]> git.saurik.com Git - redis.git/blob - deps/jemalloc/src/huge.c
Redis 2.6.5
[redis.git] / deps / jemalloc / src / huge.c
1 #define JEMALLOC_HUGE_C_
2 #include "jemalloc/internal/jemalloc_internal.h"
3
4 /******************************************************************************/
5 /* Data. */
6
7 uint64_t huge_nmalloc;
8 uint64_t huge_ndalloc;
9 size_t huge_allocated;
10
11 malloc_mutex_t huge_mtx;
12
13 /******************************************************************************/
14
15 /* Tree of chunks that are stand-alone huge allocations. */
16 static extent_tree_t huge;
17
18 void *
19 huge_malloc(size_t size, bool zero)
20 {
21
22 return (huge_palloc(size, chunksize, zero));
23 }
24
25 void *
26 huge_palloc(size_t size, size_t alignment, bool zero)
27 {
28 void *ret;
29 size_t csize;
30 extent_node_t *node;
31 bool is_zeroed;
32
33 /* Allocate one or more contiguous chunks for this request. */
34
35 csize = CHUNK_CEILING(size);
36 if (csize == 0) {
37 /* size is large enough to cause size_t wrap-around. */
38 return (NULL);
39 }
40
41 /* Allocate an extent node with which to track the chunk. */
42 node = base_node_alloc();
43 if (node == NULL)
44 return (NULL);
45
46 /*
47 * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
48 * it is possible to make correct junk/zero fill decisions below.
49 */
50 is_zeroed = zero;
51 ret = chunk_alloc(csize, alignment, false, &is_zeroed);
52 if (ret == NULL) {
53 base_node_dealloc(node);
54 return (NULL);
55 }
56
57 /* Insert node into huge. */
58 node->addr = ret;
59 node->size = csize;
60
61 malloc_mutex_lock(&huge_mtx);
62 extent_tree_ad_insert(&huge, node);
63 if (config_stats) {
64 stats_cactive_add(csize);
65 huge_nmalloc++;
66 huge_allocated += csize;
67 }
68 malloc_mutex_unlock(&huge_mtx);
69
70 if (config_fill && zero == false) {
71 if (opt_junk)
72 memset(ret, 0xa5, csize);
73 else if (opt_zero && is_zeroed == false)
74 memset(ret, 0, csize);
75 }
76
77 return (ret);
78 }
79
80 void *
81 huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size, size_t extra)
82 {
83
84 /*
85 * Avoid moving the allocation if the size class can be left the same.
86 */
87 if (oldsize > arena_maxclass
88 && CHUNK_CEILING(oldsize) >= CHUNK_CEILING(size)
89 && CHUNK_CEILING(oldsize) <= CHUNK_CEILING(size+extra)) {
90 assert(CHUNK_CEILING(oldsize) == oldsize);
91 if (config_fill && opt_junk && size < oldsize) {
92 memset((void *)((uintptr_t)ptr + size), 0x5a,
93 oldsize - size);
94 }
95 return (ptr);
96 }
97
98 /* Reallocation would require a move. */
99 return (NULL);
100 }
101
102 void *
103 huge_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra,
104 size_t alignment, bool zero)
105 {
106 void *ret;
107 size_t copysize;
108
109 /* Try to avoid moving the allocation. */
110 ret = huge_ralloc_no_move(ptr, oldsize, size, extra);
111 if (ret != NULL)
112 return (ret);
113
114 /*
115 * size and oldsize are different enough that we need to use a
116 * different size class. In that case, fall back to allocating new
117 * space and copying.
118 */
119 if (alignment > chunksize)
120 ret = huge_palloc(size + extra, alignment, zero);
121 else
122 ret = huge_malloc(size + extra, zero);
123
124 if (ret == NULL) {
125 if (extra == 0)
126 return (NULL);
127 /* Try again, this time without extra. */
128 if (alignment > chunksize)
129 ret = huge_palloc(size, alignment, zero);
130 else
131 ret = huge_malloc(size, zero);
132
133 if (ret == NULL)
134 return (NULL);
135 }
136
137 /*
138 * Copy at most size bytes (not size+extra), since the caller has no
139 * expectation that the extra bytes will be reliably preserved.
140 */
141 copysize = (size < oldsize) ? size : oldsize;
142
143 #ifdef JEMALLOC_MREMAP
144 /*
145 * Use mremap(2) if this is a huge-->huge reallocation, and neither the
146 * source nor the destination are in dss.
