]> git.saurik.com Git - redis.git/blob - src/dict.c
added mstime() to get UNIX time in milliseconds.
[redis.git] / src / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44 #include <sys/time.h>
45 #include <ctype.h>
46
47 #include "dict.h"
48 #include "zmalloc.h"
49
50 /* Using dictEnableResize() / dictDisableResize() we make possible to
51 * enable/disable resizing of the hash table as needed. This is very important
52 * for Redis, as we use copy-on-write and don't want to move too much memory
53 * around when there is a child performing saving operations.
54 *
55 * Note that even when dict_can_resize is set to 0, not all resizes are
56 * prevented: an hash table is still allowed to grow if the ratio between
57 * the number of elements and the buckets > dict_force_resize_ratio. */
58 static int dict_can_resize = 1;
59 static unsigned int dict_force_resize_ratio = 5;
60
61 /* -------------------------- private prototypes ---------------------------- */
62
63 static int _dictExpandIfNeeded(dict *ht);
64 static unsigned long _dictNextPower(unsigned long size);
65 static int _dictKeyIndex(dict *ht, const void *key);
66 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
67
68 /* -------------------------- hash functions -------------------------------- */
69
70 /* Thomas Wang's 32 bit Mix Function */
71 unsigned int dictIntHashFunction(unsigned int key)
72 {
73 key += ~(key << 15);
74 key ^= (key >> 10);
75 key += (key << 3);
76 key ^= (key >> 6);
77 key += ~(key << 11);
78 key ^= (key >> 16);
79 return key;
80 }
81
82 /* Identity hash function for integer keys */
83 unsigned int dictIdentityHashFunction(unsigned int key)
84 {
85 return key;
86 }
87
88 /* Generic hash function (a popular one from Bernstein).
89 * I tested a few and this was the best. */
90 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
91 unsigned int hash = 5381;
92
93 while (len--)
94 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
95 return hash;
96 }
97
98 /* And a case insensitive version */
99 unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
100 unsigned int hash = 5381;
101
102 while (len--)
103 hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
104 return hash;
105 }
106
107 /* ----------------------------- API implementation ------------------------- */
108
109 /* Reset an hashtable already initialized with ht_init().
110 * NOTE: This function should only called by ht_destroy(). */
111 static void _dictReset(dictht *ht)
112 {
113 ht->table = NULL;
114 ht->size = 0;
115 ht->sizemask = 0;
116 ht->used = 0;
117 }
118
119 /* Create a new hash table */
120 dict *dictCreate(dictType *type,
121 void *privDataPtr)
122 {
123 dict *d = zmalloc(sizeof(*d));
124
125 _dictInit(d,type,privDataPtr);
126 return d;
127 }
128
129 /* Initialize the hash table */
130 int _dictInit(dict *d, dictType *type,
131 void *privDataPtr)
132 {
133 _dictReset(&d->ht[0]);
134 _dictReset(&d->ht[1]);
135 d->type = type;
136 d->privdata = privDataPtr;
137 d->rehashidx = -1;
138 d->iterators = 0;
139 return DICT_OK;
140 }
141
142 /* Resize the table to the minimal size that contains all the elements,
143 * but with the invariant of a USER/BUCKETS ratio near to <= 1 */
144 int dictResize(dict *d)
145 {
146 int minimal;
147
148 if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
149 minimal = d->ht[0].used;
150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
152 return dictExpand(d, minimal);
153 }
154
155 /* Expand or create the hashtable */
156 int dictExpand(dict *d, unsigned long size)
157 {
158 dictht n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size);
160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
163 if (dictIsRehashing(d) || d->ht[0].used > size)
164 return DICT_ERR;
165
166 /* Allocate the new hashtable and initialize all pointers to NULL */
167 n.size = realsize;
168 n.sizemask = realsize-1;
169 n.table = zcalloc(realsize*sizeof(dictEntry*));
170 n.used = 0;
171
172 /* Is this the first initialization? If so it's not really a rehashing
173 * we just set the first hash table so that it can accept keys. */
174 if (d->ht[0].table == NULL) {
175 d->ht[0] = n;
176 return DICT_OK;
177 }
178
179 /* Prepare a second hash table for incremental rehashing */
180 d->ht[1] = n;
181 d->rehashidx = 0;
182 return DICT_OK;
183 }
184
185 /* Performs N steps of incremental rehashing. Returns 1 if there are still
186 * keys to move from the old to the new hash table, otherwise 0 is returned.
