]>
git.saurik.com Git - bison.git/blob - src/LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005 Free
4 Software Foundation, Inc.
6 This file is part of Bison, the GNU Compiler Compiler.
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
45 typedef struct state_list
47 struct state_list
*next
;
51 static state_list
*first_state
= NULL
;
52 static state_list
*last_state
= NULL
;
55 /*------------------------------------------------------------------.
56 | A state was just discovered from another state. Queue it for |
57 | later examination, in order to find its transitions. Return it. |
58 `------------------------------------------------------------------*/
61 state_list_append (symbol_number sym
, size_t core_size
, item_number
*core
)
63 state_list
*node
= xmalloc (sizeof *node
);
64 state
*s
= state_new (sym
, core_size
, core
);
66 if (trace_flag
& trace_automaton
)
67 fprintf (stderr
, "state_list_append (state = %d, symbol = %d (%s))\n",
68 nstates
, sym
, symbols
[sym
]->tag
);
76 last_state
->next
= node
;
83 static symbol_number
*shift_symbol
;
86 static state
**shiftset
;
88 static item_number
**kernel_base
;
89 static int *kernel_size
;
90 static item_number
*kernel_items
;
94 allocate_itemsets (void)
100 /* Count the number of occurrences of all the symbols in RITEMS.
101 Note that useless productions (hence useless nonterminals) are
102 browsed too, hence we need to allocate room for _all_ the
105 size_t *symbol_count
= xcalloc (nsyms
+ nuseless_nonterminals
,
106 sizeof *symbol_count
);
108 for (r
= 0; r
< nrules
; ++r
)
109 for (rhsp
= rules
[r
].rhs
; *rhsp
>= 0; ++rhsp
)
112 symbol_count
[*rhsp
]++;
115 /* See comments before new_itemsets. All the vectors of items
116 live inside KERNEL_ITEMS. The number of active items after
117 some symbol S cannot be more than the number of times that S
118 appears as an item, which is SYMBOL_COUNT[S].
119 We allocate that much space for each symbol. */
121 kernel_base
= xnmalloc (nsyms
, sizeof *kernel_base
);
122 kernel_items
= xnmalloc (count
, sizeof *kernel_items
);
125 for (i
= 0; i
< nsyms
; i
++)
127 kernel_base
[i
] = kernel_items
+ count
;
128 count
+= symbol_count
[i
];
132 kernel_size
= xnmalloc (nsyms
, sizeof *kernel_size
);
137 allocate_storage (void)
139 allocate_itemsets ();
141 shiftset
= xnmalloc (nsyms
, sizeof *shiftset
);
142 redset
= xnmalloc (nrules
, sizeof *redset
);
144 shift_symbol
= xnmalloc (nsyms
, sizeof *shift_symbol
);
163 /*---------------------------------------------------------------.
164 | Find which symbols can be shifted in S, and for each one |
165 | record which items would be active after that shift. Uses the |
166 | contents of itemset. |
168 | shift_symbol is set to a vector of the symbols that can be |
169 | shifted. For each symbol in the grammar, kernel_base[symbol] |
170 | points to a vector of item numbers activated if that symbol is |
171 | shifted, and kernel_size[symbol] is their numbers. |
172 `---------------------------------------------------------------*/
175 new_itemsets (state
*s
)
179 if (trace_flag
& trace_automaton
)
180 fprintf (stderr
, "Entering new_itemsets, state = %d\n", s
->number
);
182 memset (kernel_size
, 0, nsyms
* sizeof *kernel_size
);
186 for (i
= 0; i
< nritemset
; ++i
)
187 if (ritem
[itemset
[i
]] >= 0)
189 symbol_number sym
= item_number_as_symbol_number (ritem
[itemset
[i
]]);
190 if (!kernel_size
[sym
])
192 shift_symbol
[nshifts
] = sym
;
196 kernel_base
[sym
][kernel_size
[sym
]] = itemset
[i
] + 1;
203 /*--------------------------------------------------------------.