147 */
148 if (oldsize >= chunksize && (config_dss == false || (chunk_in_dss(ptr)
149 == false && chunk_in_dss(ret) == false))) {
150 size_t newsize = huge_salloc(ret);
151
152 /*
153 * Remove ptr from the tree of huge allocations before
154 * performing the remap operation, in order to avoid the
155 * possibility of another thread acquiring that mapping before
156 * this one removes it from the tree.
157 */
158 huge_dalloc(ptr, false);
159 if (mremap(ptr, oldsize, newsize, MREMAP_MAYMOVE|MREMAP_FIXED,
160 ret) == MAP_FAILED) {
161 /*
162 * Assuming no chunk management bugs in the allocator,
163 * the only documented way an error can occur here is
164 * if the application changed the map type for a
165 * portion of the old allocation. This is firmly in
166 * undefined behavior territory, so write a diagnostic
167 * message, and optionally abort.
168 */
169 char buf[BUFERROR_BUF];
170
171 buferror(buf, sizeof(buf));
172 malloc_printf("<jemalloc>: Error in mremap(): %s\n",
173 buf);
174 if (opt_abort)
175 abort();
176 memcpy(ret, ptr, copysize);
177 chunk_dealloc_mmap(ptr, oldsize);
178 }
179 } else
180 #endif
181 {
182 memcpy(ret, ptr, copysize);
183 iqalloc(ptr);
184 }
185 return (ret);
186 }
187
188 void
189 huge_dalloc(void *ptr, bool unmap)
190 {
191 extent_node_t *node, key;
192
193 malloc_mutex_lock(&huge_mtx);
194
195 /* Extract from tree of huge allocations. */
196 key.addr = ptr;
197 node = extent_tree_ad_search(&huge, &key);
198 assert(node != NULL);
199 assert(node->addr == ptr);
200 extent_tree_ad_remove(&huge, node);
201
202 if (config_stats) {
203 stats_cactive_sub(node->size);
204 huge_ndalloc++;
205 huge_allocated -= node->size;
206 }
207
208 malloc_mutex_unlock(&huge_mtx);
209
210 if (unmap && config_fill && config_dss && opt_junk)
211 memset(node->addr, 0x5a, node->size);
212
213 chunk_dealloc(node->addr, node->size, unmap);
214
215 base_node_dealloc(node);
216 }
217
218 size_t
219 huge_salloc(const void *ptr)
220 {
221 size_t ret;
222 extent_node_t *node, key;
223
224 malloc_mutex_lock(&huge_mtx);
225
226 /* Extract from tree of huge allocations. */
227 key.addr = __DECONST(void *, ptr);
228 node = extent_tree_ad_search(&huge, &key);
229 assert(node != NULL);
230
231 ret = node->size;
232
233 malloc_mutex_unlock(&huge_mtx);
234
235 return (ret);
236 }
237
238 prof_ctx_t *
239 huge_prof_ctx_get(const void *ptr)
240 {
241 prof_ctx_t *ret;
242 extent_node_t *node, key;
243
244 malloc_mutex_lock(&huge_mtx);
245
246 /* Extract from tree of huge allocations. */
247 key.addr = __DECONST(void *, ptr);
248 node = extent_tree_ad_search(&huge, &key);
249 assert(node != NULL);
250
251 ret = node->prof_ctx;
252
253 malloc_mutex_unlock(&huge_mtx);
254
255 return (ret);
256 }
257
258 void
259 huge_prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
260 {
261 extent_node_t *node, key;
262
263 malloc_mutex_lock(&huge_mtx);
264
265 /* Extract from tree of huge allocations. */
266 key.addr = __DECONST(void *, ptr);
267 node = extent_tree_ad_search(&huge, &key);
268 assert(node != NULL);
269
270 node->prof_ctx = ctx;
271
272 malloc_mutex_unlock(&huge_mtx);
273 }
274
275 bool
276 huge_boot(void)
277 {
278
279 /* Initialize chunks data. */
280 if (malloc_mutex_init(&huge_mtx))
281 return (true);
282 extent_tree_ad_new(&huge);
283
284 if (config_stats) {
285 huge_nmalloc = 0;
286 huge_ndalloc = 0;
287 huge_allocated = 0;
288 }
289
290 return (false);
291 }
292
293 void
294 huge_prefork(void)
295 {
296
297 malloc_mutex_prefork(&huge_mtx);
298 }
299
300 void
301 huge_postfork_parent(void)
302 {
303
304 malloc_mutex_postfork_parent(&huge_mtx);
305 }
306
307 void
308 huge_postfork_child(void)
309 {
310
311 malloc_mutex_postfork_child(&huge_mtx);
312 }