]> git.saurik.com Git - bison.git/blob - src/tables.c
(symbol_destructors_output, symbol_printers_output):
[bison.git] / src / tables.c
1 /* Output the generated parsing program for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 1992, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to the Free
20 Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 #include "system.h"
25
26 #include <bitsetv.h>
27 #include <quotearg.h>
28
29 #include "complain.h"
30 #include "conflicts.h"
31 #include "files.h"
32 #include "getargs.h"
33 #include "gram.h"
34 #include "lalr.h"
35 #include "reader.h"
36 #include "symtab.h"
37 #include "tables.h"
38
39 /* Several tables are indexed both by state and nonterminal numbers.
40 We call such an index a `vector'; i.e., a vector is either a state
41 or a nonterminal number.
42
43 Of course vector_number_t ought to be wide enough to contain
44 state_number and symbol_number. */
45 typedef short int vector_number;
46
47 static inline vector_number
48 state_number_to_vector_number (state_number s)
49 {
50 return s;
51 }
52
53 static inline vector_number
54 symbol_number_to_vector_number (symbol_number sym)
55 {
56 return state_number_as_int (nstates) + sym - ntokens;
57 }
58
59 int nvectors;
60
61
62 /* FROMS and TOS are indexed by vector_number.
63
64 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
65 array of state numbers of the non defaulted GOTO on VECTOR.
66
67 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
68 the (array of) symbols FROMS[VECTOR].
69
70 In both cases, TALLY[VECTOR] is the size of the arrays
71 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
72 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
73 TALLY[VECTOR].
74
75 FROMS therefore contains symbol_number and action_number,
76 TOS state_number and action_number,
77 TALLY sizes,
78 WIDTH differences of FROMS.
79
80 Let base_number be the type of FROMS, TOS, and WIDTH. */
81 #define BASE_MAXIMUM INT_MAX
82 #define BASE_MINIMUM INT_MIN
83
84 static base_number **froms = NULL;
85 static base_number **tos = NULL;
86 static unsigned int **conflict_tos = NULL;
87 static short int *tally = NULL;
88 static base_number *width = NULL;
89
90
91 /* For a given state, N = ACTROW[SYMBOL]:
92
93 If N = 0, stands for `run the default action'.
94 If N = MIN, stands for `raise a syntax error'.
95 If N > 0, stands for `shift SYMBOL and go to n'.
96 If N < 0, stands for `reduce -N'. */
97 typedef short int action_number;
98 #define ACTION_NUMBER_MINIMUM SHRT_MIN
99
100 static action_number *actrow = NULL;
101
102 /* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
103 new vector number of VECTOR. We skip `empty' vectors (i.e.,
104 TALLY[VECTOR] = 0), and call these `entries'. */
105 static vector_number *order = NULL;
106 static int nentries;
107
108 base_number *base = NULL;
109 /* A distinguished value of BASE, negative infinite. During the
110 computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
111 keep parser tables small. */
112 base_number base_ninf = 0;
113 static base_number *pos = NULL;
114
115 static unsigned int *conflrow = NULL;
116 unsigned int *conflict_table = NULL;
117 unsigned int *conflict_list = NULL;
118 int conflict_list_cnt;
119 static int conflict_list_free;
120
121 /* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
122 with more or less the original hard-coded value (which was
123 SHRT_MAX). */
124 static int table_size = 32768;
125 base_number *table = NULL;
126 base_number *check = NULL;
127 /* The value used in TABLE to denote explicit syntax errors
128 (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MININUM,
129 but in order to keep small tables, renumbered as TABLE_ERROR, which
130 is the smallest (non error) value minus 1. */
131 base_number table_ninf = 0;
132 static int lowzero;
133 int high;
134
135 state_number *yydefgoto;
136 rule_number *yydefact;
137
138 /*----------------------------------------------------------------.
