]> git.saurik.com Git - bison.git/blob - src/LR0.c
Have Bison grammars parsed by a Bison grammar.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "quotearg.h"
28 #include "symtab.h"
29 #include "gram.h"
30 #include "getargs.h"
31 #include "reader.h"
32 #include "gram.h"
33 #include "state.h"
34 #include "complain.h"
35 #include "closure.h"
36 #include "LR0.h"
37 #include "lalr.h"
38 #include "reduce.h"
39
40 unsigned int nstates = 0;
41 /* Initialize the final state to -1, otherwise, it might be set to 0
42 by default, and since we don't compute the reductions of the final
43 state, we end up not computing the reductions of the initial state,
44 which is of course needed.
45
46 FINAL_STATE is properly set by new_state when it recognizes the
47 accessing symbol: EOF. */
48 int final_state = -1;
49 static state_t *first_state = NULL;
50
51 static state_t *this_state = NULL;
52 static state_t *last_state = NULL;
53
54 static int nshifts;
55 static symbol_number_t *shift_symbol = NULL;
56
57 static short *redset = NULL;
58 static short *shiftset = NULL;
59
60 static item_number_t **kernel_base = NULL;
61 static int *kernel_size = NULL;
62 static item_number_t *kernel_items = NULL;
63
64 /* hash table for states, to recognize equivalent ones. */
65
66 #define STATE_HASH_SIZE 1009
67 static state_t **state_hash = NULL;
68
69 \f
70 static void
71 allocate_itemsets (void)
72 {
73 int i, r;
74 item_number_t *rhsp;
75
76 /* Count the number of occurrences of all the symbols in RITEMS.
77 Note that useless productions (hence useless nonterminals) are
78 browsed too, hence we need to allocate room for _all_ the
79 symbols. */
80 int count = 0;
81 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
82
83 for (r = 1; r < nrules + 1; ++r)
84 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
85 {
86 count++;
87 symbol_count[*rhsp]++;
88 }
89
90 /* See comments before new_itemsets. All the vectors of items
91 live inside KERNEL_ITEMS. The number of active items after
92 some symbol cannot be more than the number of times that symbol
93 appears as an item, which is symbol_count[symbol].
94 We allocate that much space for each symbol. */
95
96 kernel_base = XCALLOC (item_number_t *, nsyms);
97 if (count)
98 kernel_items = XCALLOC (item_number_t, count);
99
100 count = 0;
101 for (i = 0; i < nsyms; i++)
102 {
103 kernel_base[i] = kernel_items + count;
104 count += symbol_count[i];
105 }
106
107 free (symbol_count);
108 kernel_size = XCALLOC (int, nsyms);
109 }
110
111
112 static void
113 allocate_storage (void)
114 {
115 allocate_itemsets ();
116
117 shiftset = XCALLOC (short, nsyms);
118 redset = XCALLOC (short, nrules + 1);
119 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
120 shift_symbol = XCALLOC (symbol_number_t, nsyms);
121 }
122
123
124 static void
125 free_storage (void)
126 {
127 free (shift_symbol);
128 free (redset);
129 free (shiftset);
130 free (kernel_base);
131 free (kernel_size);
132 XFREE (kernel_items);
133 free (state_hash);
134 }
135
136
137
138
139 /*----------------------------------------------------------------.
140 | Find which symbols can be shifted in the current state, and for |
141 | each one record which items would be active after that shift. |
142 | Uses the contents of itemset. |
143 | |
144 | shift_symbol is set to a vector of the symbols that can be |
145 | shifted. For each symbol in the grammar, kernel_base[symbol] |
146 | points to a vector of item numbers activated if that symbol is |
147 | shifted, and kernel_size[symbol] is their numbers. |
148 `----------------------------------------------------------------*/
149
150 static void
151 new_itemsets (void)
152 {
153 int i;
154
155 if (trace_flag)
156 fprintf (stderr, "Entering new_itemsets, state = %d\n",
157 this_state->number);
158
159 for (i = 0; i < nsyms; i++)
160 kernel_size[i] = 0;
161
162 nshifts = 0;
163
164 for (i = 0; i < nritemset; ++i)
165 if (ritem[itemset[i]] >= 0)
166 {
167 symbol_number_t symbol
168 = item_number_as_symbol_number (ritem[itemset[i]]);
169 if (!kernel_size[symbol])
170 {
171 shift_symbol[nshifts] = symbol;
172 nshifts++;
173 }
174
175 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
176 kernel_size[symbol]++;
177 }
178 }
179
180
181
182 /*-----------------------------------------------------------------.
