory() >
801 server.cache_max_memory)
802 {
803 int done = 0;
804
805 if (cacheFreeOneEntry() == REDIS_OK) done++;
806 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
807 if (done == 0) break; /* nothing more to free */
808 }
809 }
810
811 /* ========== Disk store cache - Blocking clients on missing keys =========== */
812
813 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
814 * If the key is already in memory we don't need to block.
815 *
816 * FIXME: we should try if it's actually better to suspend the client
817 * accessing an object that is being saved, and awake it only when
818 * the saving was completed.
819 *
820 * Otherwise if the key is not in memory, we block the client and start
821 * an IO Job to load it:
822 *
823 * the key is added to the io_keys list in the client structure, and also
824 * in the hash table mapping swapped keys to waiting clients, that is,
825 * server.io_waited_keys. */
826 int waitForSwappedKey(redisClient *c, robj *key) {
827 struct dictEntry *de;
828 list *l;
829
830 /* Return ASAP if the key is in memory */
831 de = dictFind(c->db->dict,key->ptr);
832 if (de != NULL) return 0;
833
834 /* Don't wait for keys we are sure are not on disk either */
835 if (!cacheKeyMayExist(c->db,key)) return 0;
836
837 /* Add the key to the list of keys this client is waiting for.
838 * This maps clients to keys they are waiting for. */
839 listAddNodeTail(c->io_keys,key);
840 incrRefCount(key);
841
842 /* Add the client to the swapped keys => clients waiting map. */
843 de = dictFind(c->db->io_keys,key);
844 if (de == NULL) {
845 int retval;
846
847 /* For every key we take a list of clients blocked for it */
848 l = listCreate();
849 retval = dictAdd(c->db->io_keys,key,l);
850 incrRefCount(key);
851 redisAssert(retval == DICT_OK);
852 } else {
853 l = dictGetEntryVal(de);
854 }
855 listAddNodeTail(l,c);
856
857 /* Are we already loading the key from disk? If not create a job */
858 if (de == NULL)
859 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
860 return 1;
861 }
862
863 /* Preload keys for any command with first, last and step values for
864 * the command keys prototype, as defined in the command table. */
865 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
866 int j, last;
867 if (cmd->vm_firstkey == 0) return;
868 last = cmd->vm_lastkey;
869 if (last < 0) last = argc+last;
870 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
871 redisAssert(j < argc);
872 waitForSwappedKey(c,argv[j]);
873 }
874 }
875
876 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
877 * Note that the number of keys to preload is user-defined, so we need to
878 * apply a sanity check against argc. */
879 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
880 int i, num;
881 REDIS_NOTUSED(cmd);
882
883 num = atoi(argv[2]->ptr);
884 if (num > (argc-3)) return;
885 for (i = 0; i < num; i++) {
886 waitForSwappedKey(c,argv[3+i]);
887 }
888 }
889
890 /* Preload keys needed to execute the entire MULTI/EXEC block.
891 *
892 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
893 * and will block the client when any command requires a swapped out value. */
894 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
895 int i, margc;
896 struct redisCommand *mcmd;
897 robj **margv;
898 REDIS_NOTUSED(cmd);
899 REDIS_NOTUSED(argc);
900 REDIS_NOTUSED(argv);
901
902 if (!(c->flags & REDIS_MULTI)) return;
903 for (i = 0; i < c->mstate.count; i++) {
904 mcmd = c->mstate.commands[i].cmd;
905 margc = c->mstate.commands[i].argc;
906 margv = c->mstate.commands[i].argv;
907
908 if (mcmd->vm_preload_proc != NULL) {
909 mcmd->vm_preload_proc(c,mcmd,margc,margv);
910 } else {
911 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
912 }
913 }
914 }
915
916 /* Is this client attempting to run a command against swapped keys?
917 * If so, block it ASAP, load the keys in background, then resume it.
918 *
919 * The important idea about this function is that it can fail! If keys will
920 * still be swapped when the client is resumed, this key lookups will
921 * just block loading keys from disk. In practical terms this should only
922 * happen with SORT BY command or if there is a bug in this function.
923 *
924 * Return 1 if the client is marked as blocked, 0 if the client can
925 * continue as the keys it is going to access appear to be in memory. */
926 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
927 if (cmd->vm_preload_proc != NULL) {
928 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
929 } else {
930 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
931 }
932
933 /* If the client was blocked for at least one key, mark it as blocked. */
934 if (listLength(c->io_keys)) {
935 c->flags |= REDIS_IO_WAIT;
936 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
937 server.cache_blocked_clients++;
938 return 1;
939 } else {
940 return 0;
941 }
942 }
943
944 /* Remove the 'key' from the list of blocked keys for a given client.
945 *
946 * The function returns 1 when there are no longer blocking keys after
947 * the current one was removed (and the client can be unblocked). */
948 int dontWaitForSwappedKey(redisClient *c, robj *key) {
949 list *l;
950 listNode *ln;
951 listIter li;
952 struct dictEntry *de;
953
954 /* The key object might be destroyed when deleted from the c->io_keys
955 * list (and the "key" argument is physically the same object as the
956 * object inside the list), so we need to protect it. */
957 incrRefCount(key);
958
959 /* Remove the key from the list of keys this client is waiting for. */
960 listRewind(c->io_keys,&li);
961 while ((ln = listNext(&li)) != NULL) {
962 if (equalStringObjects(ln->value,key)) {
963 listDelNode(c->io_keys,ln);
964 break;
965 }
966 }
967 redisAssert(ln != NULL);
968
969 /* Remove the client form the key => waiting clients map. */
970 de = dictFind(c->db->io_keys,key);
971 redisAssert(de != NULL);
972 l = dictGetEntryVal(de);
973 ln = listSearchKey(l,c);
974 redisAssert(ln != NULL);
975 listDelNode(l,ln);
976 if (listLength(l) == 0)
977 dictDelete(c->db->io_keys,key);
978
979 decrRefCount(key);
980 return listLength(c->io_keys) == 0;
981 }
982
983 /* Every time we now a key was loaded back in memory, we handle clients
984 * waiting for this key if any. */
985 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
986 struct dictEntry *de;
987 list *l;
988 listNode *ln;
989 int len;
990
991 de = dictFind(db->io_keys,key);
992 if (!de) return;
993
994 l = dictGetEntryVal(de);
995 len = listLength(l);
996 /* Note: we can't use something like while(listLength(l)) as the list
997 * can be freed by the calling function when we remove the last element. */
998 while (len--) {
999 ln = listFirst(l);
1000 redisClient *c = ln->value;
1001
1002 if (dontWaitForSwappedKey(c,key)) {
1003 /* Put the client in the list of clients ready to go as we
1004 * loaded all the keys about it. */
1005 listAddNodeTail(server.io_ready_clients,c);
1006 }
1007 }
1008 }