]> git.saurik.com Git - redis.git/blob - src/dscache.c
Configurable thresholds for encoded sorted sets
[redis.git] / src / dscache.c
1 #include "redis.h"
2
3 #include <fcntl.h>
4 #include <pthread.h>
5 #include <math.h>
6 #include <signal.h>
7
8 /* dscache.c - Disk store cache for disk store backend.
9 *
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
13 *
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
16 *
17 * This file implements the whole caching subsystem and contains further
18 * documentation. */
19
20 /* TODO:
21 *
22 * WARNING: most of the following todo items and design issues are no
23 * longer relevant with the new design. Here as a checklist to see if
24 * some old ideas still apply.
25 *
26 * - What happens when an object is destroyed?
27 *
28 * If the object is destroyed since semantically it was deleted or
29 * replaced with something new, we don't care if there was a SAVE
30 * job pending for it. Anyway when the IO JOb will be created we'll get
31 * the pointer of the current value.
32 *
33 * If the object is already a REDIS_IO_SAVEINPROG object, then it is
34 * impossible that we get a decrRefCount() that will reach refcount of zero
35 * since the object is both in the dataset and in the io job entry.
36 *
37 * - What happens with MULTI/EXEC?
38 *
39 * Good question. Without some kind of versioning with a global counter
40 * it is not possible to have trasactions on disk, but they are still
41 * useful since from the point of view of memory and client bugs it is
42 * a protection anyway. Also it's useful for WATCH.
43 *
44 * Btw there is to check what happens when WATCH gets combined to keys
45 * that gets removed from the object cache. Should be save but better
46 * to check.
47 *
48 * - Check if/why INCR will not update the LRU info for the object.
49 *
50 * - Fix/Check the following race condition: a key gets a DEL so there is
51 * a write operation scheduled against this key. Later the same key will
52 * be the argument of a GET, but the write operation was still not
53 * completed (to delete the file). If the GET will be for some reason
54 * a blocking loading (via lookup) we can load the old value on memory.
55 *
56 * This problems can be fixed with negative caching. We can use it
57 * to optimize the system, but also when a key is deleted we mark
58 * it as non existing on disk as well (in a way that this cache
59 * entry can't be evicted, setting time to 0), then we avoid looking at
60 * the disk at all if the key can't be there. When an IO Job complete
61 * a deletion, we set the time of the negative caching to a non zero
62 * value so it will be evicted later.
63 *
64 * Are there other patterns like this where we load stale data?
65 *
66 * Also, make sure that key preloading is ONLY done for keys that are
67 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
68 * data from disk that should instead be deleted.
69 *
70 * - dsSet() should use rename(2) in order to avoid corruptions.
71 *
72 * - Don't add a LOAD if there is already a LOADINPROGRESS, or is this
73 * impossible since anyway the io_keys stuff will work as lock?
74 *
75 * - Serialize special encoded things in a raw form.
76 *
77 * - When putting IO read operations on top of the queue, do this only if
78 * the already-on-top operation is not a save or if it is a save that
79 * is scheduled for later execution. If there is a save that is ready to
80 * fire, let's insert the load operation just before the first save that
81 * is scheduled for later exection for instance.
82 *
83 * - Support MULTI/EXEC transactions via a journal file, that is played on
84 * startup to check if there is cleanup to do. This way we can implement
85 * transactions with our simple file based KV store.
86 */
87
88 /* Virtual Memory is composed mainly of two subsystems:
89 * - Blocking Virutal Memory
90 * - Threaded Virtual Memory I/O
91 * The two parts are not fully decoupled, but functions are split among two
92 * different sections of the source code (delimited by comments) in order to
93 * make more clear what functionality is about the blocking VM and what about
94 * the threaded (not blocking) VM.
95 *
96 * Redis VM design:
97 *
98 * Redis VM is a blocking VM (one that blocks reading swapped values from
99 * disk into memory when a value swapped out is needed in memory) that is made
100 * unblocking by trying to examine the command argument vector in order to
101 * load in background values that will likely be needed in order to exec
102 * the command. The command is executed only once all the relevant keys
103 * are loaded into memory.
104 *
105 * This basically is almost as simple of a blocking VM, but almost as parallel
106 * as a fully non-blocking VM.
107 */
108
109 void spawnIOThread(void);
110 int cacheScheduleIOPushJobs(int flags);
111 int processActiveIOJobs(int max);
112
113 /* =================== Virtual Memory - Blocking Side ====================== */
114
115 void dsInit(void) {
116 int pipefds[2];
117 size_t stacksize;
118
119 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
120
121 redisLog(REDIS_NOTICE,"Opening Disk Store: %s", server.ds_path);
122 /* Open Disk Store */
123 if (dsOpen() != REDIS_OK) {
124 redisLog(REDIS_WARNING,"Fatal error opening disk store. Exiting.");
125 exit(1);
126 };
127
128 /* Initialize threaded I/O for Object Cache */
129 server.io_newjobs = listCreate();
130 server.io_processing = listCreate();
131 server.io_processed = listCreate();
132 server.io_ready_clients = listCreate();
133 pthread_mutex_init(&server.io_mutex,NULL);
134 pthread_cond_init(&server.io_condvar,NULL);
135 pthread_mutex_init(&server.bgsavethread_mutex,NULL);
136 server.io_active_threads = 0;
137 if (pipe(pipefds) == -1) {
138 redisLog(REDIS_WARNING,"Unable to intialized DS: pipe(2): %s. Exiting."