183 | Subroutine of get_state. Create a new state for those items, if |
184 | necessary. |
185 `-----------------------------------------------------------------*/
186
187 static state_t *
188 new_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
189 {
190 state_t *p;
191
192 if (trace_flag)
193 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
194 nstates, symbol, quotearg_style (escape_quoting_style,
195 symbols[symbol]->tag));
196
197 if (nstates >= SHRT_MAX)
198 fatal (_("too many states (max %d)"), SHRT_MAX);
199
200 p = STATE_ALLOC (core_size);
201 p->accessing_symbol = symbol;
202 p->number = nstates;
203 p->solved_conflicts = NULL;
204
205 p->nitems = core_size;
206 memcpy (p->items, core, core_size * sizeof (core[0]));
207
208 /* If this is the eoftoken, and this is not the initial state, then
209 this is the final state. */
210 if (symbol == 0 && first_state)
211 final_state = p->number;
212
213 if (!first_state)
214 first_state = p;
215 if (last_state)
216 last_state->next = p;
217 last_state = p;
218
219 nstates++;
220
221 return p;
222 }
223
224
225 /*--------------------------------------------------------------.
226 | Find the state number for the state we would get to (from the |
227 | current state) by shifting symbol. Create a new state if no |
228 | equivalent one exists already. Used by append_states. |
229 `--------------------------------------------------------------*/
230
231 static int
232 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
233 {
234 int key;
235 size_t i;
236 state_t *sp;
237
238 if (trace_flag)
239 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
240 this_state->number, symbol, quotearg_style (escape_quoting_style,
241 symbols[symbol]->tag));
242
243 /* Add up the target state's active item numbers to get a hash key.
244 */
245 key = 0;
246 for (i = 0; i < core_size; ++i)
247 key += core[i];
248 key = key % STATE_HASH_SIZE;
249 sp = state_hash[key];
250
251 if (sp)
252 {
253 int found = 0;
254 while (!found)
255 {
256 if (sp->nitems == core_size)
257 {
258 found = 1;
259 for (i = 0; i < core_size; ++i)
260 if (core[i] != sp->items[i])
261 found = 0;
262 }
263
264 if (!found)
265 {
266 if (sp->link)
267 {
268 sp = sp->link;
269 }
270 else /* bucket exhausted and no match */
271 {
272 sp = sp->link = new_state (symbol, core_size, core);
273 found = 1;
274 }
275 }
276 }
277 }
278 else /* bucket is empty */
279 {
280 state_hash[key] = sp = new_state (symbol, core_size, core);
281 }
282
283 if (trace_flag)
284 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
285
286 return sp->number;
287 }
288
289 /*------------------------------------------------------------------.
290 | Use the information computed by new_itemsets to find the state |
291 | numbers reached by each shift transition from the current state. |
292 | |
293 | shiftset is set up as a vector of state numbers of those states. |
294 `------------------------------------------------------------------*/
295
296 static void
297 append_states (void)
298 {
299 int i;
300 int j;
301 symbol_number_t symbol;
302
303 if (trace_flag)
304 fprintf (stderr, "Entering append_states, state = %d\n",
305 this_state->number);
306
307 /* first sort shift_symbol into increasing order */
308
309 for (i = 1; i < nshifts; i++)
310 {
311 symbol = shift_symbol[i];
312 j = i;
313 while (j > 0 && shift_symbol[j - 1] > symbol)
314 {
315 shift_symbol[j] = shift_symbol[j - 1];
316 j--;
317 }
318 shift_symbol[j] = symbol;
319 }
320
321 for (i = 0; i < nshifts; i++)
322 {
323 symbol = shift_symbol[i];
324 shiftset[i] = get_state (symbol,
325 kernel_size[symbol], kernel_base[symbol]);
326 }
327 }
328
329
330 static void
331 new_states (void)
332 {
333 /* The 0 at the lhs is the index of the item of this initial rule. */
334 kernel_base[0][0] = 0;
335 kernel_size[0] = 1;
336 this_state = new_state (0, kernel_size[0], kernel_base[0]);
337 }
338
339
340 /*------------------------------------------------------------.
