]> git.saurik.com Git - bison.git/blob - src/tables.c
Merge changes from gnulib. This was prompted because the CVS
[bison.git] / src / tables.c
1 /* Output the generated parsing program for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to the Free
20 Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 #include "system.h"
25
26 #include <bitsetv.h>
27 #include <quotearg.h>
28
29 #include "complain.h"
30 #include "conflicts.h"
31 #include "files.h"
32 #include "getargs.h"
33 #include "gram.h"
34 #include "lalr.h"
35 #include "reader.h"
36 #include "symtab.h"
37 #include "tables.h"
38
39 /* Several tables are indexed both by state and nonterminal numbers.
40 We call such an index a `vector'; i.e., a vector is either a state
41 or a nonterminal number.
42
43 Of course vector_number_t ought to be wide enough to contain
44 state_number and symbol_number. */
45 typedef short vector_number;
46
47 static inline vector_number
48 state_number_to_vector_number (state_number s)
49 {
50 return s;
51 }
52
53 static inline vector_number
54 symbol_number_to_vector_number (symbol_number sym)
55 {
56 return state_number_as_int (nstates) + sym - ntokens;
57 }
58
59 int nvectors;
60
61
62 /* FROMS and TOS are indexed by vector_number.
63
64 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
65 array of state numbers of the non defaulted GOTO on VECTOR.
66
67 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
68 the (array of) symbols FROMS[VECTOR].
69
70 In both cases, TALLY[VECTOR] is the size of the arrays
71 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
72 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
73 TALLY[VECTOR].
74
75 FROMS therefore contains symbol_number and action_number,
76 TOS state_number and action_number,
77 TALLY sizes,
78 WIDTH differences of FROMS.
79
80 Let base_number be the type of FROMS, TOS, and WIDTH. */
81 #define BASE_MAXIMUM INT_MAX
82 #define BASE_MINIMUM INT_MIN
83
84 static base_number **froms = NULL;
85 static base_number **tos = NULL;
86 static unsigned int **conflict_tos = NULL;
87 static short *tally = NULL;
88 static base_number *width = NULL;
89
90
91 /* For a given state, N = ACTROW[SYMBOL]:
92
93 If N = 0, stands for `run the default action'.
94 If N = MIN, stands for `raise a syntax error'.
95 If N > 0, stands for `shift SYMBOL and go to n'.
96 If N < 0, stands for `reduce -N'. */
97 typedef short action_number;
98 #define ACTION_NUMBER_MINIMUM SHRT_MIN
99
100 static action_number *actrow = NULL;
101
102 /* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
103 new vector number of VECTOR. We skip `empty' vectors (i.e.,
104 TALLY[VECTOR] = 0), and call these `entries'. */
105 static vector_number *order = NULL;
106 static int nentries;
107
108 base_number *base = NULL;
109 /* A distinguished value of BASE, negative infinite. During the
110 computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
111 keep parser tables small. */
112 base_number base_ninf = 0;
113 static base_number *pos = NULL;
114
115 static unsigned int *conflrow = NULL;
116 unsigned int *conflict_table = NULL;
117 unsigned int *conflict_list = NULL;
118 int conflict_list_cnt;
119 static int conflict_list_free;
120
121 /* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
122 with more or less the original hard-coded value (which was
123 SHRT_MAX). */
124 static int table_size = 32768;
125 base_number *table = NULL;
126 base_number *check = NULL;
127 /* The value used in TABLE to denote explicit syntax errors
128 (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MININUM,
129 but in order to keep small tables, renumbered as TABLE_ERROR, which
130 is the smallest (non error) value minus 1. */
131 base_number table_ninf = 0;
132 static int lowzero;
133 int high;
134
135 state_number *yydefgoto;
136 rule_number *yydefact;
137
138 /*----------------------------------------------------------------.
