]> git.saurik.com Git - redis.git/blob - deps/jemalloc/src/ckh.c
Jemalloc updated to version 3.2.0.
[redis.git] / deps / jemalloc / src / ckh.c
1 /*
2 *******************************************************************************
3 * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4 * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5 * functions are employed. The original cuckoo hashing algorithm was described
6 * in:
7 *
8 * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
9 * 51(2):122-144.
10 *
11 * Generalization of cuckoo hashing was discussed in:
12 *
13 * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14 * alternative to traditional hash tables. In Proceedings of the 7th
15 * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16 * January 2006.
17 *
18 * This implementation uses precisely two hash functions because that is the
19 * fewest that can work, and supporting multiple hashes is an implementation
20 * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21 * that shows approximate expected maximum load factors for various
22 * configurations:
23 *
24 * | #cells/bucket |
25 * #hashes | 1 | 2 | 4 | 8 |
26 * --------+-------+-------+-------+-------+
27 * 1 | 0.006 | 0.006 | 0.03 | 0.12 |
28 * 2 | 0.49 | 0.86 |>0.93< |>0.96< |
29 * 3 | 0.91 | 0.97 | 0.98 | 0.999 |
30 * 4 | 0.97 | 0.99 | 0.999 | |
31 *
32 * The number of cells per bucket is chosen such that a bucket fits in one cache
33 * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34 * respectively.
35 *
36 ******************************************************************************/
37 #define JEMALLOC_CKH_C_
38 #include "jemalloc/internal/jemalloc_internal.h"
39
40 /******************************************************************************/
41 /* Function prototypes for non-inline static functions. */
42
43 static bool ckh_grow(ckh_t *ckh);
44 static void ckh_shrink(ckh_t *ckh);
45
46 /******************************************************************************/
47
48 /*
49 * Search bucket for key and return the cell number if found; SIZE_T_MAX
50 * otherwise.
51 */
52 JEMALLOC_INLINE size_t
53 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
54 {
55 ckhc_t *cell;
56 unsigned i;
57
58 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
59 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
60 if (cell->key != NULL && ckh->keycomp(key, cell->key))
61 return ((bucket << LG_CKH_BUCKET_CELLS) + i);
62 }
63
64 return (SIZE_T_MAX);
65 }
66
67 /*
68 * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
69 */
70 JEMALLOC_INLINE size_t
71 ckh_isearch(ckh_t *ckh, const void *key)
72 {
73 size_t hash1, hash2, bucket, cell;
74
75 assert(ckh != NULL);
76
77 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
78
79 /* Search primary bucket. */
80 bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
81 cell = ckh_bucket_search(ckh, bucket, key);
82 if (cell != SIZE_T_MAX)
83 return (cell);
84
85 /* Search secondary bucket. */
86 bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
87 cell = ckh_bucket_search(ckh, bucket, key);
88 return (cell);
89 }
90
91 JEMALLOC_INLINE bool
92 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
93 const void *data)
94 {
95 ckhc_t *cell;
96 unsigned offset, i;
97
98 /*
99 * Cycle through the cells in the bucket, starting at a random position.
100 * The randomness avoids worst-case search overhead as buckets fill up.
101 */
102 prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
103 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
104 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
105 ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
106 if (cell->key == NULL) {
107 cell->key = key;
108 cell->data = data;
109 ckh->count++;
110 return (false);
111 }
112 }
113
114 return (true);
115 }
116
117 /*
118 * No space is available in bucket. Randomly evict an item, then try to find an
119 * alternate location for that item. Iteratively repeat this
120 * eviction/relocation procedure until either success or detection of an
121 * eviction/relocation bucket cycle.
122 */
123 JEMALLOC_INLINE bool
124 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
125 void const **argdata)
126 {
127 const void *key, *data, *tkey, *tdata;
128 ckhc_t *cell;
129 size_t hash1, hash2, bucket, tbucket;
130 unsigned i;
131
132 bucket = argbucket;
133 key = *argkey;
134 data = *argdata;
135 while (true) {
136 /*
137 * Choose a random item within the bucket to evict. This is
138 * critical to correct function, because without (eventually)
139 * evicting all items within a bucket during iteration, it
140 * would be possible to get stuck in an infinite loop if there
141 * were an item for which both hashes indicated the same
142 * bucket.
