8 /* dscache.c - Disk store cache for disk store backend.
10 * When Redis is configured for using disk as backend instead of memory, the
11 * memory is used as a cache, so that recently accessed keys are taken in
12 * memory for fast read and write operations.
14 * Modified keys are marked to be flushed on disk, and will be flushed
15 * as long as the maxium configured flush time elapsed.
17 * This file implements the whole caching subsystem and contains further
22 * - The WATCH helper will be used to signal the cache system
23 * we need to flush a given key/dbid into disk, adding this key/dbid
24 * pair into a server.ds_cache_dirty linked list AND hash table (so that we
25 * don't add the same thing multiple times).
27 * - cron() checks if there are elements on this list. When there are things
28 * to flush, we create an IO Job for the I/O thread.
29 * NOTE: We disalbe object sharing when server.ds_enabled == 1 so objects
30 * that are referenced an IO job for flushing on disk are marked as
31 * o->storage == REDIS_DS_SAVING.
33 * - This is what we do on key lookup:
34 * 1) The key already exists in memory. object->storage == REDIS_DS_MEMORY
35 * or it is object->storage == REDIS_DS_DIRTY:
36 * We don't do nothing special, lookup, return value object pointer.
37 * 2) The key is in memory but object->storage == REDIS_DS_SAVING.
38 * When this happens we block waiting for the I/O thread to process
39 * this object. Then continue.
40 * 3) The key is not in memory. We block to load the key from disk.
41 * Of course the key may not be present at all on the disk store as well,
42 * in such case we just detect this condition and continue, returning
45 * - Preloading of needed keys:
46 * 1) As it was done with VM, also with this new system we try preloading
47 * keys a client is going to use. We block the client, load keys
48 * using the I/O thread, unblock the client. Same code as VM more or less.
50 * - Reclaiming memory.
51 * In cron() we detect our memory limit was reached. What we
52 * do is deleting keys that are REDIS_DS_MEMORY, using LRU.
54 * If this is not enough to return again under the memory limits we also
55 * start to flush keys that need to be synched on disk synchronously,
56 * removing it from the memory. We do this blocking as memory limit is a
57 * much "harder" barrirer in the new design.
59 * - IO thread operations are no longer stopped for sync loading/saving of
60 * things. When a key is found to be in the process of being saved
61 * we simply wait for the IO thread to end its work.
63 * Otherwise if there is to load a key without any IO thread operation
64 * just started it is blocking-loaded in the lookup function.
66 * - What happens when an object is destroyed?
68 * If o->storage == REDIS_DS_MEMORY then we simply destory the object.
69 * If o->storage == REDIS_DS_DIRTY we can still remove the object. It had
70 * changes not flushed on disk, but is being removed so
72 * if o->storage == REDIS_DS_SAVING then the object is being saved so
73 * it is impossible that its refcount == 1, must be at
74 * least two. When the object is saved the storage will
75 * be set back to DS_MEMORY.
77 * - What happens when keys are deleted?
79 * We simply schedule a key flush operation as usually, but when the
80 * IO thread will be created the object pointer will be set to NULL
81 * so the IO thread will know that the work to do is to delete the key
82 * from the disk store.
84 * - What happens with MULTI/EXEC?
88 * - If dsSet() fails on the write thread log the error and reschedule the
91 * - Check why INCR will not update the LRU info for the object.
93 * - Fix/Check the following race condition: a key gets a DEL so there is
94 * a write operation scheduled against this key. Later the same key will
95 * be the argument of a GET, but the write operation was still not
96 * completed (to delete the file). If the GET will be for some reason
97 * a blocking loading (via lookup) we can load the old value on memory.
99 * This problems can be fixed with negative caching. We can use it
100 * to optimize the system, but also when a key is deleted we mark
101 * it as non existing on disk as well (in a way that this cache
102 * entry can't be evicted, setting time to 0), then we avoid looking at
103 * the disk at all if the key can't be there. When an IO Job complete
104 * a deletion, we set the time of the negative caching to a non zero
105 * value so it will be evicted later.