139 ,strerror(errno));
140 exit(1);
141 }
142 server.io_ready_pipe_read = pipefds[0];
143 server.io_ready_pipe_write = pipefds[1];
144 redisAssert(anetNonBlock(NULL,server.io_ready_pipe_read) != ANET_ERR);
145 /* LZF requires a lot of stack */
146 pthread_attr_init(&server.io_threads_attr);
147 pthread_attr_getstacksize(&server.io_threads_attr, &stacksize);
148
149 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
150 * multiplying it by 2 in the while loop later will not really help ;) */
151 if (!stacksize) stacksize = 1;
152
153 while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;
154 pthread_attr_setstacksize(&server.io_threads_attr, stacksize);
155 /* Listen for events in the threaded I/O pipe */
156 if (aeCreateFileEvent(server.el, server.io_ready_pipe_read, AE_READABLE,
157 vmThreadedIOCompletedJob, NULL) == AE_ERR)
158 oom("creating file event");
159
160 /* Spawn our I/O thread */
161 spawnIOThread();
162 }
163
164 /* Compute how good candidate the specified object is for eviction.
165 * An higher number means a better candidate. */
166 double computeObjectSwappability(robj *o) {
167 /* actual age can be >= minage, but not < minage. As we use wrapping
168 * 21 bit clocks with minutes resolution for the LRU. */
169 return (double) estimateObjectIdleTime(o);
170 }
171
172 /* Try to free one entry from the diskstore object cache */
173 int cacheFreeOneEntry(void) {
174 int j, i;
175 struct dictEntry *best = NULL;
176 double best_swappability = 0;
177 redisDb *best_db = NULL;
178 robj *val;
179 sds key;
180
181 for (j = 0; j < server.dbnum; j++) {
182 redisDb *db = server.db+j;
183 /* Why maxtries is set to 100?
184 * Because this way (usually) we'll find 1 object even if just 1% - 2%
185 * are swappable objects */
186 int maxtries = 100;
187
188 for (i = 0; i < 5 && dictSize(db->dict); i++) {
189 dictEntry *de;
190 double swappability;
191 robj keyobj;
192 sds keystr;
193
194 if (maxtries) maxtries--;
195 de = dictGetRandomKey(db->dict);
196 keystr = dictGetEntryKey(de);
197 val = dictGetEntryVal(de);
198 initStaticStringObject(keyobj,keystr);
199
200 /* Don't remove objects that are currently target of a
201 * read or write operation. */
202 if (cacheScheduleIOGetFlags(db,&keyobj) != 0) {
203 if (maxtries) i--; /* don't count this try */
204 continue;
205 }
206 swappability = computeObjectSwappability(val);
207 if (!best || swappability > best_swappability) {
208 best = de;
209 best_swappability = swappability;
210 best_db = db;
211 }
212 }
213 }
214 if (best == NULL) {
215 /* Was not able to fix a single object... we should check if our
216 * IO queues have stuff in queue, and try to consume the queue
217 * otherwise we'll use an infinite amount of memory if changes to
218 * the dataset are faster than I/O */
219 if (listLength(server.cache_io_queue) > 0) {
220 redisLog(REDIS_DEBUG,"--- Busy waiting IO to reclaim memory");
221 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
222 processActiveIOJobs(1);
223 return REDIS_OK;
224 }
225 /* Nothing to free at all... */
226 return REDIS_ERR;
227 }
228 key = dictGetEntryKey(best);
229 val = dictGetEntryVal(best);
230
231 redisLog(REDIS_DEBUG,"Key selected for cache eviction: %s swappability:%f",
232 key, best_swappability);
233
234 /* Delete this key from memory */
235 {
236 robj *kobj = createStringObject(key,sdslen(key));
237 dbDelete(best_db,kobj);
238 decrRefCount(kobj);
239 }
240 return REDIS_OK;
241 }
242
243 /* Return true if it's safe to swap out objects in a given moment.
244 * Basically we don't want to swap objects out while there is a BGSAVE
245 * or a BGAEOREWRITE running in backgroud. */
246 int dsCanTouchDiskStore(void) {
247 return (server.bgsavechildpid == -1 && server.bgrewritechildpid == -1);
248 }
249
250 /* ==================== Disk store negative caching ========================
251 *
252 * When disk store is enabled, we need negative caching, that is, to remember
253 * keys that are for sure *not* on the disk key-value store.
254 *
255 * This is usefuls because without negative caching cache misses will cost us
256 * a disk lookup, even if the same non existing key is accessed again and again.
257 *
258 * With negative caching we remember that the key is not on disk, so if it's
259 * not in memory and we have a negative cache entry, we don't try a disk
260 * access at all.