139 | If TABLE (and CHECK) appear to be small to be addressed at |
140 | DESIRED, grow them. Note that TABLE[DESIRED] is to be used, so |
141 | the desired size is at least DESIRED + 1. |
142 `----------------------------------------------------------------*/
143
144 static void
145 table_grow (int desired)
146 {
147 int old_size = table_size;
148
149 while (table_size <= desired)
150 table_size *= 2;
151
152 if (trace_flag & trace_resource)
153 fprintf (stderr, "growing table and check from: %d to %d\n",
154 old_size, table_size);
155
156 REALLOC (table, table_size);
157 REALLOC (check, table_size);
158 REALLOC (conflict_table, table_size);
159
160 for (/* Nothing. */; old_size < table_size; ++old_size)
161 {
162 table[old_size] = 0;
163 check[old_size] = -1;
164 }
165 }
166
167
168
169
170 /*-------------------------------------------------------------------.
171 | For GLR parsers, for each conflicted token in S, as indicated |
172 | by non-zero entries in CONFLROW, create a list of possible |
173 | reductions that are alternatives to the shift or reduction |
174 | currently recorded for that token in S. Store the alternative |
175 | reductions followed by a 0 in CONFLICT_LIST, updating |
176 | CONFLICT_LIST_CNT, and storing an index to the start of the list |
177 | back into CONFLROW. |
178 `-------------------------------------------------------------------*/
179
180 static void
181 conflict_row (state *s)
182 {
183 int i, j;
184 reductions *reds = s->reductions;
185
186 if (!nondeterministic_parser)
187 return;
188
189 for (j = 0; j < ntokens; j += 1)
190 if (conflrow[j])
191 {
192 conflrow[j] = conflict_list_cnt;
193
194 /* Find all reductions for token J, and record all that do not
195 match ACTROW[J]. */
196 for (i = 0; i < reds->num; i += 1)
197 if (bitset_test (reds->look_ahead_tokens[i], j)
198 && (actrow[j]
199 != rule_number_as_item_number (reds->rules[i]->number)))
200 {
201 if (conflict_list_free <= 0)
202 abort ();
203 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
204 conflict_list_cnt += 1;
205 conflict_list_free -= 1;
206 }
207
208 /* Leave a 0 at the end. */
209 if (conflict_list_free <= 0)
210 abort ();
211 conflict_list_cnt += 1;
212 conflict_list_free -= 1;
213 }
214 }
215
216
217 /*------------------------------------------------------------------.
218 | Decide what to do for each type of token if seen as the |
219 | look-ahead in specified state. The value returned is used as the |
220 | default action (yydefact) for the state. In addition, ACTROW is |
221 | filled with what to do for each kind of token, index by symbol |
222 | number, with zero meaning do the default action. The value |
223 | ACTION_NUMBER_MINIMUM, a very negative number, means this |
224 | situation is an error. The parser recognizes this value |
225 | specially. |
226 | |
227 | This is where conflicts are resolved. The loop over look-ahead |
228 | rules considered lower-numbered rules last, and the last rule |
229 | considered that likes a token gets to handle it. |
230 | |
231 | For GLR parsers, also sets CONFLROW[SYM] to an index into |
232 | CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
233 | with symbol SYM. The default reduction is not used for a symbol |
234 | that has any such conflicts. |
235 `------------------------------------------------------------------*/
236
237 static rule *
238 action_row (state *s)
239 {
240 int i;
241 rule *default_rule = NULL;
242 reductions *reds = s->reductions;
243 transitions *trans = s->transitions;
244 errs *errp = s->errs;
245 /* Set to nonzero to inhibit having any default reduction. */
246 bool nodefault = false;
247 bool conflicted = false;
248
249 for (i = 0; i < ntokens; i++)
250 actrow[i] = conflrow[i] = 0;
251
252 if (reds->look_ahead_tokens)
253 {
254 int j;
255 bitset_iterator biter;
256 /* loop over all the rules available here which require