107 * Are there other patterns like this where we load stale data?
109 * Also, make sure that key preloading is ONLY done for keys that are
110 * not marked as cacheKeyDoesNotExist(), otherwise, again, we can load
111 * data from disk that should instead be deleted.
113 * - dsSet() use rename(2) in order to avoid corruptions.
116 /* Virtual Memory is composed mainly of two subsystems:
117 * - Blocking Virutal Memory
118 * - Threaded Virtual Memory I/O
119 * The two parts are not fully decoupled, but functions are split among two
120 * different sections of the source code (delimited by comments) in order to
121 * make more clear what functionality is about the blocking VM and what about
122 * the threaded (not blocking) VM.
126 * Redis VM is a blocking VM (one that blocks reading swapped values from
127 * disk into memory when a value swapped out is needed in memory) that is made
128 * unblocking by trying to examine the command argument vector in order to
129 * load in background values that will likely be needed in order to exec
130 * the command. The command is executed only once all the relevant keys
131 * are loaded into memory.
133 * This basically is almost as simple of a blocking VM, but almost as parallel
134 * as a fully non-blocking VM.
137 void spawnIOThread(void);
139 /* =================== Virtual Memory - Blocking Side ====================== */
145 zmalloc_enable_thread_safeness(); /* we need thread safe zmalloc() */
147 redisLog(REDIS_NOTICE
,"Opening Disk Store: %s", server
.ds_path
);
148 /* Open Disk Store */
149 if (dsOpen() != REDIS_OK
) {
150 redisLog(REDIS_WARNING
,"Fatal error opening disk store. Exiting.");
154 /* Initialize threaded I/O for Object Cache */
155 server
.io_newjobs
= listCreate();
156 server
.io_processing
= listCreate();
157 server
.io_processed
= listCreate();
158 server
.io_ready_clients
= listCreate();
159 pthread_mutex_init(&server
.io_mutex
,NULL
);
160 pthread_cond_init(&server
.io_condvar
,NULL
);
161 server
.io_active_threads
= 0;
162 if (pipe(pipefds
) == -1) {
163 redisLog(REDIS_WARNING
,"Unable to intialized DS: pipe(2): %s. Exiting."
167 server
.io_ready_pipe_read
= pipefds
[0];
168 server
.io_ready_pipe_write
= pipefds
[1];
169 redisAssert(anetNonBlock(NULL
,server
.io_ready_pipe_read
) != ANET_ERR
);
170 /* LZF requires a lot of stack */
171 pthread_attr_init(&server
.io_threads_attr
);
172 pthread_attr_getstacksize(&server
.io_threads_attr
, &stacksize
);
174 /* Solaris may report a stacksize of 0, let's set it to 1 otherwise
175 * multiplying it by 2 in the while loop later will not really help ;) */
176 if (!stacksize
) stacksize
= 1;
178 while (stacksize
< REDIS_THREAD_STACK_SIZE
) stacksize
*= 2;
179 pthread_attr_setstacksize(&server
.io_threads_attr
, stacksize
);
180 /* Listen for events in the threaded I/O pipe */
181 if (aeCreateFileEvent(server
.el
, server
.io_ready_pipe_read
, AE_READABLE
,
182 vmThreadedIOCompletedJob
, NULL
) == AE_ERR
)
183 oom("creating file event");
185 /* Spawn our I/O thread */
189 /* Compute how good candidate the specified object is for eviction.
190 * An higher number means a better candidate. */
191 double computeObjectSwappability(robj
*o
) {
192 /* actual age can be >= minage, but not < minage. As we use wrapping
193 * 21 bit clocks with minutes resolution for the LRU. */
194 return (double) estimateObjectIdleTime(o
);
197 /* Try to free one entry from the diskstore object cache */
198 int cacheFreeOneEntry(void) {
200 struct dictEntry
*best
= NULL
;
201 double best_swappability
= 0;
202 redisDb
*best_db
= NULL
;
206 for (j
= 0; j
< server
.dbnum
; j
++) {
207 redisDb
*db
= server
.db
+j
;
208 /* Why maxtries is set to 100?