187 * Note that a rehashing step consists in moving a bucket (that may have more
188 * thank one key as we use chaining) from the old to the new hash table. */
189 int dictRehash(dict *d, int n) {
190 if (!dictIsRehashing(d)) return 0;
191
192 while(n--) {
193 dictEntry *de, *nextde;
194
195 /* Check if we already rehashed the whole table... */
196 if (d->ht[0].used == 0) {
197 zfree(d->ht[0].table);
198 d->ht[0] = d->ht[1];
199 _dictReset(&d->ht[1]);
200 d->rehashidx = -1;
201 return 0;
202 }
203
204 /* Note that rehashidx can't overflow as we are sure there are more
205 * elements because ht[0].used != 0 */
206 assert(d->ht[0].size > (unsigned)d->rehashidx);
207 while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
208 de = d->ht[0].table[d->rehashidx];
209 /* Move all the keys in this bucket from the old to the new hash HT */
210 while(de) {
211 unsigned int h;
212
213 nextde = de->next;
214 /* Get the index in the new hash table */
215 h = dictHashKey(d, de->key) & d->ht[1].sizemask;
216 de->next = d->ht[1].table[h];
217 d->ht[1].table[h] = de;
218 d->ht[0].used--;
219 d->ht[1].used++;
220 de = nextde;
221 }
222 d->ht[0].table[d->rehashidx] = NULL;
223 d->rehashidx++;
224 }
225 return 1;
226 }
227
228 long long timeInMilliseconds(void) {
229 struct timeval tv;
230
231 gettimeofday(&tv,NULL);
232 return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
233 }
234
235 /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
236 int dictRehashMilliseconds(dict *d, int ms) {
237 long long start = timeInMilliseconds();
238 int rehashes = 0;
239
240 while(dictRehash(d,100)) {
241 rehashes += 100;
242 if (timeInMilliseconds()-start > ms) break;
243 }
244 return rehashes;
245 }
246
247 /* This function performs just a step of rehashing, and only if there are
248 * no safe iterators bound to our hash table. When we have iterators in the
249 * middle of a rehashing we can't mess with the two hash tables otherwise
250 * some element can be missed or duplicated.
251 *
252 * This function is called by common lookup or update operations in the
253 * dictionary so that the hash table automatically migrates from H1 to H2
254 * while it is actively used. */
255 static void _dictRehashStep(dict *d) {
256 if (d->iterators == 0) dictRehash(d,1);
257 }
258
259 /* Add an element to the target hash table */
260 int dictAdd(dict *d, void *key, void *val)
261 {
262 dictEntry *entry = dictAddRaw(d,key);
263
264 if (!entry) return DICT_ERR;
265 dictSetVal(d, entry, val);
266 return DICT_OK;
267 }
268
269 /* Low level add. This function adds the entry but instead of setting
270 * a value returns the dictEntry structure to the user, that will make
271 * sure to fill the value field as he wishes.
272 *
273 * This function is also directly expoed to user API to be called
274 * mainly in order to store non-pointers inside the hash value, example:
275 *
276 * entry = dictAddRaw(dict,mykey);
277 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
278 *
279 * Return values:
280 *
281 * If key already exists NULL is returned.
282 * If key was added, the hash entry is returned to be manipulated by the caller.
283 */
284 dictEntry *dictAddRaw(dict *d, void *key)
285 {
286 int index;
287 dictEntry *entry;
288 dictht *ht;
289
290 if (dictIsRehashing(d)) _dictRehashStep(d);
291
292 /* Get the index of the new element, or -1 if
293 * the element already exists. */
294 if ((index = _dictKeyIndex(d, key)) == -1)
295 return NULL;
296
297 /* Allocate the memory and store the new entry */
298 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
299 entry = zmalloc(sizeof(*entry));
300 entry->next = ht->table[index];
301 ht->table[index] = entry;
302 ht->used++;
303
304 /* Set the hash entry fields. */
305 dictSetKey(d, entry, key);
306 return entry;
307 }
308
309 /* Add an element, discarding the old if the key already exists.
