]> git.saurik.com Git - bison.git/blob - lib/timevar.c
maint: use announce-gen's new --mail-headers.
[bison.git] / lib / timevar.c
1 /* Timing variables for measuring compiler performance.
2
3 Copyright (C) 2000, 2002, 2004, 2006, 2009, 2010 Free Software
4 Foundation, Inc.
5
6 Contributed by Alex Samuel <samuel@codesourcery.com>
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #if IN_GCC
24
25 #include "system.h"
26 #include "intl.h"
27 #include "rtl.h"
28
29 #else
30
31 /* This source file is taken from the GCC source code, with slight
32 modifications that are under control of the IN_GCC preprocessor
33 variable. The !IN_GCC part of this file is specific to Bison. */
34
35 # include "../src/system.h"
36 # if HAVE_SYS_TIME_H
37 # include <sys/time.h>
38 # endif
39 int timevar_report = 0;
40
41 #endif
42
43
44 #ifdef HAVE_SYS_TIMES_H
45 # include <sys/times.h>
46 #endif
47 #ifdef HAVE_SYS_RESOURCE_H
48 #include <sys/resource.h>
49 #endif
50
51 #ifndef HAVE_CLOCK_T
52 typedef int clock_t;
53 #endif
54
55 #ifndef HAVE_STRUCT_TMS
56 struct tms
57 {
58 clock_t tms_utime;
59 clock_t tms_stime;
60 clock_t tms_cutime;
61 clock_t tms_cstime;
62 };
63 #endif
64
65 #if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
66 extern int getrusage (int, struct rusage *);
67 #endif
68 #if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
69 extern clock_t times (struct tms *);
70 #endif
71 #if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
72 extern clock_t clock (void);
73 #endif
74
75 #ifndef RUSAGE_SELF
76 # define RUSAGE_SELF 0
77 #endif
78
79 /* Calculation of scale factor to convert ticks to microseconds.
80 We mustn't use CLOCKS_PER_SEC except with clock(). */
81 #if HAVE_SYSCONF && defined _SC_CLK_TCK
82 # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
83 #else
84 # ifdef CLK_TCK
85 # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
86 # else
87 # ifdef HZ
88 # define TICKS_PER_SECOND HZ /* traditional UNIX */
89 # else
90 # define TICKS_PER_SECOND 100 /* often the correct value */
91 # endif
92 # endif
93 #endif
94
95 /* Prefer times to getrusage to clock (each gives successively less
96 information). */
97 #ifdef HAVE_TIMES
98 # define USE_TIMES
99 # define HAVE_USER_TIME
100 # define HAVE_SYS_TIME
101 # define HAVE_WALL_TIME
102 #else
103 #ifdef HAVE_GETRUSAGE
104 # define USE_GETRUSAGE
105 # define HAVE_USER_TIME
106 # define HAVE_SYS_TIME
107 #else
108 #ifdef HAVE_CLOCK
109 # define USE_CLOCK
110 # define HAVE_USER_TIME
111 #endif
112 #endif
113 #endif
114
115 /* libc is very likely to have snuck a call to sysconf() into one of
116 the underlying constants, and that can be very slow, so we have to
117 precompute them. Whose wonderful idea was it to make all those
118 _constants_ variable at run time, anyway? */
119 #ifdef USE_TIMES
120 static float ticks_to_msec;
121 #define TICKS_TO_MSEC (1.0 / TICKS_PER_SECOND)
122 #endif
123
124 #ifdef USE_CLOCK
125 static float clocks_to_msec;
126 #define CLOCKS_TO_MSEC (1.0 / CLOCKS_PER_SEC)
127 #endif
128
129 #if IN_GCC
130 #include "flags.h"
131 #endif
132 #include "timevar.h"
133
134 /* See timevar.h for an explanation of timing variables. */
135
136 /* This macro evaluates to nonzero if timing variables are enabled. */
137 #define TIMEVAR_ENABLE (timevar_report)
138
139 /* A timing variable. */
140
141 struct timevar_def
142 {
143 /* Elapsed time for this variable. */
144 struct timevar_time_def elapsed;
145
146 /* If this variable is timed independently of the timing stack,
147 using timevar_start, this contains the start time. */
148 struct timevar_time_def start_time;
149
150 /* The name of this timing variable. */
151 const char *name;
152