257 look-ahead (in reverse order to give precedence to the first
258 rule) */
259 for (i = reds->num - 1; i >= 0; --i)
260 /* and find each token which the rule finds acceptable
261 to come next */
262 BITSET_FOR_EACH (biter, reds->look_ahead_tokens[i], j, 0)
263 {
264 /* and record this rule as the rule to use if that
265 token follows. */
266 if (actrow[j] != 0)
267 {
268 conflicted = true;
269 conflrow[j] = 1;
270 }
271 actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
272 }
273 }
274
275 /* Now see which tokens are allowed for shifts in this state. For
276 them, record the shift as the thing to do. So shift is preferred
277 to reduce. */
278 FOR_EACH_SHIFT (trans, i)
279 {
280 symbol_number sym = TRANSITION_SYMBOL (trans, i);
281 state *shift_state = trans->states[i];
282
283 if (actrow[sym] != 0)
284 {
285 conflicted = true;
286 conflrow[sym] = 1;
287 }
288 actrow[sym] = state_number_as_int (shift_state->number);
289
290 /* Do not use any default reduction if there is a shift for
291 error */
292 if (sym == errtoken->number)
293 nodefault = true;
294 }
295
296 /* See which tokens are an explicit error in this state (due to
297 %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
298 action. */
299 for (i = 0; i < errp->num; i++)
300 {
301 symbol *sym = errp->symbols[i];
302 actrow[sym->number] = ACTION_NUMBER_MINIMUM;
303 }
304
305 /* Now find the most common reduction and make it the default action
306 for this state. */
307
308 if (reds->num >= 1 && !nodefault)
309 {
310 if (s->consistent)
311 default_rule = reds->rules[0];
312 else
313 {
314 int max = 0;
315 for (i = 0; i < reds->num; i++)
316 {
317 int count = 0;
318 rule *r = reds->rules[i];
319 symbol_number j;
320
321 for (j = 0; j < ntokens; j++)
322 if (actrow[j] == rule_number_as_item_number (r->number))
323 count++;
324
325 if (count > max)
326 {
327 max = count;
328 default_rule = r;
329 }
330 }
331
332 /* GLR parsers need space for conflict lists, so we can't
333 default conflicted entries. For non-conflicted entries
334 or as long as we are not building a GLR parser,
335 actions that match the default are replaced with zero,
336 which means "use the default". */
337
338 if (max > 0)
339 {
340 int j;
341 for (j = 0; j < ntokens; j++)
342 if (actrow[j] == rule_number_as_item_number (default_rule->number)
343 && ! (nondeterministic_parser && conflrow[j]))
344 actrow[j] = 0;
345 }
346 }
347 }
348
349 /* If have no default rule, the default is an error.
350 So replace any action which says "error" with "use default". */
351
352 if (!default_rule)
353 for (i = 0; i < ntokens; i++)
354 if (actrow[i] == ACTION_NUMBER_MINIMUM)
355 actrow[i] = 0;
356
357 if (conflicted)
358 conflict_row (s);
359
360 return default_rule;
361 }
362
363
364 /*----------------------------------------.
365 | Set FROMS, TOS, TALLY and WIDTH for S. |
366 `----------------------------------------*/
367
368 static void
369 save_row (state_number s)
370 {
371 symbol_number i;
372 int count;
373 base_number *sp;
374 base_number *sp1;
375 base_number *sp2;
376 unsigned int *sp3 IF_LINT (= NULL);
377
378 /* Number of non default actions in S. */
379 count = 0;
380 for (i = 0; i < ntokens; i++)
381 if (actrow[i] != 0)
382 count++;
383
384 if (count == 0)
385 return;
386
387 /* Allocate non defaulted actions. */
388 froms[s] = sp = CALLOC (sp1, count);
389 tos[s] = CALLOC (sp2, count);
390 conflict_tos[s] = nondeterministic_parser ? CALLOC (sp3, count) : NULL;
391
392 /* Store non defaulted actions. */
393 for (i = 0; i < ntokens; i++)
394 if (actrow[i] != 0)
395 {
396 *sp1++ = i;
397 *sp2++ = actrow[i];
398 if (nondeterministic_parser)
399 *sp3++ = conflrow[i];
400 }
401
402 tally[s] = count;
403 width[s] = sp1[-1] - sp[0] + 1;
404 }
405
406
407 /*------------------------------------------------------------------.