139 | If TABLE (and CHECK) appear to be small to be addressed at |
140 | DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
141 | the desired size is at least DESIRED + 1. |
142 `----------------------------------------------------------------*/
143
144 static void
145 table_grow (int desired)
146 {
147 int old_size = table_size;
148
149 while (table_size <= desired)
150 table_size *= 2;
151
152 if (trace_flag & trace_resource)
153 fprintf (stderr, "growing table and check from: %d to %d\n",
154 old_size, table_size);
155
156 REALLOC (table, table_size);
157 REALLOC (check, table_size);
158 REALLOC (conflict_table, table_size);
159
160 for (/* Nothing. */; old_size < table_size; ++old_size)
161 {
162 table[old_size] = 0;
163 check[old_size] = -1;
164 }
165 }
166
167
168
169
170 /*-------------------------------------------------------------------.
171 | For GLR parsers, for each conflicted token in S, as indicated |
172 | by non-zero entries in CONFLROW, create a list of possible |
173 | reductions that are alternatives to the shift or reduction |
174 | currently recorded for that token in S. Store the alternative |
175 | reductions followed by a 0 in CONFLICT_LIST, updating |
176 | CONFLICT_LIST_CNT, and storing an index to the start of the list |
177 | back into CONFLROW. |
178 `-------------------------------------------------------------------*/
179
180 static void
181 conflict_row (state *s)
182 {
183 int i, j;
184 reductions *reds = s->reductions;
185
186 if (! glr_parser)
187 return;
188
189 for (j = 0; j < ntokens; j += 1)
190 if (conflrow[j])
191 {
192 conflrow[j] = conflict_list_cnt;
193
194 /* Find all reductions for token J, and record all that do not
195 match ACTROW[J]. */
196 for (i = 0; i < reds->num; i += 1)
197 if (bitset_test (reds->lookaheads[i], j)
198 && (actrow[j]
199 != rule_number_as_item_number (reds->rules[i]->number)))
200 {
201 if (conflict_list_free <= 0)
202 abort ();
203 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
204 conflict_list_cnt += 1;
205 conflict_list_free -= 1;
206 }
207
208 /* Leave a 0 at the end. */
209 if (conflict_list_free <= 0)
210 abort ();
211 conflict_list_cnt += 1;
212 conflict_list_free -= 1;
213 }
214 }
215
216
217 /*------------------------------------------------------------------.
218 | Decide what to do for each type of token if seen as the lookahead |
219 | token in specified state. The value returned is used as the |
220 | default action (yydefact) for the state. In addition, ACTROW is |
221 | filled with what to do for each kind of token, index by symbol |
222 | number, with zero meaning do the default action. The value |
223 | ACTION_NUMBER_MINIMUM, a very negative number, means this |
224 | situation is an error. The parser recognizes this value |
225 | specially. |
226 | |
227 | This is where conflicts are resolved. The loop over lookahead |
228 | rules considered lower-numbered rules last, and the last rule |
229 | considered that likes a token gets to handle it. |
230 | |
231 | For GLR parsers, also sets CONFLROW[SYM] to an index into |
232 | CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
233 | with symbol SYM. The default reduction is not used for a symbol |
234 | that has any such conflicts. |
235 `------------------------------------------------------------------*/
236
237 static rule *
238 action_row (state *s)
239 {
240 int i;
241 rule *default_rule = NULL;
242 reductions *reds = s->reductions;
243 transitions *trans = s->transitions;
244 errs *errp = s->errs;
245 /* Set to nonzero to inhibit having any default reduction. */
246 int nodefault = 0;
247 int conflicted = 0;
248
249 for (i = 0; i < ntokens; i++)
250 actrow[i] = conflrow[i] = 0;
251
252 if (reds->lookaheads)
253 {
254 int j;
255 bitset_iterator biter;