153 /* Non-zero if this timing variable is running as a standalone
154 timer. */
155 unsigned standalone : 1;
156
157 /* Non-zero if this timing variable was ever started or pushed onto
158 the timing stack. */
159 unsigned used : 1;
160 };
161
162 /* An element on the timing stack. Elapsed time is attributed to the
163 topmost timing variable on the stack. */
164
165 struct timevar_stack_def
166 {
167 /* The timing variable at this stack level. */
168 struct timevar_def *timevar;
169
170 /* The next lower timing variable context in the stack. */
171 struct timevar_stack_def *next;
172 };
173
174 /* Declared timing variables. Constructed from the contents of
175 timevar.def. */
176 static struct timevar_def timevars[TIMEVAR_LAST];
177
178 /* The top of the timing stack. */
179 static struct timevar_stack_def *stack;
180
181 /* A list of unused (i.e. allocated and subsequently popped)
182 timevar_stack_def instances. */
183 static struct timevar_stack_def *unused_stack_instances;
184
185 /* The time at which the topmost element on the timing stack was
186 pushed. Time elapsed since then is attributed to the topmost
187 element. */
188 static struct timevar_time_def start_time;
189
190 static void get_time (struct timevar_time_def *);
191 static void timevar_accumulate (struct timevar_time_def *,
192 struct timevar_time_def *,
193 struct timevar_time_def *);
194
195 /* Fill the current times into TIME. The definition of this function
196 also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
197 HAVE_WALL_TIME macros. */
198
199 static void
200 get_time (now)
201 struct timevar_time_def *now;
202 {
203 now->user = 0;
204 now->sys = 0;
205 now->wall = 0;
206
207 if (!TIMEVAR_ENABLE)
208 return;
209
210 {
211 #ifdef USE_TIMES
212 struct tms tms;
213 now->wall = times (&tms) * ticks_to_msec;
214 #if IN_GCC
215 now->user = tms.tms_utime * ticks_to_msec;
216 now->sys = tms.tms_stime * ticks_to_msec;
217 #else
218 now->user = (tms.tms_utime + tms.tms_cutime) * ticks_to_msec;
219 now->sys = (tms.tms_stime + tms.tms_cstime) * ticks_to_msec;
220 #endif
221 #endif
222 #ifdef USE_GETRUSAGE
223 struct rusage rusage;
224 #if IN_GCC
225 getrusage (RUSAGE_SELF, &rusage);
226 #else
227 getrusage (RUSAGE_CHILDREN, &rusage);
228 #endif
229 now->user = rusage.ru_utime.tv_sec + rusage.ru_utime.tv_usec * 1e-6;
230 now->sys = rusage.ru_stime.tv_sec + rusage.ru_stime.tv_usec * 1e-6;
231 #endif
232 #ifdef USE_CLOCK
233 now->user = clock () * clocks_to_msec;
234 #endif
235 }
236 }
237
238 /* Add the difference between STOP and START to TIMER. */
239
240 static void
241 timevar_accumulate (timer, start, stop)
242 struct timevar_time_def *timer;
243 struct timevar_time_def *start;
244 struct timevar_time_def *stop;
245 {
246 timer->user += stop->user - start->user;
247 timer->sys += stop->sys - start->sys;
248 timer->wall += stop->wall - start->wall;
249 }
250
251 /* Initialize timing variables. */
252
253 void
254 init_timevar ()
255 {
256 if (!TIMEVAR_ENABLE)
257 return;
258
259 /* Zero all elapsed times. */
260 memset ((void *) timevars, 0, sizeof (timevars));
261
262 /* Initialize the names of timing variables. */
263 #define DEFTIMEVAR(identifier__, name__) \
264 timevars[identifier__].name = name__;
265 #include "timevar.def"
266 #undef DEFTIMEVAR
267
268 #ifdef USE_TIMES
269 ticks_to_msec = TICKS_TO_MSEC;
270 #endif
271 #ifdef USE_CLOCK
272 clocks_to_msec = CLOCKS_TO_MSEC;
273 #endif
274 }
275
276 /* Push TIMEVAR onto the timing stack. No further elapsed time is
277 attributed to the previous topmost timing variable on the stack;
278 subsequent elapsed time is attributed to TIMEVAR, until it is
279 popped or another element is pushed on top.