209 * Because this way (usually) we'll find 1 object even if just 1% - 2%
210 * are swappable objects */
213 if (dictSize(db
->dict
) == 0) continue;
214 for (i
= 0; i
< 5; i
++) {
220 if (maxtries
) maxtries
--;
221 de
= dictGetRandomKey(db
->dict
);
222 keystr
= dictGetEntryKey(de
);
223 val
= dictGetEntryVal(de
);
224 initStaticStringObject(keyobj
,keystr
);
226 /* Don't remove objects that are currently target of a
227 * read or write operation. */
228 if (cacheScheduleIOGetFlags(db
,&keyobj
) != 0) {
229 if (maxtries
) i
--; /* don't count this try */
232 swappability
= computeObjectSwappability(val
);
233 if (!best
|| swappability
> best_swappability
) {
235 best_swappability
= swappability
;
241 /* FIXME: If there are objects marked as DS_DIRTY or DS_SAVING
242 * let's wait for this objects to be clear and retry...
244 * Object cache vm limit is considered an hard limit. */
247 key
= dictGetEntryKey(best
);
248 val
= dictGetEntryVal(best
);
250 redisLog(REDIS_DEBUG
,"Key selected for cache eviction: %s swappability:%f",
251 key
, best_swappability
);
253 /* Delete this key from memory */
255 robj
*kobj
= createStringObject(key
,sdslen(key
));
256 dbDelete(best_db
,kobj
);
262 /* Return true if it's safe to swap out objects in a given moment.
263 * Basically we don't want to swap objects out while there is a BGSAVE
264 * or a BGAEOREWRITE running in backgroud. */
265 int dsCanTouchDiskStore(void) {
266 return (server
.bgsavechildpid
== -1 && server
.bgrewritechildpid
== -1);
269 /* ==================== Disk store negative caching ========================
271 * When disk store is enabled, we need negative caching, that is, to remember
272 * keys that are for sure *not* on the disk key-value store.
274 * This is usefuls because without negative caching cache misses will cost us
275 * a disk lookup, even if the same non existing key is accessed again and again.
277 * With negative caching we remember that the key is not on disk, so if it's
278 * not in memory and we have a negative cache entry, we don't try a disk
282 /* Returns true if the specified key may exists on disk, that is, we don't
283 * have an entry in our negative cache for this key */
284 int cacheKeyMayExist(redisDb
*db
, robj
*key
) {
285 return dictFind(db
->io_negcache
,key
) == NULL
;
288 /* Set the specified key as an entry that may possibily exist on disk, that is,
289 * remove the negative cache entry for this key if any. */
290 void cacheSetKeyMayExist(redisDb
*db
, robj
*key
) {
291 dictDelete(db
->io_negcache
,key
);
294 /* Set the specified key as non existing on disk, that is, create a negative
295 * cache entry for this key. */
296 void cacheSetKeyDoesNotExist(redisDb
*db
, robj
*key
) {
297 if (dictReplace(db
->io_negcache
,key
,(void*)time(NULL
))) {
302 /* ================== Disk store cache - Threaded I/O ====================== */
304 void freeIOJob(iojob
*j
) {
305 decrRefCount(j
->key
);
306 /* j->val can be NULL if the job is about deleting the key from disk. */
307 if (j
->val
) decrRefCount(j
->val
);
311 /* Every time a thread finished a Job, it writes a byte into the write side
312 * of an unix pipe in order to "awake" the main thread, and this function
314 void vmThreadedIOCompletedJob(aeEventLoop
*el
, int fd
, void *privdata
,
318 int retval
, processed
= 0, toprocess
= -1;
321 REDIS_NOTUSED(privdata
);