256 /* loop over all the rules available here which require
257 lookahead (in reverse order to give precedence to the first
258 rule) */
259 for (i = reds->num - 1; i >= 0; --i)
260 /* and find each token which the rule finds acceptable
261 to come next */
262 BITSET_FOR_EACH (biter, reds->lookaheads[i], j, 0)
263 {
264 /* and record this rule as the rule to use if that
265 token follows. */
266 if (actrow[j] != 0)
267 conflicted = conflrow[j] = 1;
268 actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
269 }
270 }
271
272 /* Now see which tokens are allowed for shifts in this state. For
273 them, record the shift as the thing to do. So shift is preferred
274 to reduce. */
275 FOR_EACH_SHIFT (trans, i)
276 {
277 symbol_number sym = TRANSITION_SYMBOL (trans, i);
278 state *shift_state = trans->states[i];
279
280 if (actrow[sym] != 0)
281 conflicted = conflrow[sym] = 1;
282 actrow[sym] = state_number_as_int (shift_state->number);
283
284 /* Do not use any default reduction if there is a shift for
285 error */
286 if (sym == errtoken->number)
287 nodefault = 1;
288 }
289
290 /* See which tokens are an explicit error in this state (due to
291 %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
292 action. */
293 for (i = 0; i < errp->num; i++)
294 {
295 symbol *sym = errp->symbols[i];
296 actrow[sym->number] = ACTION_NUMBER_MINIMUM;
297 }
298
299 /* Now find the most common reduction and make it the default action
300 for this state. */
301
302 if (reds->num >= 1 && !nodefault)
303 {
304 if (s->consistent)
305 default_rule = reds->rules[0];
306 else
307 {
308 int max = 0;
309 for (i = 0; i < reds->num; i++)
310 {
311 int count = 0;
312 rule *r = reds->rules[i];
313 symbol_number j;
314
315 for (j = 0; j < ntokens; j++)
316 if (actrow[j] == rule_number_as_item_number (r->number))
317 count++;
318
319 if (count > max)
320 {
321 max = count;
322 default_rule = r;
323 }
324 }
325
326 /* GLR parsers need space for conflict lists, so we can't
327 default conflicted entries. For non-conflicted entries
328 or as long as we are not building a GLR parser,
329 actions that match the default are replaced with zero,
330 which means "use the default". */
331
332 if (max > 0)
333 {
334 int j;
335 for (j = 0; j < ntokens; j++)
336 if (actrow[j] == rule_number_as_item_number (default_rule->number)
337 && ! (glr_parser && conflrow[j]))
338 actrow[j] = 0;
339 }
340 }
341 }
342
343 /* If have no default rule, the default is an error.
344 So replace any action which says "error" with "use default". */
345
346 if (!default_rule)
347 for (i = 0; i < ntokens; i++)
348 if (actrow[i] == ACTION_NUMBER_MINIMUM)
349 actrow[i] = 0;
350
351 if (conflicted)
352 conflict_row (s);
353
354 return default_rule;
355 }
356
357
358 /*----------------------------------------.
359 | Set FROMS, TOS, TALLY and WIDTH for S. |
360 `----------------------------------------*/
361
362 static void
363 save_row (state_number s)
364 {
365 symbol_number i;
366 int count;
367 base_number *sp;
368 base_number *sp1;
369 base_number *sp2;
370 unsigned int *sp3 IF_LINT (= NULL);
371
372 /* Number of non default actions in S. */
373 count = 0;
374 for (i = 0; i < ntokens; i++)
375 if (actrow[i] != 0)
376 count++;
377
378 if (count == 0)
379 return;
380
381 /* Allocate non defaulted actions. */
382 froms[s] = sp = CALLOC (sp1, count);
383 tos[s] = CALLOC (sp2, count);
384 conflict_tos[s] = glr_parser ? CALLOC (sp3, count) : NULL;
385
386 /* Store non defaulted actions. */
387 for (i = 0; i < ntokens; i++)
388 if (actrow[i] != 0)
389 {
390 *sp1++ = i;
391 *sp2++ = actrow[i];
392 if (glr_parser)
393 *sp3++ = conflrow[i];
394 }
395
396 tally[s] = count;
397 width[s] = sp1[-1] - sp[0] + 1;
398 }
399
400
401 /*------------------------------------------------------------------.