310 * Return 1 if the key was added from scratch, 0 if there was already an
311 * element with such key and dictReplace() just performed a value update
312 * operation. */
313 int dictReplace(dict *d, void *key, void *val)
314 {
315 dictEntry *entry, auxentry;
316
317 /* Try to add the element. If the key
318 * does not exists dictAdd will suceed. */
319 if (dictAdd(d, key, val) == DICT_OK)
320 return 1;
321 /* It already exists, get the entry */
322 entry = dictFind(d, key);
323 /* Set the new value and free the old one. Note that it is important
324 * to do that in this order, as the value may just be exactly the same
325 * as the previous one. In this context, think to reference counting,
326 * you want to increment (set), and then decrement (free), and not the
327 * reverse. */
328 auxentry = *entry;
329 dictSetVal(d, entry, val);
330 dictFreeVal(d, &auxentry);
331 return 0;
332 }
333
334 /* dictReplaceRaw() is simply a version of dictAddRaw() that always
335 * returns the hash entry of the specified key, even if the key already
336 * exists and can't be added (in that case the entry of the already
337 * existing key is returned.)
338 *
339 * See dictAddRaw() for more information. */
340 dictEntry *dictReplaceRaw(dict *d, void *key) {
341 dictEntry *entry = dictFind(d,key);
342
343 return entry ? entry : dictAddRaw(d,key);
344 }
345
346 /* Search and remove an element */
347 static int dictGenericDelete(dict *d, const void *key, int nofree)
348 {
349 unsigned int h, idx;
350 dictEntry *he, *prevHe;
351 int table;
352
353 if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
354 if (dictIsRehashing(d)) _dictRehashStep(d);
355 h = dictHashKey(d, key);
356
357 for (table = 0; table <= 1; table++) {
358 idx = h & d->ht[table].sizemask;
359 he = d->ht[table].table[idx];
360 prevHe = NULL;
361 while(he) {
362 if (dictCompareKeys(d, key, he->key)) {
363 /* Unlink the element from the list */
364 if (prevHe)
365 prevHe->next = he->next;
366 else
367 d->ht[table].table[idx] = he->next;
368 if (!nofree) {
369 dictFreeKey(d, he);
370 dictFreeVal(d, he);
371 }
372 zfree(he);
373 d->ht[table].used--;
374 return DICT_OK;
375 }
376 prevHe = he;
377 he = he->next;
378 }
379 if (!dictIsRehashing(d)) break;
380 }
381 return DICT_ERR; /* not found */
382 }
383
384 int dictDelete(dict *ht, const void *key) {
385 return dictGenericDelete(ht,key,0);
386 }
387
388 int dictDeleteNoFree(dict *ht, const void *key) {
389 return dictGenericDelete(ht,key,1);
390 }
391
392 /* Destroy an entire dictionary */
393 int _dictClear(dict *d, dictht *ht)
394 {
395 unsigned long i;
396
397 /* Free all the elements */
398 for (i = 0; i < ht->size && ht->used > 0; i++) {
399 dictEntry *he, *nextHe;
400
401 if ((he = ht->table[i]) == NULL) continue;
402 while(he) {
403 nextHe = he->next;
404 dictFreeKey(d, he);
405 dictFreeVal(d, he);
406 zfree(he);
407 ht->used--;
408 he = nextHe;
409 }
410 }
411 /* Free the table and the allocated cache structure */
412 zfree(ht->table);
413 /* Re-initialize the table */
414 _dictReset(ht);
415 return DICT_OK; /* never fails */
416 }
417
418 /* Clear & Release the hash table */
419 void dictRelease(dict *d)
420 {
421 _dictClear(d,&d->ht[0]);
422 _dictClear(d,&d->ht[1]);
423 zfree(d);
424 }
425
426 dictEntry *dictFind(dict *d, const void *key)
427 {
428 dictEntry *he;
429 unsigned int h, idx, table;
430
431 if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
432 if (dictIsRehashing(d)) _dictRehashStep(d);
433 h = dictHashKey(d, key);
434 for (table = 0; table <= 1; table++) {
435 idx = h & d->ht[table].sizemask;
436 he = d->ht[table].table[idx];
437 while(he) {
438 if (dictCompareKeys(d, key, he->key))
439 return he;
440 he = he->next;
441 }
442 if (!dictIsRehashing(d)) return NULL;
443 }
444 return NULL;
445 }
446
447 void *dictFetchValue(dict *d, const void *key) {
448 dictEntry *he;