323 /* For every byte we read in the read side of the pipe, there is one
324 * I/O job completed to process. */
325 while((retval
= read(fd
,buf
,1)) == 1) {
329 redisLog(REDIS_DEBUG
,"Processing I/O completed job");
331 /* Get the processed element (the oldest one) */
333 redisAssert(listLength(server
.io_processed
) != 0);
334 if (toprocess
== -1) {
335 toprocess
= (listLength(server
.io_processed
)*REDIS_MAX_COMPLETED_JOBS_PROCESSED
)/100;
336 if (toprocess
<= 0) toprocess
= 1;
338 ln
= listFirst(server
.io_processed
);
340 listDelNode(server
.io_processed
,ln
);
343 /* Post process it in the main thread, as there are things we
344 * can do just here to avoid race conditions and/or invasive locks */
345 redisLog(REDIS_DEBUG
,"COMPLETED Job type %s, key: %s",
346 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
347 (unsigned char*)j
->key
->ptr
);
348 if (j
->type
== REDIS_IOJOB_LOAD
) {
349 /* Create the key-value pair in the in-memory database */
350 if (j
->val
!= NULL
) {
351 /* Note: it's possible that the key is already in memory
352 * due to a blocking load operation. */
353 if (dbAdd(j
->db
,j
->key
,j
->val
) == REDIS_OK
) {
354 incrRefCount(j
->val
);
355 if (j
->expire
!= -1) setExpire(j
->db
,j
->key
,j
->expire
);
358 /* The key does not exist. Create a negative cache entry
360 cacheSetKeyDoesNotExist(j
->db
,j
->key
);
362 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_LOADINPROG
);
363 handleClientsBlockedOnSwappedKey(j
->db
,j
->key
);
365 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
367 cacheSetKeyMayExist(j
->db
,j
->key
);
369 cacheSetKeyDoesNotExist(j
->db
,j
->key
);
371 cacheScheduleIODelFlag(j
->db
,j
->key
,REDIS_IO_SAVEINPROG
);
375 if (processed
== toprocess
) return;
377 if (retval
< 0 && errno
!= EAGAIN
) {
378 redisLog(REDIS_WARNING
,
379 "WARNING: read(2) error in vmThreadedIOCompletedJob() %s",
384 void lockThreadedIO(void) {
385 pthread_mutex_lock(&server
.io_mutex
);
388 void unlockThreadedIO(void) {
389 pthread_mutex_unlock(&server
.io_mutex
);
392 void *IOThreadEntryPoint(void *arg
) {
397 pthread_detach(pthread_self());
400 /* Get a new job to process */
401 if (listLength(server
.io_newjobs
) == 0) {
402 /* Wait for more work to do */
403 pthread_cond_wait(&server
.io_condvar
,&server
.io_mutex
);
406 redisLog(REDIS_DEBUG
,"%ld IO jobs to process",
407 listLength(server
.io_newjobs
));
408 ln
= listFirst(server
.io_newjobs
);
410 listDelNode(server
.io_newjobs
,ln
);
411 /* Add the job in the processing queue */
412 listAddNodeTail(server
.io_processing
,j
);
413 ln
= listLast(server
.io_processing
); /* We use ln later to remove it */
416 redisLog(REDIS_DEBUG
,"Thread %ld: new job type %s: %p about key '%s'",
417 (long) pthread_self(),
418 (j
->type
== REDIS_IOJOB_LOAD
) ? "load" : "save",
419 (void*)j
, (char*)j
->key
->ptr
);
421 /* Process the Job */
422 if (j
->type
== REDIS_IOJOB_LOAD
) {
425 j
->val
= dsGet(j
->db
,j
->key
,&expire
);
426 if (j
->val
) j
->expire
= expire
;
427 } else if (j
->type
== REDIS_IOJOB_SAVE
) {
429 dsSet(j
->db
,j
->key
,j
->val
);
435 /* Done: insert the job into the processed queue */
436 redisLog(REDIS_DEBUG
,"Thread %ld completed the job: %p (key %s)",
437 (long) pthread_self(), (void*)j
, (char*)j
->key
->ptr
);
440 listDelNode(server
.io_processing
,ln
);
441 listAddNodeTail(server
.io_processed
,j
);
443 /* Signal the main thread there is new stuff to process */