402 | Figure out the actions for the specified state, indexed by |
403 | lookahead token type. |
404 | |
405 | The YYDEFACT table is output now. The detailed info is saved for |
406 | putting into YYTABLE later. |
407 `------------------------------------------------------------------*/
408
409 static void
410 token_actions (void)
411 {
412 state_number i;
413 symbol_number j;
414 rule_number r;
415
416 int nconflict = glr_parser ? conflicts_total_count () : 0;
417
418 CALLOC (yydefact, nstates);
419
420 CALLOC (actrow, ntokens);
421 CALLOC (conflrow, ntokens);
422
423 CALLOC (conflict_list, 1 + 2 * nconflict);
424 conflict_list_free = 2 * nconflict;
425 conflict_list_cnt = 1;
426
427 /* Find the rules which are reduced. */
428 if (!glr_parser)
429 for (r = 0; r < nrules; ++r)
430 rules[r].useful = false;
431
432 for (i = 0; i < nstates; ++i)
433 {
434 rule *default_rule = action_row (states[i]);
435 yydefact[i] = default_rule ? default_rule->number + 1 : 0;
436 save_row (i);
437
438 /* Now that the parser was computed, we can find which rules are
439 really reduced, and which are not because of SR or RR
440 conflicts. */
441 if (!glr_parser)
442 {
443 for (j = 0; j < ntokens; ++j)
444 if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
445 rules[item_number_as_rule_number (actrow[j])].useful = true;
446 if (yydefact[i])
447 rules[yydefact[i] - 1].useful = true;
448 }
449 }
450
451 free (actrow);
452 free (conflrow);
453 }
454
455
456 /*------------------------------------------------------------------.
457 | Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
458 | i.e., the information related to non defaulted GOTO on the nterm |
459 | SYM. |
460 | |
461 | DEFAULT_STATE is the principal destination on SYM, i.e., the |
462 | default GOTO destination on SYM. |
463 `------------------------------------------------------------------*/
464
465 static void
466 save_column (symbol_number sym, state_number default_state)
467 {
468 int i;
469 base_number *sp;
470 base_number *sp1;
471 base_number *sp2;
472 int count;
473 vector_number symno = symbol_number_to_vector_number (sym);
474
475 goto_number begin = goto_map[sym - ntokens];
476 goto_number end = goto_map[sym - ntokens + 1];
477
478 /* Number of non default GOTO. */
479 count = 0;
480 for (i = begin; i < end; i++)
481 if (to_state[i] != default_state)
482 count++;
483
484 if (count == 0)
485 return;
486
487 /* Allocate room for non defaulted gotos. */
488 froms[symno] = sp = CALLOC (sp1, count);
489 tos[symno] = CALLOC (sp2, count);
490
491 /* Store the state numbers of the non defaulted gotos. */
492 for (i = begin; i < end; i++)
493 if (to_state[i] != default_state)
494 {
495 *sp1++ = from_state[i];
496 *sp2++ = to_state[i];
497 }
498
499 tally[symno] = count;
500 width[symno] = sp1[-1] - sp[0] + 1;
501 }
502
503
504 /*-------------------------------------------------------------.
505 | Return `the' most common destination GOTO on SYM (a nterm). |
506 `-------------------------------------------------------------*/
507
508 static state_number
509 default_goto (symbol_number sym, short state_count[])
510 {
511 state_number s;
512 int i;
513 goto_number m = goto_map[sym - ntokens];
514 goto_number n = goto_map[sym - ntokens + 1];
515 state_number default_state = -1;
516 int max = 0;
517
518 if (m == n)
519 return -1;
520
521 for (s = 0; s < nstates; s++)
522 state_count[s] = 0;
523
524 for (i = m; i < n; i++)
525 state_count[to_state[i]]++;
526
527 for (s = 0; s < nstates; s++)
528 if (state_count[s] > max)
529 {
530 max = state_count[s];
531 default_state = s;
532 }
533
534 return default_state;
535 }
536
537
538 /*-------------------------------------------------------------------.