261 */
262
263 /* Returns true if the specified key may exists on disk, that is, we don't
264 * have an entry in our negative cache for this key */
265 int cacheKeyMayExist(redisDb *db, robj *key) {
266 return dictFind(db->io_negcache,key) == NULL;
267 }
268
269 /* Set the specified key as an entry that may possibily exist on disk, that is,
270 * remove the negative cache entry for this key if any. */
271 void cacheSetKeyMayExist(redisDb *db, robj *key) {
272 dictDelete(db->io_negcache,key);
273 }
274
275 /* Set the specified key as non existing on disk, that is, create a negative
276 * cache entry for this key. */
277 void cacheSetKeyDoesNotExist(redisDb *db, robj *key) {
278 if (dictReplace(db->io_negcache,key,(void*)time(NULL))) {
279 incrRefCount(key);
280 }
281 }
282
283 /* Remove one entry from negative cache using approximated LRU. */
284 int negativeCacheEvictOneEntry(void) {
285 struct dictEntry *de;
286 robj *best = NULL;
287 redisDb *best_db = NULL;
288 time_t time, best_time = 0;
289 int j;
290
291 for (j = 0; j < server.dbnum; j++) {
292 redisDb *db = server.db+j;
293 int i;
294
295 if (dictSize(db->io_negcache) == 0) continue;
296 for (i = 0; i < 3; i++) {
297 de = dictGetRandomKey(db->io_negcache);
298 time = (time_t) dictGetEntryVal(de);
299
300 if (best == NULL || time < best_time) {
301 best = dictGetEntryKey(de);
302 best_db = db;
303 best_time = time;
304 }
305 }
306 }
307 if (best) {
308 dictDelete(best_db->io_negcache,best);
309 return REDIS_OK;
310 } else {
311 return REDIS_ERR;
312 }
313 }
314
315 /* ================== Disk store cache - Threaded I/O ====================== */
316
317 void freeIOJob(iojob *j) {
318 decrRefCount(j->key);
319 /* j->val can be NULL if the job is about deleting the key from disk. */
320 if (j->val) decrRefCount(j->val);
321 zfree(j);
322 }
323
324 /* Every time a thread finished a Job, it writes a byte into the write side
325 * of an unix pipe in order to "awake" the main thread, and this function
326 * is called.
327 *
328 * If privdata == NULL the function will try to put more jobs in the queue
329 * of IO jobs to process as more room is made. privdata is equal to NULL
330 * when the function is called from the event loop, so we want to push
331 * more IO jobs in the queue. Instead when the function is called by
332 * other functions that want to create a write-barrier to avoid race
333 * conditions we don't push new jobs in the queue. */
334 void vmThreadedIOCompletedJob(aeEventLoop *el, int fd, void *privdata,
335 int mask)
336 {
337 char buf[1];
338 int retval, processed = 0, toprocess = -1;
339 REDIS_NOTUSED(el);
340 REDIS_NOTUSED(mask);
341
342 /* For every byte we read in the read side of the pipe, there is one
343 * I/O job completed to process. */
344 while((retval = read(fd,buf,1)) == 1) {
345 iojob *j;
346 listNode *ln;
347
348 redisLog(REDIS_DEBUG,"Processing I/O completed job");
349
350 /* Get the processed element (the oldest one) */
351 lockThreadedIO();
352 redisAssert(listLength(server.io_processed) != 0);
353 if (toprocess == -1) {
354 toprocess = (listLength(server.io_processed)*REDIS_MAX_COMPLETED_JOBS_PROCESSED)/100;
355 if (toprocess <= 0) toprocess = 1;
356 }
357 ln = listFirst(server.io_processed);
358 j = ln->value;
359 listDelNode(server.io_processed,ln);
360 unlockThreadedIO();
361
362 /* Post process it in the main thread, as there are things we
363 * can do just here to avoid race conditions and/or invasive locks */
364 redisLog(REDIS_DEBUG,"COMPLETED Job type %s, key: %s",
365 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
366 (unsigned char*)j->key->ptr);
367 if (j->type == REDIS_IOJOB_LOAD) {
368 /* Create the key-value pair in the in-memory database */
369 if (j->val != NULL) {
370 /* Note: it's possible that the key is already in memory
371 * due to a blocking load operation. */
372 if (dbAdd(j->db,j->key,j->val) == REDIS_OK) {
373 incrRefCount(j->val);
374 if (j->expire != -1) setExpire(j->db,j->key,j->expire);
375 }
376 } else {
377 /* Key not found on disk. If it is also not in memory
378 * as a cached object, nor there is a job writing it
379 * in background, we are sure the key does not exist
380 * currently.