408 | Figure out the actions for the specified state, indexed by |
409 | look-ahead token type. |
410 | |
411 | The YYDEFACT table is output now. The detailed info is saved for |
412 | putting into YYTABLE later. |
413 `------------------------------------------------------------------*/
414
415 static void
416 token_actions (void)
417 {
418 state_number i;
419 symbol_number j;
420 rule_number r;
421
422 int nconflict = nondeterministic_parser ? conflicts_total_count () : 0;
423
424 CALLOC (yydefact, nstates);
425
426 CALLOC (actrow, ntokens);
427 CALLOC (conflrow, ntokens);
428
429 CALLOC (conflict_list, 1 + 2 * nconflict);
430 conflict_list_free = 2 * nconflict;
431 conflict_list_cnt = 1;
432
433 /* Find the rules which are reduced. */
434 if (!nondeterministic_parser)
435 for (r = 0; r < nrules; ++r)
436 rules[r].useful = false;
437
438 for (i = 0; i < nstates; ++i)
439 {
440 rule *default_rule = action_row (states[i]);
441 yydefact[i] = default_rule ? default_rule->number + 1 : 0;
442 save_row (i);
443
444 /* Now that the parser was computed, we can find which rules are
445 really reduced, and which are not because of SR or RR
446 conflicts. */
447 if (!nondeterministic_parser)
448 {
449 for (j = 0; j < ntokens; ++j)
450 if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
451 rules[item_number_as_rule_number (actrow[j])].useful = true;
452 if (yydefact[i])
453 rules[yydefact[i] - 1].useful = true;
454 }
455 }
456
457 free (actrow);
458 free (conflrow);
459 }
460
461
462 /*------------------------------------------------------------------.
463 | Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
464 | i.e., the information related to non defaulted GOTO on the nterm |
465 | SYM. |
466 | |
467 | DEFAULT_STATE is the principal destination on SYM, i.e., the |
468 | default GOTO destination on SYM. |
469 `------------------------------------------------------------------*/
470
471 static void
472 save_column (symbol_number sym, state_number default_state)
473 {
474 int i;
475 base_number *sp;
476 base_number *sp1;
477 base_number *sp2;
478 int count;
479 vector_number symno = symbol_number_to_vector_number (sym);
480
481 goto_number begin = goto_map[sym - ntokens];
482 goto_number end = goto_map[sym - ntokens + 1];
483
484 /* Number of non default GOTO. */
485 count = 0;
486 for (i = begin; i < end; i++)
487 if (to_state[i] != default_state)
488 count++;
489
490 if (count == 0)
491 return;
492
493 /* Allocate room for non defaulted gotos. */
494 froms[symno] = sp = CALLOC (sp1, count);
495 tos[symno] = CALLOC (sp2, count);
496
497 /* Store the state numbers of the non defaulted gotos. */
498 for (i = begin; i < end; i++)
499 if (to_state[i] != default_state)
500 {
501 *sp1++ = from_state[i];
502 *sp2++ = to_state[i];
503 }
504
505 tally[symno] = count;
506 width[symno] = sp1[-1] - sp[0] + 1;
507 }
508
509
510 /*-------------------------------------------------------------.
511 | Return `the' most common destination GOTO on SYM (a nterm). |
512 `-------------------------------------------------------------*/
513
514 static state_number
515 default_goto (symbol_number sym, short int state_count[])
516 {
517 state_number s;
518 int i;
519 goto_number m = goto_map[sym - ntokens];
520 goto_number n = goto_map[sym - ntokens + 1];
521 state_number default_state = -1;
522 int max = 0;
523
524 if (m == n)
525 return -1;
526
527 for (s = 0; s < nstates; s++)
528 state_count[s] = 0;
529
530 for (i = m; i < n; i++)
531 state_count[to_state[i]]++;
532
533 for (s = 0; s < nstates; s++)
534 if (state_count[s] > max)
535 {
536 max = state_count[s];
537 default_state = s;
538 }
539
540 return default_state;
541 }
542
543
544 /*-------------------------------------------------------------------.