444 redisAssert(write(server
.io_ready_pipe_write
,"x",1) == 1);
446 /* never reached, but that's the full pattern... */
451 void spawnIOThread(void) {
453 sigset_t mask
, omask
;
457 sigaddset(&mask
,SIGCHLD
);
458 sigaddset(&mask
,SIGHUP
);
459 sigaddset(&mask
,SIGPIPE
);
460 pthread_sigmask(SIG_SETMASK
, &mask
, &omask
);
461 while ((err
= pthread_create(&thread
,&server
.io_threads_attr
,IOThreadEntryPoint
,NULL
)) != 0) {
462 redisLog(REDIS_WARNING
,"Unable to spawn an I/O thread: %s",
466 pthread_sigmask(SIG_SETMASK
, &omask
, NULL
);
467 server
.io_active_threads
++;
470 /* Wait that all the pending IO Jobs are processed */
471 void waitEmptyIOJobsQueue(void) {
473 int io_processed_len
;
476 if (listLength(server
.io_newjobs
) == 0 &&
477 listLength(server
.io_processing
) == 0)
482 /* If there are new jobs we need to signal the thread to
483 * process the next one. */
484 redisLog(REDIS_DEBUG
,"waitEmptyIOJobsQueue: new %d, processing %d",
485 listLength(server
.io_newjobs
),
486 listLength(server
.io_processing
));
488 if (listLength(server.io_newjobs)) {
489 pthread_cond_signal(&server.io_condvar);
492 /* While waiting for empty jobs queue condition we post-process some
493 * finshed job, as I/O threads may be hanging trying to write against
494 * the io_ready_pipe_write FD but there are so much pending jobs that
496 io_processed_len
= listLength(server
.io_processed
);
498 if (io_processed_len
) {
499 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
500 (void*)0xdeadbeef,0);
501 usleep(1000); /* 1 millisecond */
503 usleep(10000); /* 10 milliseconds */
508 /* Process all the IO Jobs already completed by threads but still waiting
509 * processing from the main thread. */
510 void processAllPendingIOJobs(void) {
512 int io_processed_len
;
515 io_processed_len
= listLength(server
.io_processed
);
517 if (io_processed_len
== 0) return;
518 vmThreadedIOCompletedJob(NULL
,server
.io_ready_pipe_read
,
519 (void*)0xdeadbeef,0);
523 /* This function must be called while with threaded IO locked */
524 void queueIOJob(iojob
*j
) {
525 redisLog(REDIS_DEBUG
,"Queued IO Job %p type %d about key '%s'\n",
526 (void*)j
, j
->type
, (char*)j
->key
->ptr
);
527 listAddNodeTail(server
.io_newjobs
,j
);
528 if (server
.io_active_threads
< server
.vm_max_threads
)
532 void dsCreateIOJob(int type
, redisDb
*db
, robj
*key
, robj
*val
) {
535 j
= zmalloc(sizeof(*j
));
541 if (val
) incrRefCount(val
);
545 pthread_cond_signal(&server
.io_condvar
);
549 /* ============= Disk store cache - Scheduling of IO operations =============
551 * We use a queue and an hash table to hold the state of IO operations
552 * so that's fast to lookup if there is already an IO operation in queue
555 * There are two types of IO operations for a given key:
556 * REDIS_IO_LOAD and REDIS_IO_SAVE.
558 * The function cacheScheduleIO() function pushes the specified IO operation
559 * in the queue, but avoid adding the same key for the same operation
560 * multiple times, thanks to the associated hash table.
562 * We take a set of flags per every key, so when the scheduled IO operation
563 * gets moved from the scheduled queue to the actual IO Jobs queue that
564 * is processed by the IO thread, we flag it as IO_LOADINPROG or
567 * So for every given key we always know if there is some IO operation
568 * scheduled, or in progress, for this key.