381 *
382 * So we set a negative cache entry avoiding that the
383 * resumed client will block load what does not exist... */
384 if (dictFind(j->db->dict,j->key->ptr) == NULL &&
385 (cacheScheduleIOGetFlags(j->db,j->key) &
386 (REDIS_IO_SAVE|REDIS_IO_SAVEINPROG)) == 0)
387 {
388 cacheSetKeyDoesNotExist(j->db,j->key);
389 }
390 }
391 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_LOADINPROG);
392 handleClientsBlockedOnSwappedKey(j->db,j->key);
393 freeIOJob(j);
394 } else if (j->type == REDIS_IOJOB_SAVE) {
395 cacheScheduleIODelFlag(j->db,j->key,REDIS_IO_SAVEINPROG);
396 freeIOJob(j);
397 }
398 processed++;
399 if (privdata == NULL) cacheScheduleIOPushJobs(0);
400 if (processed == toprocess) return;
401 }
402 if (retval < 0 && errno != EAGAIN) {
403 redisLog(REDIS_WARNING,
404 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
405 strerror(errno));
406 }
407 }
408
409 void lockThreadedIO(void) {
410 pthread_mutex_lock(&server.io_mutex);
411 }
412
413 void unlockThreadedIO(void) {
414 pthread_mutex_unlock(&server.io_mutex);
415 }
416
417 void *IOThreadEntryPoint(void *arg) {
418 iojob *j;
419 listNode *ln;
420 REDIS_NOTUSED(arg);
421 long long start;
422
423 pthread_detach(pthread_self());
424 lockThreadedIO();
425 while(1) {
426 /* Get a new job to process */
427 if (listLength(server.io_newjobs) == 0) {
428 /* Wait for more work to do */
429 redisLog(REDIS_DEBUG,"[T] wait for signal");
430 pthread_cond_wait(&server.io_condvar,&server.io_mutex);
431 redisLog(REDIS_DEBUG,"[T] signal received");
432 continue;
433 }
434 start = ustime();
435 redisLog(REDIS_DEBUG,"[T] %ld IO jobs to process",
436 listLength(server.io_newjobs));
437 ln = listFirst(server.io_newjobs);
438 j = ln->value;
439 listDelNode(server.io_newjobs,ln);
440 /* Add the job in the processing queue */
441 listAddNodeTail(server.io_processing,j);
442 ln = listLast(server.io_processing); /* We use ln later to remove it */
443 unlockThreadedIO();
444
445 redisLog(REDIS_DEBUG,"[T] %ld: new job type %s: %p about key '%s'",
446 (long) pthread_self(),
447 (j->type == REDIS_IOJOB_LOAD) ? "load" : "save",
448 (void*)j, (char*)j->key->ptr);
449
450 /* Process the Job */
451 if (j->type == REDIS_IOJOB_LOAD) {
452 time_t expire;
453
454 j->val = dsGet(j->db,j->key,&expire);
455 if (j->val) j->expire = expire;
456 } else if (j->type == REDIS_IOJOB_SAVE) {
457 if (j->val) {
458 dsSet(j->db,j->key,j->val,j->expire);
459 } else {
460 dsDel(j->db,j->key);
461 }
462 }
463
464 /* Done: insert the job into the processed queue */
465 redisLog(REDIS_DEBUG,"[T] %ld completed the job: %p (key %s)",
466 (long) pthread_self(), (void*)j, (char*)j->key->ptr);
467
468 redisLog(REDIS_DEBUG,"[T] lock IO");
469 lockThreadedIO();
470 redisLog(REDIS_DEBUG,"[T] IO locked");
471 listDelNode(server.io_processing,ln);
472 listAddNodeTail(server.io_processed,j);
473
474 /* Signal the main thread there is new stuff to process */
475 redisAssert(write(server.io_ready_pipe_write,"x",1) == 1);
476 redisLog(REDIS_DEBUG,"TIME (%c): %lld\n", j->type == REDIS_IOJOB_LOAD ? 'L' : 'S', ustime()-start);
477 }
478 /* never reached, but that's the full pattern... */
479 unlockThreadedIO();
480 return NULL;
481 }
482
483 void spawnIOThread(void) {
484 pthread_t thread;
485 sigset_t mask, omask;
486 int err;
487
488 sigemptyset(&mask);
489 sigaddset(&mask,SIGCHLD);
490 sigaddset(&mask,SIGHUP);
491 sigaddset(&mask,SIGPIPE);
492 pthread_sigmask(SIG_SETMASK, &mask, &omask);
493 while ((err = pthread_create(&thread,&server.io_threads_attr,IOThreadEntryPoint,NULL)) != 0) {
494 redisLog(REDIS_WARNING,"Unable to spawn an I/O thread: %s",
495 strerror(err));
496 usleep(1000000);
497 }
498 pthread_sigmask(SIG_SETMASK, &omask, NULL);
499 server.io_active_threads++;
500 }
501
502 /* Wait that up to 'max' pending IO Jobs are processed by the I/O thread.
503 * From our point of view an IO job processed means that the count of
504 * server.io_processed must increase by one.
505 *
506 * If max is -1, all the pending IO jobs will be processed.
507 *
508 * Returns the number of IO jobs processed.