539 | Figure out what to do after reducing with each rule, depending on |
540 | the saved state from before the beginning of parsing the data that |
541 | matched this rule. |
542 | |
543 | The YYDEFGOTO table is output now. The detailed info is saved for |
544 | putting into YYTABLE later. |
545 `-------------------------------------------------------------------*/
546
547 static void
548 goto_actions (void)
549 {
550 symbol_number i;
551 short *state_count = CALLOC (state_count, nstates);
552 MALLOC (yydefgoto, nvars);
553
554 /* For a given nterm I, STATE_COUNT[S] is the number of times there
555 is a GOTO to S on I. */
556 for (i = ntokens; i < nsyms; ++i)
557 {
558 state_number default_state = default_goto (i, state_count);
559 save_column (i, default_state);
560 yydefgoto[i - ntokens] = default_state;
561 }
562 free (state_count);
563 }
564
565
566 /*------------------------------------------------------------------.
567 | Compute ORDER, a reordering of vectors, in order to decide how to |
568 | pack the actions and gotos information into yytable. |
569 `------------------------------------------------------------------*/
570
571 static void
572 sort_actions (void)
573 {
574 int i;
575
576 nentries = 0;
577
578 for (i = 0; i < nvectors; i++)
579 if (tally[i] > 0)
580 {
581 int k;
582 int t = tally[i];
583 int w = width[i];
584 int j = nentries - 1;
585
586 while (j >= 0 && (width[order[j]] < w))
587 j--;
588
589 while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
590 j--;
591
592 for (k = nentries - 1; k > j; k--)
593 order[k + 1] = order[k];
594
595 order[j + 1] = i;
596 nentries++;
597 }
598 }
599
600
601 /* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
602 and WIDTH of VECTOR) are common to a previous state, return this
603 state number.
604
605 In any other case, return -1. */
606
607 static state_number
608 matching_state (vector_number vector)
609 {
610 vector_number i = order[vector];
611 int t;
612 int w;
613 int prev;
614
615 /* If VECTOR is a nterm, return -1. */
616 if (nstates <= i)
617 return -1;
618
619 t = tally[i];
620 w = width[i];
621
622 /* If VECTOR has GLR conflicts, return -1 */
623 if (conflict_tos[i] != NULL)
624 {
625 int j;
626 for (j = 0; j < t; j += 1)
627 if (conflict_tos[i][j] != 0)
628 return -1;
629 }
630
631 for (prev = vector - 1; prev >= 0; prev--)
632 {
633 vector_number j = order[prev];
634 int k;
635 int match = 1;
636
637 /* Given how ORDER was computed, if the WIDTH or TALLY is
638 different, there cannot be a matching state. */
639 if (width[j] != w || tally[j] != t)
640 return -1;
641
642 for (k = 0; match && k < t; k++)
643 if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
644 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
645 match = 0;
646
647 if (match)
648 return j;
649 }
650
651 return -1;
652 }
653
654
655 static base_number
656 pack_vector (vector_number vector)
657 {
658 vector_number i = order[vector];
659 int j;
660 int t = tally[i];
661 int loc = 0;
662 base_number *from = froms[i];
663 base_number *to = tos[i];
664 unsigned int *conflict_to = conflict_tos[i];
665
666 if (! t)
667 abort ();
668
669 for (j = lowzero - from[0]; ; j++)
670 {
671 int k;
672 int ok = 1;
673
674 if (table_size <= j)
675 abort ();
676
677 for (k = 0; ok && k < t; k++)
678 {
679 loc = j + state_number_as_int (from[k]);
680 if (table_size <= loc)
681 table_grow (loc);
682
683 if (table[loc] != 0)
684 ok = 0;
685 }
686
687 for (k = 0; ok && k < vector; k++)
688 if (pos[k] == j)
689 ok = 0;
690
691 if (ok)
692 {
693 for (k = 0; k < t; k++)
694 {
695 loc = j + from[k];
696 table[loc] = to[k];
697 if (glr_parser && conflict_to != NULL)
698 conflict_table[loc] = conflict_to[k];
699 check[loc] = from[k];
700 }
701
702 while (table[lowzero] != 0)
703 lowzero++;
704
705 if (loc > high)
706 high = loc;
707
708 if (! (BASE_MINIMUM <= j && j <= BASE_MAXIMUM))
709 abort ();
710 return j;
711 }
712 }
713 }
714
715
716 /*-------------------------------------------------------------.