570 * NOTE: all this is very important in order to guarantee correctness of
571 * the Disk Store Cache. Jobs are always queued here. Load jobs are
572 * queued at the head for faster execution only in the case there is not
573 * already a write operation of some kind for this job.
575 * So we have ordering, but can do exceptions when there are no already
576 * operations for a given key. Also when we need to block load a given
577 * key, for an immediate lookup operation, we can check if the key can
578 * be accessed synchronously without race conditions (no IN PROGRESS
579 * operations for this key), otherwise we blocking wait for completion. */
581 #define REDIS_IO_LOAD 1
582 #define REDIS_IO_SAVE 2
583 #define REDIS_IO_LOADINPROG 4
584 #define REDIS_IO_SAVEINPROG 8
586 void cacheScheduleIOAddFlag(redisDb
*db
, robj
*key
, long flag
) {
587 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
590 dictAdd(db
->io_queued
,key
,(void*)flag
);
594 long flags
= (long) dictGetEntryVal(de
);
596 dictGetEntryVal(de
) = (void*) flags
;
600 void cacheScheduleIODelFlag(redisDb
*db
, robj
*key
, long flag
) {
601 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
604 redisAssert(de
!= NULL
);
605 flags
= (long) dictGetEntryVal(de
);
606 redisAssert(flags
& flag
);
609 dictDelete(db
->io_queued
,key
);
611 dictGetEntryVal(de
) = (void*) flags
;
615 int cacheScheduleIOGetFlags(redisDb
*db
, robj
*key
) {
616 struct dictEntry
*de
= dictFind(db
->io_queued
,key
);
618 return (de
== NULL
) ? 0 : ((long) dictGetEntryVal(de
));
621 void cacheScheduleIO(redisDb
*db
, robj
*key
, int type
) {
625 if ((flags
= cacheScheduleIOGetFlags(db
,key
)) & type
) return;
627 redisLog(REDIS_DEBUG
,"Scheduling key %s for %s",
628 key
->ptr
, type
== REDIS_IO_LOAD
? "loading" : "saving");
629 cacheScheduleIOAddFlag(db
,key
,type
);
630 op
= zmalloc(sizeof(*op
));
635 op
->ctime
= time(NULL
);
637 /* Give priority to load operations if there are no save already
638 * in queue for the same key. */
639 if (type
== REDIS_IO_LOAD
&& !(flags
& REDIS_IO_SAVE
)) {
640 listAddNodeHead(server
.cache_io_queue
, op
);
642 /* FIXME: probably when this happens we want to at least move
643 * the write job about this queue on top, and set the creation time
644 * to a value that will force processing ASAP. */
645 listAddNodeTail(server
.cache_io_queue
, op
);
649 void cacheCron(void) {
650 time_t now
= time(NULL
);
652 int jobs
, topush
= 0;
654 /* Sync stuff on disk, but only if we have less than 100 IO jobs */
656 jobs
= listLength(server
.io_newjobs
);
660 if (topush
< 0) topush
= 0;
662 while((ln
= listFirst(server
.cache_io_queue
)) != NULL
) {
663 ioop
*op
= ln
->value
;
668 if (op
->type
== REDIS_IO_LOAD
||
669 (now
- op
->ctime
) >= server
.cache_flush_delay
)
671 struct dictEntry
*de
;
674 redisLog(REDIS_DEBUG
,"Creating IO %s Job for key %s",
675 op
->type
== REDIS_IO_LOAD
? "load" : "save", op
->key
->ptr
);
677 if (op
->type
== REDIS_IO_LOAD
) {
678 dsCreateIOJob(REDIS_IOJOB_LOAD
,op
->db
,op
->key
,NULL
);
680 /* Lookup the key, in order to put the current value in the IO
681 * Job. Otherwise if the key does not exists we schedule a disk
682 * store delete operation, setting the value to NULL. */
683 de
= dictFind(op
->db
->dict
,op
->key
->ptr
);
685 val
= dictGetEntryVal(de
);
687 /* Setting the value to NULL tells the IO thread to delete
688 * the key on disk. */
691 dsCreateIOJob(REDIS_IOJOB_SAVE
,op
->db
,op
->key
,val
);
693 /* Mark the operation as in progress. */
694 cacheScheduleIODelFlag(op
->db
,op
->key
,op
->type
);
695 cacheScheduleIOAddFlag(op
->db
,op
->key
,
696 (op
->type
== REDIS_IO_LOAD
) ? REDIS_IO_LOADINPROG
:
697 REDIS_IO_SAVEINPROG
);
698 /* Finally remove the operation from the queue.