449
450 he = dictFind(d,key);
451 return he ? dictGetVal(he) : NULL;
452 }
453
454 dictIterator *dictGetIterator(dict *d)
455 {
456 dictIterator *iter = zmalloc(sizeof(*iter));
457
458 iter->d = d;
459 iter->table = 0;
460 iter->index = -1;
461 iter->safe = 0;
462 iter->entry = NULL;
463 iter->nextEntry = NULL;
464 return iter;
465 }
466
467 dictIterator *dictGetSafeIterator(dict *d) {
468 dictIterator *i = dictGetIterator(d);
469
470 i->safe = 1;
471 return i;
472 }
473
474 dictEntry *dictNext(dictIterator *iter)
475 {
476 while (1) {
477 if (iter->entry == NULL) {
478 dictht *ht = &iter->d->ht[iter->table];
479 if (iter->safe && iter->index == -1 && iter->table == 0)
480 iter->d->iterators++;
481 iter->index++;
482 if (iter->index >= (signed) ht->size) {
483 if (dictIsRehashing(iter->d) && iter->table == 0) {
484 iter->table++;
485 iter->index = 0;
486 ht = &iter->d->ht[1];
487 } else {
488 break;
489 }
490 }
491 iter->entry = ht->table[iter->index];
492 } else {
493 iter->entry = iter->nextEntry;
494 }
495 if (iter->entry) {
496 /* We need to save the 'next' here, the iterator user
497 * may delete the entry we are returning. */
498 iter->nextEntry = iter->entry->next;
499 return iter->entry;
500 }
501 }
502 return NULL;
503 }
504
505 void dictReleaseIterator(dictIterator *iter)
506 {
507 if (iter->safe && !(iter->index == -1 && iter->table == 0))
508 iter->d->iterators--;
509 zfree(iter);
510 }
511
512 /* Return a random entry from the hash table. Useful to
513 * implement randomized algorithms */
514 dictEntry *dictGetRandomKey(dict *d)
515 {
516 dictEntry *he, *orighe;
517 unsigned int h;
518 int listlen, listele;
519
520 if (dictSize(d) == 0) return NULL;
521 if (dictIsRehashing(d)) _dictRehashStep(d);
522 if (dictIsRehashing(d)) {
523 do {
524 h = random() % (d->ht[0].size+d->ht[1].size);
525 he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
526 d->ht[0].table[h];
527 } while(he == NULL);
528 } else {
529 do {
530 h = random() & d->ht[0].sizemask;
531 he = d->ht[0].table[h];
532 } while(he == NULL);
533 }
534
535 /* Now we found a non empty bucket, but it is a linked
536 * list and we need to get a random element from the list.
537 * The only sane way to do so is counting the elements and
538 * select a random index. */
539 listlen = 0;
540 orighe = he;
541 while(he) {
542 he = he->next;
543 listlen++;
544 }
545 listele = random() % listlen;
546 he = orighe;
547 while(listele--) he = he->next;
548 return he;
549 }
550
551 /* ------------------------- private functions ------------------------------ */
552
553 /* Expand the hash table if needed */
554 static int _dictExpandIfNeeded(dict *d)
555 {
556 /* Incremental rehashing already in progress. Return. */
557 if (dictIsRehashing(d)) return DICT_OK;
558
559 /* If the hash table is empty expand it to the intial size. */
560 if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
561
562 /* If we reached the 1:1 ratio, and we are allowed to resize the hash
563 * table (global setting) or we should avoid it but the ratio between
564 * elements/buckets is over the "safe" threshold, we resize doubling
565 * the number of buckets. */
566 if (d->ht[0].used >= d->ht[0].size &&
567 (dict_can_resize ||
568 d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
569 {
570 return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
571 d->ht[0].size : d->ht[0].used)*2);
572 }
573 return DICT_OK;
574 }
575
576 /* Our hash table capability is a power of two */
577 static unsigned long _dictNextPower(unsigned long size)
578 {
579 unsigned long i = DICT_HT_INITIAL_SIZE;
580
581 if (size >= LONG_MAX) return LONG_MAX;
582 while(1) {
583 if (i >= size)
584 return i;
585 i *= 2;
586 }
587 }
588
589 /* Returns the index of a free slot that can be populated with
590 * an hash entry for the given 'key'.
591 * If the key already exists, -1 is returned.