545 | Figure out what to do after reducing with each rule, depending on |
546 | the saved state from before the beginning of parsing the data that |
547 | matched this rule. |
548 | |
549 | The YYDEFGOTO table is output now. The detailed info is saved for |
550 | putting into YYTABLE later. |
551 `-------------------------------------------------------------------*/
552
553 static void
554 goto_actions (void)
555 {
556 symbol_number i;
557 short int *state_count = CALLOC (state_count, nstates);
558 MALLOC (yydefgoto, nvars);
559
560 /* For a given nterm I, STATE_COUNT[S] is the number of times there
561 is a GOTO to S on I. */
562 for (i = ntokens; i < nsyms; ++i)
563 {
564 state_number default_state = default_goto (i, state_count);
565 save_column (i, default_state);
566 yydefgoto[i - ntokens] = default_state;
567 }
568 free (state_count);
569 }
570
571
572 /*------------------------------------------------------------------.
573 | Compute ORDER, a reordering of vectors, in order to decide how to |
574 | pack the actions and gotos information into yytable. |
575 `------------------------------------------------------------------*/
576
577 static void
578 sort_actions (void)
579 {
580 int i;
581
582 nentries = 0;
583
584 for (i = 0; i < nvectors; i++)
585 if (tally[i] > 0)
586 {
587 int k;
588 int t = tally[i];
589 int w = width[i];
590 int j = nentries - 1;
591
592 while (j >= 0 && (width[order[j]] < w))
593 j--;
594
595 while (j >= 0 && (width[order[j]] == w) && (tally[order[j]] < t))
596 j--;
597
598 for (k = nentries - 1; k > j; k--)
599 order[k + 1] = order[k];
600
601 order[j + 1] = i;
602 nentries++;
603 }
604 }
605
606
607 /* If VECTOR is a state which actions (reflected by FROMS, TOS, TALLY
608 and WIDTH of VECTOR) are common to a previous state, return this
609 state number.
610
611 In any other case, return -1. */
612
613 static state_number
614 matching_state (vector_number vector)
615 {
616 vector_number i = order[vector];
617 int t;
618 int w;
619 int prev;
620
621 /* If VECTOR is a nterm, return -1. */
622 if (nstates <= i)
623 return -1;
624
625 t = tally[i];
626 w = width[i];
627
628 /* If VECTOR has GLR conflicts, return -1 */
629 if (conflict_tos[i] != NULL)
630 {
631 int j;
632 for (j = 0; j < t; j += 1)
633 if (conflict_tos[i][j] != 0)
634 return -1;
635 }
636
637 for (prev = vector - 1; prev >= 0; prev--)
638 {
639 vector_number j = order[prev];
640 int k;
641 int match = 1;
642
643 /* Given how ORDER was computed, if the WIDTH or TALLY is
644 different, there cannot be a matching state. */
645 if (width[j] != w || tally[j] != t)
646 return -1;
647
648 for (k = 0; match && k < t; k++)
649 if (tos[j][k] != tos[i][k] || froms[j][k] != froms[i][k]
650 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
651 match = 0;
652
653 if (match)
654 return j;
655 }
656
657 return -1;
658 }
659
660
661 static base_number
662 pack_vector (vector_number vector)
663 {
664 vector_number i = order[vector];
665 int j;
666 int t = tally[i];
667 int loc = 0;
668 base_number *from = froms[i];
669 base_number *to = tos[i];
670 unsigned int *conflict_to = conflict_tos[i];
671
672 if (!t)
673 abort ();
674
675 for (j = lowzero - from[0]; ; j++)
676 {
677 int k;
678 bool ok = true;
679
680 if (table_size <= j)
681 abort ();
682
683 for (k = 0; ok && k < t; k++)
684 {
685 loc = j + state_number_as_int (from[k]);
686 if (table_size <= loc)
687 table_grow (loc);
688
689 if (table[loc] != 0)
690 ok = false;
691 }
692
693 for (k = 0; ok && k < vector; k++)
694 if (pos[k] == j)
695 ok = false;
696
697 if (ok)
698 {
699 for (k = 0; k < t; k++)
700 {
701 loc = j + from[k];
702 table[loc] = to[k];
703 if (nondeterministic_parser && conflict_to != NULL)
704 conflict_table[loc] = conflict_to[k];
705 check[loc] = from[k];
706 }
707
708 while (table[lowzero] != 0)
709 lowzero++;
710
711 if (loc > high)
712 high = loc;
713
714 if (! (BASE_MINIMUM <= j && j <= BASE_MAXIMUM))
715 abort ();
716 return j;
717 }
718 }
719 }
720
721
722 /*-------------------------------------------------------------.