699 * But we'll have trace of it in the hash table. */
700 listDelNode(server
.cache_io_queue
,ln
);
701 decrRefCount(op
->key
);
704 break; /* too early */
708 /* Reclaim memory from the object cache */
709 while (server
.ds_enabled
&& zmalloc_used_memory() >
710 server
.cache_max_memory
)
712 if (cacheFreeOneEntry() == REDIS_ERR
) break;
713 /* FIXME: also free negative cache entries here. */
717 /* ========== Disk store cache - Blocking clients on missing keys =========== */
719 /* This function makes the clinet 'c' waiting for the key 'key' to be loaded.
720 * If the key is already in memory we don't need to block.
722 * FIXME: we should try if it's actually better to suspend the client
723 * accessing an object that is being saved, and awake it only when
724 * the saving was completed.
726 * Otherwise if the key is not in memory, we block the client and start
727 * an IO Job to load it:
729 * the key is added to the io_keys list in the client structure, and also
730 * in the hash table mapping swapped keys to waiting clients, that is,
731 * server.io_waited_keys. */
732 int waitForSwappedKey(redisClient
*c
, robj
*key
) {
733 struct dictEntry
*de
;
736 /* Return ASAP if the key is in memory */
737 de
= dictFind(c
->db
->dict
,key
->ptr
);
738 if (de
!= NULL
) return 0;
740 /* Don't wait for keys we are sure are not on disk either */
741 if (!cacheKeyMayExist(c
->db
,key
)) return 0;
743 /* Add the key to the list of keys this client is waiting for.
744 * This maps clients to keys they are waiting for. */
745 listAddNodeTail(c
->io_keys
,key
);
748 /* Add the client to the swapped keys => clients waiting map. */
749 de
= dictFind(c
->db
->io_keys
,key
);
753 /* For every key we take a list of clients blocked for it */
755 retval
= dictAdd(c
->db
->io_keys
,key
,l
);
757 redisAssert(retval
== DICT_OK
);
759 l
= dictGetEntryVal(de
);
761 listAddNodeTail(l
,c
);
763 /* Are we already loading the key from disk? If not create a job */
765 cacheScheduleIO(c
->db
,key
,REDIS_IO_LOAD
);
769 /* Preload keys for any command with first, last and step values for
770 * the command keys prototype, as defined in the command table. */
771 void waitForMultipleSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
773 if (cmd
->vm_firstkey
== 0) return;
774 last
= cmd
->vm_lastkey
;
775 if (last
< 0) last
= argc
+last
;
776 for (j
= cmd
->vm_firstkey
; j
<= last
; j
+= cmd
->vm_keystep
) {
777 redisAssert(j
< argc
);
778 waitForSwappedKey(c
,argv
[j
]);
782 /* Preload keys needed for the ZUNIONSTORE and ZINTERSTORE commands.
783 * Note that the number of keys to preload is user-defined, so we need to
784 * apply a sanity check against argc. */
785 void zunionInterBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
789 num
= atoi(argv
[2]->ptr
);
790 if (num
> (argc
-3)) return;
791 for (i
= 0; i
< num
; i
++) {
792 waitForSwappedKey(c
,argv
[3+i
]);
796 /* Preload keys needed to execute the entire MULTI/EXEC block.