509 *
510 * NOTE: while this may appear like a busy loop, we are actually blocked
511 * by IO since we continuously acquire/release the IO lock. */
512 int processActiveIOJobs(int max) {
513 int processed = 0;
514
515 while(max == -1 || max > 0) {
516 int io_processed_len;
517
518 redisLog(REDIS_DEBUG,"[P] lock IO");
519 lockThreadedIO();
520 redisLog(REDIS_DEBUG,"Waiting IO jobs processing: new:%d proessing:%d processed:%d",listLength(server.io_newjobs),listLength(server.io_processing),listLength(server.io_processed));
521
522 if (listLength(server.io_newjobs) == 0 &&
523 listLength(server.io_processing) == 0)
524 {
525 /* There is nothing more to process */
526 redisLog(REDIS_DEBUG,"[P] Nothing to process, unlock IO, return");
527 unlockThreadedIO();
528 break;
529 }
530
531 #if 1
532 /* If there are new jobs we need to signal the thread to
533 * process the next one. FIXME: drop this if useless. */
534 redisLog(REDIS_DEBUG,"[P] waitEmptyIOJobsQueue: new %d, processing %d, processed %d",
535 listLength(server.io_newjobs),
536 listLength(server.io_processing),
537 listLength(server.io_processed));
538
539 if (listLength(server.io_newjobs)) {
540 redisLog(REDIS_DEBUG,"[P] There are new jobs, signal");
541 pthread_cond_signal(&server.io_condvar);
542 }
543 #endif
544
545 /* Check if we can process some finished job */
546 io_processed_len = listLength(server.io_processed);
547 redisLog(REDIS_DEBUG,"[P] Unblock IO");
548 unlockThreadedIO();
549 redisLog(REDIS_DEBUG,"[P] Wait");
550 usleep(10000);
551 if (io_processed_len) {
552 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
553 (void*)0xdeadbeef,0);
554 processed++;
555 if (max != -1) max--;
556 }
557 }
558 return processed;
559 }
560
561 void waitEmptyIOJobsQueue(void) {
562 processActiveIOJobs(-1);
563 }
564
565 /* Process up to 'max' IO Jobs already completed by threads but still waiting
566 * processing from the main thread.
567 *
568 * If max == -1 all the pending jobs are processed.
569 *
570 * The number of processed jobs is returned. */
571 int processPendingIOJobs(int max) {
572 int processed = 0;
573
574 while(max == -1 || max > 0) {
575 int io_processed_len;
576
577 lockThreadedIO();
578 io_processed_len = listLength(server.io_processed);
579 unlockThreadedIO();
580 if (io_processed_len == 0) break;
581 vmThreadedIOCompletedJob(NULL,server.io_ready_pipe_read,
582 (void*)0xdeadbeef,0);
583 if (max != -1) max--;
584 processed++;
585 }
586 return processed;
587 }
588
589 void processAllPendingIOJobs(void) {
590 processPendingIOJobs(-1);
591 }
592
593 /* This function must be called while with threaded IO locked */
594 void queueIOJob(iojob *j) {
595 redisLog(REDIS_DEBUG,"Queued IO Job %p type %d about key '%s'\n",
596 (void*)j, j->type, (char*)j->key->ptr);
597 listAddNodeTail(server.io_newjobs,j);
598 if (server.io_active_threads < server.vm_max_threads)
599 spawnIOThread();
600 }
601
602 /* Consume all the IO scheduled operations, and all the thread IO jobs
603 * so that eventually the state of diskstore is a point-in-time snapshot.
604 *
605 * This is useful when we need to BGSAVE with diskstore enabled. */
606 void cacheForcePointInTime(void) {
607 redisLog(REDIS_NOTICE,"Diskstore: synching on disk to reach point-in-time state.");
608 while (listLength(server.cache_io_queue) != 0) {
609 cacheScheduleIOPushJobs(REDIS_IO_ASAP);
610 processActiveIOJobs(1);
611 }
612 waitEmptyIOJobsQueue();
613 processAllPendingIOJobs();
614 }
615
616 void cacheCreateIOJob(int type, redisDb *db, robj *key, robj *val, time_t expire) {
617 iojob *j;
618
619 j = zmalloc(sizeof(*j));
620 j->type = type;
621 j->db = db;
622 j->key = key;
623 incrRefCount(key);
624 j->val = val;
625 if (val) incrRefCount(val);
626 j->expire = expire;
627
628 lockThreadedIO();
629 queueIOJob(j);
630 pthread_cond_signal(&server.io_condvar);
631 unlockThreadedIO();
632 }
633
634 /* ============= Disk store cache - Scheduling of IO operations =============
635 *
636 * We use a queue and an hash table to hold the state of IO operations
637 * so that's fast to lookup if there is already an IO operation in queue
638 * for a given key.
639 *
640 * There are two types of IO operations for a given key:
641 * REDIS_IO_LOAD and REDIS_IO_SAVE.
642 *
643 * The function cacheScheduleIO() function pushes the specified IO operation
644 * in the queue, but avoid adding the same key for the same operation
645 * multiple times, thanks to the associated hash table.
646 *
647 * We take a set of flags per every key, so when the scheduled IO operation
648 * gets moved from the scheduled queue to the actual IO Jobs queue that
649 * is processed by the IO thread, we flag it as IO_LOADINPROG or
650 * IO_SAVEINPROG.
651 *
652 * So for every given key we always know if there is some IO operation
653 * scheduled, or in progress, for this key.
654 *
655 * NOTE: all this is very important in order to guarantee correctness of
656 * the Disk Store Cache. Jobs are always queued here. Load jobs are
657 * queued at the head for faster execution only in the case there is not
658 * already a write operation of some kind for this job.