717 | Remap the negative infinite in TAB from NINF to the greatest |
718 | possible smallest value. Return it. |
719 | |
720 | In most case this allows us to use shorts instead of ints in |
721 | parsers. |
722 `-------------------------------------------------------------*/
723
724 static base_number
725 table_ninf_remap (base_number tab[], int size, base_number ninf)
726 {
727 base_number res = 0;
728 int i;
729
730 for (i = 0; i < size; i++)
731 if (tab[i] < res && tab[i] != ninf)
732 res = tab[i];
733
734 --res;
735
736 for (i = 0; i < size; i++)
737 if (tab[i] == ninf)
738 tab[i] = res;
739
740 return res;
741 }
742
743 static void
744 pack_table (void)
745 {
746 int i;
747
748 CALLOC (base, nvectors);
749 CALLOC (pos, nentries);
750 CALLOC (table, table_size);
751 CALLOC (conflict_table, table_size);
752 CALLOC (check, table_size);
753
754 lowzero = 0;
755 high = 0;
756
757 for (i = 0; i < nvectors; i++)
758 base[i] = BASE_MINIMUM;
759
760 for (i = 0; i < table_size; i++)
761 check[i] = -1;
762
763 for (i = 0; i < nentries; i++)
764 {
765 state_number s = matching_state (i);
766 base_number place;
767
768 if (s < 0)
769 /* A new set of state actions, or a nonterminal. */
770 place = pack_vector (i);
771 else
772 /* Action of I were already coded for S. */
773 place = base[s];
774
775 pos[i] = place;
776 base[order[i]] = place;
777 }
778
779 /* Use the greatest possible negative infinites. */
780 base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
781 table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
782
783 free (pos);
784 }
785
786 \f
787
788 /*-----------------------------------------------------------------.
789 | Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
790 | and yycheck. |
791 `-----------------------------------------------------------------*/
792
793 void
794 tables_generate (void)
795 {
796 int i;
797
798 /* This is a poor way to make sure the sizes are properly
799 correlated. In particular the signedness is not taken into
800 account. But it's not useless. */
801 verify (sizes_are_properly_correlated,
802 (sizeof nstates <= sizeof nvectors
803 && sizeof nvars <= sizeof nvectors));
804
805 nvectors = state_number_as_int (nstates) + nvars;
806
807 CALLOC (froms, nvectors);
808 CALLOC (tos, nvectors);
809 CALLOC (conflict_tos, nvectors);
810 CALLOC (tally, nvectors);
811 CALLOC (width, nvectors);
812
813 token_actions ();
814
815 goto_actions ();
816 free (goto_map);
817 free (from_state);
818 free (to_state);
819
820 CALLOC (order, nvectors);
821 sort_actions ();
822 pack_table ();
823 free (order);
824
825 free (tally);
826 free (width);
827
828 for (i = 0; i < nvectors; i++)
829 {
830 free (froms[i]);
831 free (tos[i]);
832 XFREE (conflict_tos[i]);
833 }
834
835 free (froms);
836 free (tos);
837 free (conflict_tos);
838 }
839
840
841 /*-------------------------.
842 | Free the parser tables. |
843 `-------------------------*/
844
845 void
846 tables_free (void)
847 {
848 free (base);
849 free (conflict_table);
850 free (conflict_list);
851 free (table);
852 free (check);
853 free (yydefgoto);
854 free (yydefact);
855 }