592 *
593 * Note that if we are in the process of rehashing the hash table, the
594 * index is always returned in the context of the second (new) hash table. */
595 static int _dictKeyIndex(dict *d, const void *key)
596 {
597 unsigned int h, idx, table;
598 dictEntry *he;
599
600 /* Expand the hashtable if needed */
601 if (_dictExpandIfNeeded(d) == DICT_ERR)
602 return -1;
603 /* Compute the key hash value */
604 h = dictHashKey(d, key);
605 for (table = 0; table <= 1; table++) {
606 idx = h & d->ht[table].sizemask;
607 /* Search if this slot does not already contain the given key */
608 he = d->ht[table].table[idx];
609 while(he) {
610 if (dictCompareKeys(d, key, he->key))
611 return -1;
612 he = he->next;
613 }
614 if (!dictIsRehashing(d)) break;
615 }
616 return idx;
617 }
618
619 void dictEmpty(dict *d) {
620 _dictClear(d,&d->ht[0]);
621 _dictClear(d,&d->ht[1]);
622 d->rehashidx = -1;
623 d->iterators = 0;
624 }
625
626 #define DICT_STATS_VECTLEN 50
627 static void _dictPrintStatsHt(dictht *ht) {
628 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
629 unsigned long totchainlen = 0;
630 unsigned long clvector[DICT_STATS_VECTLEN];
631
632 if (ht->used == 0) {
633 printf("No stats available for empty dictionaries\n");
634 return;
635 }
636
637 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
638 for (i = 0; i < ht->size; i++) {
639 dictEntry *he;
640
641 if (ht->table[i] == NULL) {
642 clvector[0]++;
643 continue;
644 }
645 slots++;
646 /* For each hash entry on this slot... */
647 chainlen = 0;
648 he = ht->table[i];
649 while(he) {
650 chainlen++;
651 he = he->next;
652 }
653 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
654 if (chainlen > maxchainlen) maxchainlen = chainlen;
655 totchainlen += chainlen;
656 }
657 printf("Hash table stats:\n");
658 printf(" table size: %ld\n", ht->size);
659 printf(" number of elements: %ld\n", ht->used);
660 printf(" different slots: %ld\n", slots);
661 printf(" max chain length: %ld\n", maxchainlen);
662 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
663 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
664 printf(" Chain length distribution:\n");
665 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
666 if (clvector[i] == 0) continue;
667 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
668 }
669 }
670
671 void dictPrintStats(dict *d) {
672 _dictPrintStatsHt(&d->ht[0]);
673 if (dictIsRehashing(d)) {
674 printf("-- Rehashing into ht[1]:\n");
675 _dictPrintStatsHt(&d->ht[1]);
676 }
677 }
678
679 void dictEnableResize(void) {
680 dict_can_resize = 1;
681 }
682
683 void dictDisableResize(void) {
684 dict_can_resize = 0;
685 }
686
687 #if 0
688
689 /* The following are just example hash table types implementations.
690 * Not useful for Redis so they are commented out.
691 */
692
693 /* ----------------------- StringCopy Hash Table Type ------------------------*/
694
695 static unsigned int _dictStringCopyHTHashFunction(const void *key)
696 {
697 return dictGenHashFunction(key, strlen(key));
698 }
699
700 static void *_dictStringDup(void *privdata, const void *key)
701 {
702 int len = strlen(key);
703 char *copy = zmalloc(len+1);
704 DICT_NOTUSED(privdata);
705
706 memcpy(copy, key, len);
707 copy[len] = '\0';
708 return copy;
709 }
710
711 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
712 const void *key2)
713 {
714 DICT_NOTUSED(privdata);
715
716 return strcmp(key1, key2) == 0;
717 }
718
719 static void _dictStringDestructor(void *privdata, void *key)
720 {
721 DICT_NOTUSED(privdata);
722
723 zfree(key);
724 }
725
726 dictType dictTypeHeapStringCopyKey = {
727 _dictStringCopyHTHashFunction, /* hash function */
728 _dictStringDup, /* key dup */
729 NULL, /* val dup */
730 _dictStringCopyHTKeyCompare, /* key compare */
731 _dictStringDestructor, /* key destructor */
732 NULL /* val destructor */
733 };
734
735 /* This is like StringCopy but does not auto-duplicate the key.
736 * It's used for intepreter's shared strings. */
737 dictType dictTypeHeapStrings = {
738 _dictStringCopyHTHashFunction, /* hash function */
739 NULL, /* key dup */
740 NULL, /* val dup */
741 _dictStringCopyHTKeyCompare, /* key compare */
742 _dictStringDestructor, /* key destructor */
743 NULL /* val destructor */
744 };
745
746 /* This is like StringCopy but also automatically handle dynamic
747 * allocated C strings as values. */
748 dictType dictTypeHeapStringCopyKeyValue = {
749 _dictStringCopyHTHashFunction, /* hash function */
750 _dictStringDup, /* key dup */
751 _dictStringDup, /* val dup */
752 _dictStringCopyHTKeyCompare, /* key compare */
753 _dictStringDestructor, /* key destructor */
754 _dictStringDestructor, /* val destructor */
755 };
756 #endif