659 *
660 * So we have ordering, but can do exceptions when there are no already
661 * operations for a given key. Also when we need to block load a given
662 * key, for an immediate lookup operation, we can check if the key can
663 * be accessed synchronously without race conditions (no IN PROGRESS
664 * operations for this key), otherwise we blocking wait for completion. */
665
666 #define REDIS_IO_LOAD 1
667 #define REDIS_IO_SAVE 2
668 #define REDIS_IO_LOADINPROG 4
669 #define REDIS_IO_SAVEINPROG 8
670
671 void cacheScheduleIOAddFlag(redisDb *db, robj *key, long flag) {
672 struct dictEntry *de = dictFind(db->io_queued,key);
673
674 if (!de) {
675 dictAdd(db->io_queued,key,(void*)flag);
676 incrRefCount(key);
677 return;
678 } else {
679 long flags = (long) dictGetEntryVal(de);
680
681 if (flags & flag) {
682 redisLog(REDIS_WARNING,"Adding the same flag again: was: %ld, addede: %ld",flags,flag);
683 redisAssert(!(flags & flag));
684 }
685 flags |= flag;
686 dictGetEntryVal(de) = (void*) flags;
687 }
688 }
689
690 void cacheScheduleIODelFlag(redisDb *db, robj *key, long flag) {
691 struct dictEntry *de = dictFind(db->io_queued,key);
692 long flags;
693
694 redisAssert(de != NULL);
695 flags = (long) dictGetEntryVal(de);
696 redisAssert(flags & flag);
697 flags &= ~flag;
698 if (flags == 0) {
699 dictDelete(db->io_queued,key);
700 } else {
701 dictGetEntryVal(de) = (void*) flags;
702 }
703 }
704
705 int cacheScheduleIOGetFlags(redisDb *db, robj *key) {
706 struct dictEntry *de = dictFind(db->io_queued,key);
707
708 return (de == NULL) ? 0 : ((long) dictGetEntryVal(de));
709 }
710
711 void cacheScheduleIO(redisDb *db, robj *key, int type) {
712 ioop *op;
713 long flags;
714
715 if ((flags = cacheScheduleIOGetFlags(db,key)) & type) return;
716
717 redisLog(REDIS_DEBUG,"Scheduling key %s for %s",
718 key->ptr, type == REDIS_IO_LOAD ? "loading" : "saving");
719 cacheScheduleIOAddFlag(db,key,type);
720 op = zmalloc(sizeof(*op));
721 op->type = type;
722 op->db = db;
723 op->key = key;
724 incrRefCount(key);
725 op->ctime = time(NULL);
726
727 /* Give priority to load operations if there are no save already
728 * in queue for the same key. */
729 if (type == REDIS_IO_LOAD && !(flags & REDIS_IO_SAVE)) {
730 listAddNodeHead(server.cache_io_queue, op);
731 cacheScheduleIOPushJobs(REDIS_IO_ONLYLOADS);
732 } else {
733 /* FIXME: probably when this happens we want to at least move
734 * the write job about this queue on top, and set the creation time
735 * to a value that will force processing ASAP. */
736 listAddNodeTail(server.cache_io_queue, op);
737 }
738 }
739
740 /* Push scheduled IO operations into IO Jobs that the IO thread can process.
741 *
742 * If flags include REDIS_IO_ONLYLOADS only load jobs are processed:this is
743 * useful since it's safe to push LOAD IO jobs from any place of the code, while
744 * SAVE io jobs should never be pushed while we are processing a command
745 * (not protected by lookupKey() that will block on keys in IO_SAVEINPROG
746 * state.
747 *
748 * The REDIS_IO_ASAP flag tells the function to don't wait for the IO job
749 * scheduled completion time, but just do the operation ASAP. This is useful
750 * when we need to reclaim memory from the IO queue.
751 */
752 #define MAX_IO_JOBS_QUEUE 10
753 int cacheScheduleIOPushJobs(int flags) {
754 time_t now = time(NULL);
755 listNode *ln;
756 int jobs, topush = 0, pushed = 0;
757
758 /* Don't push new jobs if there is a threaded BGSAVE in progress. */
759 if (server.bgsavethread != (pthread_t) -1) return 0;
760
761 /* Sync stuff on disk, but only if we have less
762 * than MAX_IO_JOBS_QUEUE IO jobs. */
763 lockThreadedIO();
764 jobs = listLength(server.io_newjobs);
765 unlockThreadedIO();
766
767 topush = MAX_IO_JOBS_QUEUE-jobs;
768 if (topush < 0) topush = 0;
769 if (topush > (signed)listLength(server.cache_io_queue))
770 topush = listLength(server.cache_io_queue);
771
772 while((ln = listFirst(server.cache_io_queue)) != NULL) {
773 ioop *op = ln->value;
774 struct dictEntry *de;
775 robj *val;
776
777 if (!topush) break;
778 topush--;
779
780 if (op->type != REDIS_IO_LOAD && flags & REDIS_IO_ONLYLOADS) break;
781
782 /* Don't execute SAVE before the scheduled time for completion */
783 if (op->type == REDIS_IO_SAVE && !(flags & REDIS_IO_ASAP) &&
784 (now - op->ctime) < server.cache_flush_delay) break;
785
786 /* Don't add a SAVE job in the IO thread queue if there is already
787 * a save in progress for the same key. */
788 if (op->type == REDIS_IO_SAVE &&
789 cacheScheduleIOGetFlags(op->db,op->key) & REDIS_IO_SAVEINPROG)
790 {
791 /* Move the operation at the end of the list if there
792 * are other operations, so we can try to process the next one.