143 */
144 prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
145 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
146 assert(cell->key != NULL);
147
148 /* Swap cell->{key,data} and {key,data} (evict). */
149 tkey = cell->key; tdata = cell->data;
150 cell->key = key; cell->data = data;
151 key = tkey; data = tdata;
152
153 #ifdef CKH_COUNT
154 ckh->nrelocs++;
155 #endif
156
157 /* Find the alternate bucket for the evicted item. */
158 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
159 tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
160 if (tbucket == bucket) {
161 tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
162 /*
163 * It may be that (tbucket == bucket) still, if the
164 * item's hashes both indicate this bucket. However,
165 * we are guaranteed to eventually escape this bucket
166 * during iteration, assuming pseudo-random item
167 * selection (true randomness would make infinite
168 * looping a remote possibility). The reason we can
169 * never get trapped forever is that there are two
170 * cases:
171 *
172 * 1) This bucket == argbucket, so we will quickly
173 * detect an eviction cycle and terminate.
174 * 2) An item was evicted to this bucket from another,
175 * which means that at least one item in this bucket
176 * has hashes that indicate distinct buckets.
177 */
178 }
179 /* Check for a cycle. */
180 if (tbucket == argbucket) {
181 *argkey = key;
182 *argdata = data;
183 return (true);
184 }
185
186 bucket = tbucket;
187 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
188 return (false);
189 }
190 }
191
192 JEMALLOC_INLINE bool
193 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
194 {
195 size_t hash1, hash2, bucket;
196 const void *key = *argkey;
197 const void *data = *argdata;
198
199 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
200
201 /* Try to insert in primary bucket. */
202 bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
203 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
204 return (false);
205
206 /* Try to insert in secondary bucket. */
207 bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
208 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
209 return (false);
210
211 /*
212 * Try to find a place for this item via iterative eviction/relocation.
213 */
214 return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
215 }
216
217 /*
218 * Try to rebuild the hash table from scratch by inserting all items from the
219 * old table into the new.
220 */
221 JEMALLOC_INLINE bool
222 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
223 {
224 size_t count, i, nins;
225 const void *key, *data;
226
227 count = ckh->count;
228 ckh->count = 0;
229 for (i = nins = 0; nins < count; i++) {
230 if (aTab[i].key != NULL) {
231 key = aTab[i].key;
232 data = aTab[i].data;
233 if (ckh_try_insert(ckh, &key, &data)) {
234 ckh->count = count;
235 return (true);
236 }
237 nins++;
238 }
239 }
240
241 return (false);
242 }
243
244 static bool
245 ckh_grow(ckh_t *ckh)
246 {
247 bool ret;
248 ckhc_t *tab, *ttab;
249 size_t lg_curcells;
250 unsigned lg_prevbuckets;
251
252 #ifdef CKH_COUNT
253 ckh->ngrows++;
254 #endif
255
256 /*
257 * It is possible (though unlikely, given well behaved hashes) that the
258 * table will have to be doubled more than once in order to create a
259 * usable table.
260 */
261 lg_prevbuckets = ckh->lg_curbuckets;
262 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
263 while (true) {
264 size_t usize;
265
266 lg_curcells++;
267 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
268 if (usize == 0) {
269 ret = true;
270 goto label_return;
271 }
272 tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
273 if (tab == NULL) {
274 ret = true;
275 goto label_return;
276 }
277 /* Swap in new table. */
278 ttab = ckh->tab;
279 ckh->tab = tab;
280 tab = ttab;
281 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
282
283 if (ckh_rebuild(ckh, tab) == false) {
284 idalloc(tab);
285 break;
286 }
287
288 /* Rebuilding failed, so back out partially rebuilt table. */
289 idalloc(ckh->tab);
290 ckh->tab = tab;
291 ckh->lg_curbuckets = lg_prevbuckets;
292 }
293
294 ret = false;
295 label_return:
296 return (ret);
297 }
298
299 static void
300 ckh_shrink(ckh_t *ckh)
301 {
302 ckhc_t *tab, *ttab;
303 size_t lg_curcells, usize;
304 unsigned lg_prevbuckets;
305
306 /*
307 * It is possible (though unlikely, given well behaved hashes) that the
308 * table rebuild will fail.