723 | Remap the negative infinite in TAB from NINF to the greatest |
724 | possible smallest value. Return it. |
725 | |
726 | In most case this allows us to use shorts instead of ints in |
727 | parsers. |
728 `-------------------------------------------------------------*/
729
730 static base_number
731 table_ninf_remap (base_number tab[], int size, base_number ninf)
732 {
733 base_number res = 0;
734 int i;
735
736 for (i = 0; i < size; i++)
737 if (tab[i] < res && tab[i] != ninf)
738 res = tab[i];
739
740 --res;
741
742 for (i = 0; i < size; i++)
743 if (tab[i] == ninf)
744 tab[i] = res;
745
746 return res;
747 }
748
749 static void
750 pack_table (void)
751 {
752 int i;
753
754 CALLOC (base, nvectors);
755 CALLOC (pos, nentries);
756 CALLOC (table, table_size);
757 CALLOC (conflict_table, table_size);
758 CALLOC (check, table_size);
759
760 lowzero = 0;
761 high = 0;
762
763 for (i = 0; i < nvectors; i++)
764 base[i] = BASE_MINIMUM;
765
766 for (i = 0; i < table_size; i++)
767 check[i] = -1;
768
769 for (i = 0; i < nentries; i++)
770 {
771 state_number s = matching_state (i);
772 base_number place;
773
774 if (s < 0)
775 /* A new set of state actions, or a nonterminal. */
776 place = pack_vector (i);
777 else
778 /* Action of I were already coded for S. */
779 place = base[s];
780
781 pos[i] = place;
782 base[order[i]] = place;
783 }
784
785 /* Use the greatest possible negative infinites. */
786 base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
787 table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
788
789 free (pos);
790 }
791
792 \f
793
794 /*-----------------------------------------------------------------.
795 | Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
796 | and yycheck. |
797 `-----------------------------------------------------------------*/
798
799 void
800 tables_generate (void)
801 {
802 int i;
803
804 /* This is a poor way to make sure the sizes are properly
805 correlated. In particular the signedness is not taken into
806 account. But it's not useless. */
807 verify (sizes_are_properly_correlated,
808 (sizeof nstates <= sizeof nvectors
809 && sizeof nvars <= sizeof nvectors));
810
811 nvectors = state_number_as_int (nstates) + nvars;
812
813 CALLOC (froms, nvectors);
814 CALLOC (tos, nvectors);
815 CALLOC (conflict_tos, nvectors);
816 CALLOC (tally, nvectors);
817 CALLOC (width, nvectors);
818
819 token_actions ();
820
821 goto_actions ();
822 free (goto_map);
823 free (from_state);
824 free (to_state);
825
826 CALLOC (order, nvectors);
827 sort_actions ();
828 pack_table ();
829 free (order);
830
831 free (tally);
832 free (width);
833
834 for (i = 0; i < nvectors; i++)
835 {
836 free (froms[i]);
837 free (tos[i]);
838 XFREE (conflict_tos[i]);
839 }
840
841 free (froms);
842 free (tos);
843 free (conflict_tos);
844 }
845
846
847 /*-------------------------.
848 | Free the parser tables. |
849 `-------------------------*/
850
851 void
852 tables_free (void)
853 {
854 free (base);
855 free (conflict_table);
856 free (conflict_list);
857 free (table);
858 free (check);
859 free (yydefgoto);
860 free (yydefact);
861 }