793 * Otherwise break, nothing to do here. */
794 if (listLength(server.cache_io_queue) > 1) {
795 listDelNode(server.cache_io_queue,ln);
796 listAddNodeTail(server.cache_io_queue,op);
797 continue;
798 } else {
799 break;
800 }
801 }
802
803 redisLog(REDIS_DEBUG,"Creating IO %s Job for key %s",
804 op->type == REDIS_IO_LOAD ? "load" : "save", op->key->ptr);
805
806 if (op->type == REDIS_IO_LOAD) {
807 cacheCreateIOJob(REDIS_IOJOB_LOAD,op->db,op->key,NULL,0);
808 } else {
809 time_t expire = -1;
810
811 /* Lookup the key, in order to put the current value in the IO
812 * Job. Otherwise if the key does not exists we schedule a disk
813 * store delete operation, setting the value to NULL. */
814 de = dictFind(op->db->dict,op->key->ptr);
815 if (de) {
816 val = dictGetEntryVal(de);
817 expire = getExpire(op->db,op->key);
818 } else {
819 /* Setting the value to NULL tells the IO thread to delete
820 * the key on disk. */
821 val = NULL;
822 }
823 cacheCreateIOJob(REDIS_IOJOB_SAVE,op->db,op->key,val,expire);
824 }
825 /* Mark the operation as in progress. */
826 cacheScheduleIODelFlag(op->db,op->key,op->type);
827 cacheScheduleIOAddFlag(op->db,op->key,
828 (op->type == REDIS_IO_LOAD) ? REDIS_IO_LOADINPROG :
829 REDIS_IO_SAVEINPROG);
830 /* Finally remove the operation from the queue.
831 * But we'll have trace of it in the hash table. */
832 listDelNode(server.cache_io_queue,ln);
833 decrRefCount(op->key);
834 zfree(op);
835 pushed++;
836 }
837 return pushed;
838 }
839
840 void cacheCron(void) {
841 /* Push jobs */
842 cacheScheduleIOPushJobs(0);
843
844 /* Reclaim memory from the object cache */
845 while (server.ds_enabled && zmalloc_used_memory() >
846 server.cache_max_memory)
847 {
848 int done = 0;
849
850 if (cacheFreeOneEntry() == REDIS_OK) done++;
851 if (negativeCacheEvictOneEntry() == REDIS_OK) done++;
852 if (done == 0) break; /* nothing more to free */
853 }
854 }
855
856 /* ========== Disk store cache - Blocking clients on missing keys =========== */
857
858 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
859 * If the key is already in memory we don't need to block.
860 *
861 * FIXME: we should try if it's actually better to suspend the client
862 * accessing an object that is being saved, and awake it only when
863 * the saving was completed.
864 *
865 * Otherwise if the key is not in memory, we block the client and start
866 * an IO Job to load it:
867 *
868 * the key is added to the io_keys list in the client structure, and also
869 * in the hash table mapping swapped keys to waiting clients, that is,
870 * server.io_waited_keys. */
871 int waitForSwappedKey(redisClient *c, robj *key) {
872 struct dictEntry *de;
873 list *l;
874
875 /* Return ASAP if the key is in memory */
876 de = dictFind(c->db->dict,key->ptr);
877 if (de != NULL) return 0;
878
879 /* Don't wait for keys we are sure are not on disk either */
880 if (!cacheKeyMayExist(c->db,key)) return 0;
881
882 /* Add the key to the list of keys this client is waiting for.
883 * This maps clients to keys they are waiting for. */
884 listAddNodeTail(c->io_keys,key);
885 incrRefCount(key);
886
887 /* Add the client to the swapped keys => clients waiting map. */
888 de = dictFind(c->db->io_keys,key);
889 if (de == NULL) {
890 int retval;
891
892 /* For every key we take a list of clients blocked for it */
893 l = listCreate();
894 retval = dictAdd(c->db->io_keys,key,l);
895 incrRefCount(key);
896 redisAssert(retval == DICT_OK);
897 } else {
898 l = dictGetEntryVal(de);
899 }
900 listAddNodeTail(l,c);
901
902 /* Are we already loading the key from disk? If not create a job */
903 if (de == NULL)
904 cacheScheduleIO(c->db,key,REDIS_IO_LOAD);
905 return 1;
906 }
907
908 /* Preload keys for any command with first, last and step values for
909 * the command keys prototype, as defined in the command table. */
910 void waitForMultipleSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
911 int j, last;
912 if (cmd->vm_firstkey == 0) return;
913 last = cmd->vm_lastkey;
914 if (last < 0) last = argc+last;
915 for (j = cmd->vm_firstkey; j <= last; j += cmd->vm_keystep) {
916 redisAssert(j < argc);
917 waitForSwappedKey(c,argv[j]);
918 }
919 }
920
921 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
922 * Note that the number of keys to preload is user-defined, so we need to
923 * apply a sanity check against argc. */
924 void zunionInterBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
925 int i, num;
926 REDIS_NOTUSED(cmd);
927
928 num = atoi(argv[2]->ptr);
929 if (num > (argc-3)) return;
930 for (i = 0; i < num; i++) {
931 waitForSwappedKey(c,argv[3+i]);
932 }
933 }
934
935 /* Preload keys needed to execute the entire MULTI/EXEC block.