309 */
310 lg_prevbuckets = ckh->lg_curbuckets;
311 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
312 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
313 if (usize == 0)
314 return;
315 tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
316 if (tab == NULL) {
317 /*
318 * An OOM error isn't worth propagating, since it doesn't
319 * prevent this or future operations from proceeding.
320 */
321 return;
322 }
323 /* Swap in new table. */
324 ttab = ckh->tab;
325 ckh->tab = tab;
326 tab = ttab;
327 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
328
329 if (ckh_rebuild(ckh, tab) == false) {
330 idalloc(tab);
331 #ifdef CKH_COUNT
332 ckh->nshrinks++;
333 #endif
334 return;
335 }
336
337 /* Rebuilding failed, so back out partially rebuilt table. */
338 idalloc(ckh->tab);
339 ckh->tab = tab;
340 ckh->lg_curbuckets = lg_prevbuckets;
341 #ifdef CKH_COUNT
342 ckh->nshrinkfails++;
343 #endif
344 }
345
346 bool
347 ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp)
348 {
349 bool ret;
350 size_t mincells, usize;
351 unsigned lg_mincells;
352
353 assert(minitems > 0);
354 assert(hash != NULL);
355 assert(keycomp != NULL);
356
357 #ifdef CKH_COUNT
358 ckh->ngrows = 0;
359 ckh->nshrinks = 0;
360 ckh->nshrinkfails = 0;
361 ckh->ninserts = 0;
362 ckh->nrelocs = 0;
363 #endif
364 ckh->prng_state = 42; /* Value doesn't really matter. */
365 ckh->count = 0;
366
367 /*
368 * Find the minimum power of 2 that is large enough to fit aBaseCount
369 * entries. We are using (2+,2) cuckoo hashing, which has an expected
370 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
371 * factor that will typically allow 2^aLgMinItems to fit without ever
372 * growing the table.
373 */
374 assert(LG_CKH_BUCKET_CELLS > 0);
375 mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
376 for (lg_mincells = LG_CKH_BUCKET_CELLS;
377 (ZU(1) << lg_mincells) < mincells;
378 lg_mincells++)
379 ; /* Do nothing. */
380 ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
381 ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
382 ckh->hash = hash;
383 ckh->keycomp = keycomp;
384
385 usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
386 if (usize == 0) {
387 ret = true;
388 goto label_return;
389 }
390 ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
391 if (ckh->tab == NULL) {
392 ret = true;
393 goto label_return;
394 }
395
396 ret = false;
397 label_return:
398 return (ret);
399 }
400
401 void
402 ckh_delete(ckh_t *ckh)
403 {
404
405 assert(ckh != NULL);
406
407 #ifdef CKH_VERBOSE
408 malloc_printf(
409 "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64","
410 " nshrinkfails: %"PRIu64", ninserts: %"PRIu64","
411 " nrelocs: %"PRIu64"\n", __func__, ckh,
412 (unsigned long long)ckh->ngrows,
413 (unsigned long long)ckh->nshrinks,
414 (unsigned long long)ckh->nshrinkfails,
415 (unsigned long long)ckh->ninserts,
416 (unsigned long long)ckh->nrelocs);
417 #endif
418
419 idalloc(ckh->tab);
420 #ifdef JEMALLOC_DEBUG
421 memset(ckh, 0x5a, sizeof(ckh_t));
422 #endif
423 }
424
425 size_t
426 ckh_count(ckh_t *ckh)
427 {
428
429 assert(ckh != NULL);
430
431 return (ckh->count);
432 }
433
434 bool
435 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
436 {
437 size_t i, ncells;
438
439 for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
440 LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
441 if (ckh->tab[i].key != NULL) {
442 if (key != NULL)
443 *key = (void *)ckh->tab[i].key;
444 if (data != NULL)