280
281 TIMEVAR cannot be running as a standalone timer. */
282
283 void
284 timevar_push (timevar)
285 timevar_id_t timevar;
286 {
287 struct timevar_def *tv = &timevars[timevar];
288 struct timevar_stack_def *context;
289 struct timevar_time_def now;
290
291 if (!TIMEVAR_ENABLE)
292 return;
293
294 /* Mark this timing variable as used. */
295 tv->used = 1;
296
297 /* Can't push a standalone timer. */
298 if (tv->standalone)
299 abort ();
300
301 /* What time is it? */
302 get_time (&now);
303
304 /* If the stack isn't empty, attribute the current elapsed time to
305 the old topmost element. */
306 if (stack)
307 timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
308
309 /* Reset the start time; from now on, time is attributed to
310 TIMEVAR. */
311 start_time = now;
312
313 /* See if we have a previously-allocated stack instance. If so,
314 take it off the list. If not, malloc a new one. */
315 if (unused_stack_instances != NULL)
316 {
317 context = unused_stack_instances;
318 unused_stack_instances = unused_stack_instances->next;
319 }
320 else
321 context = (struct timevar_stack_def *)
322 xmalloc (sizeof (struct timevar_stack_def));
323
324 /* Fill it in and put it on the stack. */
325 context->timevar = tv;
326 context->next = stack;
327 stack = context;
328 }
329
330 /* Pop the topmost timing variable element off the timing stack. The
331 popped variable must be TIMEVAR. Elapsed time since the that
332 element was pushed on, or since it was last exposed on top of the
333 stack when the element above it was popped off, is credited to that
334 timing variable. */
335
336 void
337 timevar_pop (timevar)
338 timevar_id_t timevar;
339 {
340 struct timevar_time_def now;
341 struct timevar_stack_def *popped = stack;
342
343 if (!TIMEVAR_ENABLE)
344 return;
345
346 if (&timevars[timevar] != stack->timevar)
347 abort ();
348
349 /* What time is it? */
350 get_time (&now);
351
352 /* Attribute the elapsed time to the element we're popping. */
353 timevar_accumulate (&popped->timevar->elapsed, &start_time, &now);
354
355 /* Reset the start time; from now on, time is attributed to the
356 element just exposed on the stack. */
357 start_time = now;
358
359 /* Take the item off the stack. */
360 stack = stack->next;
361
362 /* Don't delete the stack element; instead, add it to the list of
363 unused elements for later use. */
364 popped->next = unused_stack_instances;
365 unused_stack_instances = popped;
366 }
367
368 /* Start timing TIMEVAR independently of the timing stack. Elapsed
369 time until timevar_stop is called for the same timing variable is
370 attributed to TIMEVAR. */
371
372 void
373 timevar_start (timevar)
374 timevar_id_t timevar;
375 {
376 struct timevar_def *tv = &timevars[timevar];
377
378 if (!TIMEVAR_ENABLE)
379 return;
380
381 /* Mark this timing variable as used. */
382 tv->used = 1;
383
384 /* Don't allow the same timing variable to be started more than
385 once. */
386 if (tv->standalone)
387 abort ();
388 tv->standalone = 1;
389
390 get_time (&tv->start_time);
391 }
392
393 /* Stop timing TIMEVAR. Time elapsed since timevar_start was called
394 is attributed to it. */
395
396 void
397 timevar_stop (timevar)
398 timevar_id_t timevar;
399 {
400 struct timevar_def *tv = &timevars[timevar];
401 struct timevar_time_def now;
402
403 if (!TIMEVAR_ENABLE)
404 return;
405
406 /* TIMEVAR must have been started via timevar_start. */
407 if (!tv->standalone)
408 abort ();
409
410 get_time (&now);
411 timevar_accumulate (&tv->elapsed, &tv->start_time, &now);
412 }
413
414 /* Fill the elapsed time for TIMEVAR into ELAPSED. Returns
415 update-to-date information even if TIMEVAR is currently running. */
416
417 void
418 timevar_get (timevar, elapsed)
419 timevar_id_t timevar;
420 struct timevar_time_def *elapsed;
421 {
422 struct timevar_def *tv = &timevars[timevar];
423 struct timevar_time_def now;
424
425 *elapsed = tv->elapsed;
426
427 /* Is TIMEVAR currently running as a standalone timer? */