204 | Find the state we would get to (from the current state) by |
205 | shifting SYM. Create a new state if no equivalent one exists |
206 | already. Used by append_states. |
207 `--------------------------------------------------------------*/
210 get_state (symbol_number sym
, size_t core_size
, item_number
*core
)
214 if (trace_flag
& trace_automaton
)
215 fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n",
216 sym
, symbols
[sym
]->tag
);
218 s
= state_hash_lookup (core_size
, core
);
220 s
= state_list_append (sym
, core_size
, core
);
222 if (trace_flag
& trace_automaton
)
223 fprintf (stderr
, "Exiting get_state => %d\n", s
->number
);
228 /*---------------------------------------------------------------.
229 | Use the information computed by new_itemsets to find the state |
230 | numbers reached by each shift transition from S. |
232 | SHIFTSET is set up as a vector of those states. |
233 `---------------------------------------------------------------*/
236 append_states (state
*s
)
240 if (trace_flag
& trace_automaton
)
241 fprintf (stderr
, "Entering append_states, state = %d\n", s
->number
);
243 /* First sort shift_symbol into increasing order. */
245 for (i
= 1; i
< nshifts
; i
++)
247 symbol_number sym
= shift_symbol
[i
];
249 for (j
= i
; 0 < j
&& sym
< shift_symbol
[j
- 1]; j
--)
250 shift_symbol
[j
] = shift_symbol
[j
- 1];
251 shift_symbol
[j
] = sym
;
254 for (i
= 0; i
< nshifts
; i
++)
256 symbol_number sym
= shift_symbol
[i
];
257 shiftset
[i
] = get_state (sym
, kernel_size
[sym
], kernel_base
[sym
]);
262 /*----------------------------------------------------------------.
263 | Find which rules can be used for reduction transitions from the |
264 | current state and make a reductions structure for the state to |
265 | record their rule numbers. |
266 `----------------------------------------------------------------*/
269 save_reductions (state
*s
)
274 /* Find and count the active items that represent ends of rules. */
275 for (i
= 0; i
< nritemset
; ++i
)
277 item_number item
= ritem
[itemset
[i
]];
278 if (item_number_is_rule_number (item
))
280 rule_number r
= item_number_as_rule_number (item
);
281 redset
[count
++] = &rules
[r
];
284 /* This is "reduce 0", i.e., accept. */
285 assert (!final_state
);
291 /* Make a reductions structure and copy the data into it. */
292 state_reductions_set (s
, count
, redset
);
303 states
= xcalloc (nstates
, sizeof *states
);
307 state_list
*this = first_state
;
309 /* Pessimization, but simplification of the code: make sure all
310 the states have valid transitions and reductions members,
311 even if reduced to 0. It is too soon for errs, which are
312 computed later, but set_conflicts. */
313 state
*s
= this->state
;
315 state_transitions_set (s
, 0, 0);
317 state_reductions_set (s
, 0, 0);
319 states
[s
->number
] = s
;
321 first_state
= this->next
;
329 /*-------------------------------------------------------------------.
330 | Compute the nondeterministic finite state machine (see state.h for |
331 | details) from the grammar. |
332 `-------------------------------------------------------------------*/
335 generate_states (void)
337 item_number initial_core
= 0;
338 state_list
*list
= NULL
;
340 new_closure (nritems
);
342 /* Create the initial state. The 0 at the lhs is the index of the
343 item of this initial rule. */
344 state_list_append (0, 1, &initial_core
);
346 /* States are queued when they are created; process them all. */
347 for (list
= first_state
; list
; list
= list
->next
)
349 state
*s
= list
->state
;
350 if (trace_flag
& trace_automaton
)
351 fprintf (stderr
, "Processing state %d (reached by %s)\n",
353 symbols
[s
->accessing_symbol
]->tag
);
354 /* Set up ruleset and itemset for the transitions out of this
355 state. ruleset gets a 1 bit for each rule that could reduce
356 now. itemset gets a vector of all the items that could be
358 closure (s
->items
, s
->nitems
);
359 /* Record the reductions allowed out of this state. */
361 /* Find the itemsets of the states that shifts can reach. */
363 /* Find or create the core structures for those states. */
366 /* Create the shifts structures for the shifts to those states,
367 now that the state numbers transitioning to are known. */
368 state_transitions_set (s
, nshifts
, shiftset
);
371 /* discard various storage */