445 *data = (void *)ckh->tab[i].data;
446 *tabind = i + 1;
447 return (false);
448 }
449 }
450
451 return (true);
452 }
453
454 bool
455 ckh_insert(ckh_t *ckh, const void *key, const void *data)
456 {
457 bool ret;
458
459 assert(ckh != NULL);
460 assert(ckh_search(ckh, key, NULL, NULL));
461
462 #ifdef CKH_COUNT
463 ckh->ninserts++;
464 #endif
465
466 while (ckh_try_insert(ckh, &key, &data)) {
467 if (ckh_grow(ckh)) {
468 ret = true;
469 goto label_return;
470 }
471 }
472
473 ret = false;
474 label_return:
475 return (ret);
476 }
477
478 bool
479 ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data)
480 {
481 size_t cell;
482
483 assert(ckh != NULL);
484
485 cell = ckh_isearch(ckh, searchkey);
486 if (cell != SIZE_T_MAX) {
487 if (key != NULL)
488 *key = (void *)ckh->tab[cell].key;
489 if (data != NULL)
490 *data = (void *)ckh->tab[cell].data;
491 ckh->tab[cell].key = NULL;
492 ckh->tab[cell].data = NULL; /* Not necessary. */
493
494 ckh->count--;
495 /* Try to halve the table if it is less than 1/4 full. */
496 if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
497 + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
498 > ckh->lg_minbuckets) {
499 /* Ignore error due to OOM. */
500 ckh_shrink(ckh);
501 }
502
503 return (false);
504 }
505
506 return (true);
507 }
508
509 bool
510 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
511 {
512 size_t cell;
513
514 assert(ckh != NULL);
515
516 cell = ckh_isearch(ckh, searchkey);
517 if (cell != SIZE_T_MAX) {
518 if (key != NULL)
519 *key = (void *)ckh->tab[cell].key;
520 if (data != NULL)
521 *data = (void *)ckh->tab[cell].data;
522 return (false);
523 }
524
525 return (true);
526 }
527
528 void
529 ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2)
530 {
531 size_t ret1, ret2;
532 uint64_t h;
533
534 assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
535 assert(hash1 != NULL);
536 assert(hash2 != NULL);
537
538 h = hash(key, strlen((const char *)key), UINT64_C(0x94122f335b332aea));
539 if (minbits <= 32) {
540 /*
541 * Avoid doing multiple hashes, since a single hash provides
542 * enough bits.
543 */
544 ret1 = h & ZU(0xffffffffU);
545 ret2 = h >> 32;
546 } else {
547 ret1 = h;
548 ret2 = hash(key, strlen((const char *)key),
549 UINT64_C(0x8432a476666bbc13));
550 }
551
552 *hash1 = ret1;
553 *hash2 = ret2;
554 }
555
556 bool
557 ckh_string_keycomp(const void *k1, const void *k2)
558 {
559
560 assert(k1 != NULL);
561 assert(k2 != NULL);
562
563 return (strcmp((char *)k1, (char *)k2) ? false : true);
564 }
565
566 void
567 ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
568 size_t *hash2)
569 {
570 size_t ret1, ret2;
571 uint64_t h;
572 union {
573 const void *v;
574 uint64_t i;
575 } u;
576
577 assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
578 assert(hash1 != NULL);
579 assert(hash2 != NULL);
580
581 assert(sizeof(u.v) == sizeof(u.i));
582 #if (LG_SIZEOF_PTR != LG_SIZEOF_INT)
583 u.i = 0;
584 #endif
585 u.v = key;
586 h = hash(&u.i, sizeof(u.i), UINT64_C(0xd983396e68886082));
587 if (minbits <= 32) {
588 /*
589 * Avoid doing multiple hashes, since a single hash provides
590 * enough bits.
591 */
592 ret1 = h & ZU(0xffffffffU);
593 ret2 = h >> 32;
594 } else {
595 assert(SIZEOF_PTR == 8);
596 ret1 = h;
597 ret2 = hash(&u.i, sizeof(u.i), UINT64_C(0x5e2be9aff8709a5d));
598 }
599
600 *hash1 = ret1;
601 *hash2 = ret2;
602 }
603
604 bool
605 ckh_pointer_keycomp(const void *k1, const void *k2)
606 {
607
608 return ((k1 == k2) ? true : false);
609 }