341 | Save the NSHIFTS of SHIFTSET into the current linked list. |
342 `------------------------------------------------------------*/
343
344 static void
345 save_shifts (void)
346 {
347 shifts *p = shifts_new (nshifts);
348 memcpy (p->shifts, shiftset, nshifts * sizeof (shiftset[0]));
349 this_state->shifts = p;
350 }
351
352
353 /*----------------------------------------------------------------.
354 | Find which rules can be used for reduction transitions from the |
355 | current state and make a reductions structure for the state to |
356 | record their rule numbers. |
357 `----------------------------------------------------------------*/
358
359 static void
360 save_reductions (void)
361 {
362 int count = 0;
363 int i;
364
365 /* If this is the final state, we want it to have no reductions at
366 all, although it has one for `START_SYMBOL EOF .'. */
367 if (this_state->number == final_state)
368 return;
369
370 /* Find and count the active items that represent ends of rules. */
371 for (i = 0; i < nritemset; ++i)
372 {
373 int item = ritem[itemset[i]];
374 if (item < 0)
375 redset[count++] = -item;
376 }
377
378 /* Make a reductions structure and copy the data into it. */
379 this_state->reductions = reductions_new (count);
380 memcpy (this_state->reductions->rules, redset, count * sizeof (redset[0]));
381 }
382
383 \f
384 /*---------------.
385 | Build STATES. |
386 `---------------*/
387
388 static void
389 set_states (void)
390 {
391 state_t *sp;
392 states = XCALLOC (state_t *, nstates);
393
394 for (sp = first_state; sp; sp = sp->next)
395 {
396 /* Pessimization, but simplification of the code: make sure all
397 the states have a shifts, errs, and reductions, even if
398 reduced to 0. */
399 if (!sp->shifts)
400 sp->shifts = shifts_new (0);
401 if (!sp->errs)
402 sp->errs = errs_new (0);
403 if (!sp->reductions)
404 sp->reductions = reductions_new (0);
405
406 states[sp->number] = sp;
407 }
408 }
409
410 /*-------------------------------------------------------------------.
411 | Compute the nondeterministic finite state machine (see state.h for |
412 | details) from the grammar. |
413 `-------------------------------------------------------------------*/
414
415 void
416 generate_states (void)
417 {
418 allocate_storage ();
419 new_closure (nritems);
420 new_states ();
421
422 while (this_state)
423 {
424 if (trace_flag)
425 fprintf (stderr, "Processing state %d (reached by %s)\n",
426 this_state->number,
427 quotearg_style (escape_quoting_style,
428 symbols[this_state->accessing_symbol]->tag));
429 /* Set up ruleset and itemset for the transitions out of this
430 state. ruleset gets a 1 bit for each rule that could reduce
431 now. itemset gets a vector of all the items that could be
432 accepted next. */
433 closure (this_state->items, this_state->nitems);
434 /* record the reductions allowed out of this state */
435 save_reductions ();
436 /* find the itemsets of the states that shifts can reach */
437 new_itemsets ();
438 /* find or create the core structures for those states */
439 append_states ();
440
441 /* create the shifts structures for the shifts to those states,
442 now that the state numbers transitioning to are known */
443 save_shifts ();
444
445 /* states are queued when they are created; process them all */
446 this_state = this_state->next;
447 }
448
449 /* discard various storage */
450 free_closure ();
451 free_storage ();
452
453 /* Set up STATES. */
454 set_states ();
455 }