428 if (tv->standalone)
429 {
430 get_time (&now);
431 timevar_accumulate (elapsed, &tv->start_time, &now);
432 }
433 /* Or is TIMEVAR at the top of the timer stack? */
434 else if (stack->timevar == tv)
435 {
436 get_time (&now);
437 timevar_accumulate (elapsed, &start_time, &now);
438 }
439 }
440
441 /* Summarize timing variables to FP. The timing variable TV_TOTAL has
442 a special meaning -- it's considered to be the total elapsed time,
443 for normalizing the others, and is displayed last. */
444
445 void
446 timevar_print (fp)
447 FILE *fp;
448 {
449 /* Only print stuff if we have some sort of time information. */
450 #if defined HAVE_USER_TIME || defined HAVE_SYS_TIME || defined HAVE_WALL_TIME
451 unsigned int /* timevar_id_t */ id;
452 struct timevar_time_def *total = &timevars[TV_TOTAL].elapsed;
453 struct timevar_time_def now;
454
455 if (!TIMEVAR_ENABLE)
456 return;
457
458 /* Update timing information in case we're calling this from GDB. */
459
460 if (fp == 0)
461 fp = stderr;
462
463 /* What time is it? */
464 get_time (&now);
465
466 /* If the stack isn't empty, attribute the current elapsed time to
467 the old topmost element. */
468 if (stack)
469 timevar_accumulate (&stack->timevar->elapsed, &start_time, &now);
470
471 /* Reset the start time; from now on, time is attributed to
472 TIMEVAR. */
473 start_time = now;
474
475 fputs (_("\nExecution times (seconds)\n"), fp);
476 for (id = 0; id < (unsigned int) TIMEVAR_LAST; ++id)
477 {
478 struct timevar_def *tv = &timevars[(timevar_id_t) id];
479 const float tiny = 5e-3;
480
481 /* Don't print the total execution time here; that goes at the
482 end. */
483 if ((timevar_id_t) id == TV_TOTAL)
484 continue;
485
486 /* Don't print timing variables that were never used. */
487 if (!tv->used)
488 continue;
489
490 /* Don't print timing variables if we're going to get a row of
491 zeroes. */
492 if (tv->elapsed.user < tiny
493 && tv->elapsed.sys < tiny
494 && tv->elapsed.wall < tiny)
495 continue;
496
497 /* The timing variable name. */
498 fprintf (fp, " %-22s:", tv->name);
499
500 #ifdef HAVE_USER_TIME
501 /* Print user-mode time for this process. */
502 fprintf (fp, "%7.2f (%2.0f%%) usr",
503 tv->elapsed.user,
504 (total->user == 0 ? 0 : tv->elapsed.user / total->user) * 100);
505 #endif /* HAVE_USER_TIME */
506
507 #ifdef HAVE_SYS_TIME
508 /* Print system-mode time for this process. */
509 fprintf (fp, "%7.2f (%2.0f%%) sys",
510 tv->elapsed.sys,
511 (total->sys == 0 ? 0 : tv->elapsed.sys / total->sys) * 100);
512 #endif /* HAVE_SYS_TIME */
513
514 #ifdef HAVE_WALL_TIME
515 /* Print wall clock time elapsed. */
516 fprintf (fp, "%7.2f (%2.0f%%) wall",
517 tv->elapsed.wall,
518 (total->wall == 0 ? 0 : tv->elapsed.wall / total->wall) * 100);
519 #endif /* HAVE_WALL_TIME */
520
521 putc ('\n', fp);
522 }
523
524 /* Print total time. */
525 fputs (_(" TOTAL :"), fp);
526 #ifdef HAVE_USER_TIME
527 fprintf (fp, "%7.2f ", total->user);
528 #endif
529 #ifdef HAVE_SYS_TIME
530 fprintf (fp, "%7.2f ", total->sys);
531 #endif
532 #ifdef HAVE_WALL_TIME
533 fprintf (fp, "%7.2f\n", total->wall);
534 #endif
535
536 #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
537 || defined (HAVE_WALL_TIME) */
538 }
539
540 /* Returns time (user + system) used so far by the compiler process,
541 in microseconds. */
542
543 long
544 get_run_time ()
545 {
546 struct timevar_time_def total_elapsed;
547 timevar_get (TV_TOTAL, &total_elapsed);
548 return total_elapsed.user + total_elapsed.sys;
549 }
550
551 /* Prints a message to stderr stating that time elapsed in STR is
552 TOTAL (given in microseconds). */
553
554 void
555 print_time (str, total)
556 const char *str;
557 long total;
558 {
559 long all_time = get_run_time ();
560 fprintf (stderr,
561 _("time in %s: %ld.%06ld (%ld%%)\n"),
562 str, total / 1000000, total % 1000000,
563 all_time == 0 ? 0
564 : (long) (((100.0 * (double) total) / (double) all_time) + .5));
565 }