798 * This function is called by blockClientOnSwappedKeys when EXEC is issued,
799 * and will block the client when any command requires a swapped out value. */
800 void execBlockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
, int argc
, robj
**argv
) {
802 struct redisCommand
*mcmd
;
808 if (!(c
->flags
& REDIS_MULTI
)) return;
809 for (i
= 0; i
< c
->mstate
.count
; i
++) {
810 mcmd
= c
->mstate
.commands
[i
].cmd
;
811 margc
= c
->mstate
.commands
[i
].argc
;
812 margv
= c
->mstate
.commands
[i
].argv
;
814 if (mcmd
->vm_preload_proc
!= NULL
) {
815 mcmd
->vm_preload_proc(c
,mcmd
,margc
,margv
);
817 waitForMultipleSwappedKeys(c
,mcmd
,margc
,margv
);
822 /* Is this client attempting to run a command against swapped keys?
823 * If so, block it ASAP, load the keys in background, then resume it.
825 * The important idea about this function is that it can fail! If keys will
826 * still be swapped when the client is resumed, this key lookups will
827 * just block loading keys from disk. In practical terms this should only
828 * happen with SORT BY command or if there is a bug in this function.
830 * Return 1 if the client is marked as blocked, 0 if the client can
831 * continue as the keys it is going to access appear to be in memory. */
832 int blockClientOnSwappedKeys(redisClient
*c
, struct redisCommand
*cmd
) {
833 if (cmd
->vm_preload_proc
!= NULL
) {
834 cmd
->vm_preload_proc(c
,cmd
,c
->argc
,c
->argv
);
836 waitForMultipleSwappedKeys(c
,cmd
,c
->argc
,c
->argv
);
839 /* If the client was blocked for at least one key, mark it as blocked. */
840 if (listLength(c
->io_keys
)) {
841 c
->flags
|= REDIS_IO_WAIT
;
842 aeDeleteFileEvent(server
.el
,c
->fd
,AE_READABLE
);
843 server
.cache_blocked_clients
++;
850 /* Remove the 'key' from the list of blocked keys for a given client.
852 * The function returns 1 when there are no longer blocking keys after
853 * the current one was removed (and the client can be unblocked). */
854 int dontWaitForSwappedKey(redisClient
*c
, robj
*key
) {
858 struct dictEntry
*de
;
860 /* The key object might be destroyed when deleted from the c->io_keys
861 * list (and the "key" argument is physically the same object as the
862 * object inside the list), so we need to protect it. */
865 /* Remove the key from the list of keys this client is waiting for. */
866 listRewind(c
->io_keys
,&li
);
867 while ((ln
= listNext(&li
)) != NULL
) {
868 if (equalStringObjects(ln
->value
,key
)) {
869 listDelNode(c
->io_keys
,ln
);
873 redisAssert(ln
!= NULL
);
875 /* Remove the client form the key => waiting clients map. */
876 de
= dictFind(c
->db
->io_keys
,key
);
877 redisAssert(de
!= NULL
);
878 l
= dictGetEntryVal(de
);
879 ln
= listSearchKey(l
,c
);
880 redisAssert(ln
!= NULL
);
882 if (listLength(l
) == 0)
883 dictDelete(c
->db
->io_keys
,key
);
886 return listLength(c
->io_keys
) == 0;
889 /* Every time we now a key was loaded back in memory, we handle clients
890 * waiting for this key if any. */
891 void handleClientsBlockedOnSwappedKey(redisDb
*db
, robj
*key
) {
892 struct dictEntry
*de
;
897 de
= dictFind(db
->io_keys
,key
);
900 l
= dictGetEntryVal(de
);
902 /* Note: we can't use something like while(listLength(l)) as the list
903 * can be freed by the calling function when we remove the last element. */
906 redisClient
*c
= ln
->value
;
908 if (dontWaitForSwappedKey(c
,key
)) {
909 /* Put the client in the list of clients ready to go as we
910 * loaded all the keys about it. */
911 listAddNodeTail(server
.io_ready_clients
,c
);