936 *
937 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
938 * and will block the client when any command requires a swapped out value. */
939 void execBlockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd, int argc, robj **argv) {
940 int i, margc;
941 struct redisCommand *mcmd;
942 robj **margv;
943 REDIS_NOTUSED(cmd);
944 REDIS_NOTUSED(argc);
945 REDIS_NOTUSED(argv);
946
947 if (!(c->flags & REDIS_MULTI)) return;
948 for (i = 0; i < c->mstate.count; i++) {
949 mcmd = c->mstate.commands[i].cmd;
950 margc = c->mstate.commands[i].argc;
951 margv = c->mstate.commands[i].argv;
952
953 if (mcmd->vm_preload_proc != NULL) {
954 mcmd->vm_preload_proc(c,mcmd,margc,margv);
955 } else {
956 waitForMultipleSwappedKeys(c,mcmd,margc,margv);
957 }
958 }
959 }
960
961 /* Is this client attempting to run a command against swapped keys?
962 * If so, block it ASAP, load the keys in background, then resume it.
963 *
964 * The important idea about this function is that it can fail! If keys will
965 * still be swapped when the client is resumed, this key lookups will
966 * just block loading keys from disk. In practical terms this should only
967 * happen with SORT BY command or if there is a bug in this function.
968 *
969 * Return 1 if the client is marked as blocked, 0 if the client can
970 * continue as the keys it is going to access appear to be in memory. */
971 int blockClientOnSwappedKeys(redisClient *c, struct redisCommand *cmd) {
972 if (cmd->vm_preload_proc != NULL) {
973 cmd->vm_preload_proc(c,cmd,c->argc,c->argv);
974 } else {
975 waitForMultipleSwappedKeys(c,cmd,c->argc,c->argv);
976 }
977
978 /* If the client was blocked for at least one key, mark it as blocked. */
979 if (listLength(c->io_keys)) {
980 c->flags |= REDIS_IO_WAIT;
981 aeDeleteFileEvent(server.el,c->fd,AE_READABLE);
982 server.cache_blocked_clients++;
983 return 1;
984 } else {
985 return 0;
986 }
987 }
988
989 /* Remove the 'key' from the list of blocked keys for a given client.
990 *
991 * The function returns 1 when there are no longer blocking keys after
992 * the current one was removed (and the client can be unblocked). */
993 int dontWaitForSwappedKey(redisClient *c, robj *key) {
994 list *l;
995 listNode *ln;
996 listIter li;
997 struct dictEntry *de;
998
999 /* The key object might be destroyed when deleted from the c->io_keys
1000 * list (and the "key" argument is physically the same object as the
1001 * object inside the list), so we need to protect it. */
1002 incrRefCount(key);
1003
1004 /* Remove the key from the list of keys this client is waiting for. */
1005 listRewind(c->io_keys,&li);
1006 while ((ln = listNext(&li)) != NULL) {
1007 if (equalStringObjects(ln->value,key)) {
1008 listDelNode(c->io_keys,ln);
1009 break;
1010 }
1011 }
1012 redisAssert(ln != NULL);
1013
1014 /* Remove the client form the key => waiting clients map. */
1015 de = dictFind(c->db->io_keys,key);
1016 redisAssert(de != NULL);
1017 l = dictGetEntryVal(de);
1018 ln = listSearchKey(l,c);
1019 redisAssert(ln != NULL);
1020 listDelNode(l,ln);
1021 if (listLength(l) == 0)
1022 dictDelete(c->db->io_keys,key);
1023
1024 decrRefCount(key);
1025 return listLength(c->io_keys) == 0;
1026 }
1027
1028 /* Every time we now a key was loaded back in memory, we handle clients
1029 * waiting for this key if any. */
1030 void handleClientsBlockedOnSwappedKey(redisDb *db, robj *key) {
1031 struct dictEntry *de;
1032 list *l;
1033 listNode *ln;
1034 int len;
1035
1036 de = dictFind(db->io_keys,key);
1037 if (!de) return;
1038
1039 l = dictGetEntryVal(de);
1040 len = listLength(l);
1041 /* Note: we can't use something like while(listLength(l)) as the list
1042 * can be freed by the calling function when we remove the last element. */
1043 while (len--) {
1044 ln = listFirst(l);
1045 redisClient *c = ln->value;
1046
1047 if (dontWaitForSwappedKey(c,key)) {
1048 /* Put the client in the list of clients ready to go as we
1049 * loaded all the keys about it. */
1050 listAddNodeTail(server.io_ready_clients,c);
1051 }
1052 }
1053 }