]>
git.saurik.com Git - bison.git/blob - src/LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of Bison, the GNU Compiler Compiler.
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
40 unsigned int nstates
= 0;
41 /* Initialize the final state to -1, otherwise, it might be set to 0
42 by default, and since we don't compute the reductions of the final
43 state, we end up not computing the reductions of the initial state,
44 which is of course needed.
46 FINAL_STATE is properly set by new_state when it recognizes the
47 accessing symbol: EOF. */
49 static state_t
*first_state
= NULL
;
51 static state_t
*this_state
= NULL
;
52 static state_t
*last_state
= NULL
;
55 static symbol_number_t
*shift_symbol
= NULL
;
57 static short *redset
= NULL
;
58 static short *shiftset
= NULL
;
60 static item_number_t
**kernel_base
= NULL
;
61 static int *kernel_size
= NULL
;
62 static item_number_t
*kernel_items
= NULL
;
64 /* hash table for states, to recognize equivalent ones. */
66 #define STATE_HASH_SIZE 1009
67 static state_t
**state_hash
= NULL
;
71 allocate_itemsets (void)
76 /* Count the number of occurrences of all the symbols in RITEMS.
77 Note that useless productions (hence useless nonterminals) are
78 browsed too, hence we need to allocate room for _all_ the
81 short *symbol_count
= XCALLOC (short, nsyms
+ nuseless_nonterminals
);
83 for (r
= 1; r
< nrules
+ 1; ++r
)
84 for (rhsp
= rules
[r
].rhs
; *rhsp
>= 0; ++rhsp
)
87 symbol_count
[*rhsp
]++;
90 /* See comments before new_itemsets. All the vectors of items
91 live inside KERNEL_ITEMS. The number of active items after
92 some symbol cannot be more than the number of times that symbol
93 appears as an item, which is symbol_count[symbol].
94 We allocate that much space for each symbol. */
96 kernel_base
= XCALLOC (item_number_t
*, nsyms
);
98 kernel_items
= XCALLOC (item_number_t
, count
);
101 for (i
= 0; i
< nsyms
; i
++)
103 kernel_base
[i
] = kernel_items
+ count
;
104 count
+= symbol_count
[i
];
108 kernel_size
= XCALLOC (int, nsyms
);
113 allocate_storage (void)
115 allocate_itemsets ();
117 shiftset
= XCALLOC (short, nsyms
);
118 redset
= XCALLOC (short, nrules
+ 1);
119 state_hash
= XCALLOC (state_t
*, STATE_HASH_SIZE
);
120 shift_symbol
= XCALLOC (symbol_number_t
, nsyms
);
132 XFREE (kernel_items
);
139 /*----------------------------------------------------------------.
140 | Find which symbols can be shifted in the current state, and for |
141 | each one record which items would be active after that shift. |
142 | Uses the contents of itemset. |
144 | shift_symbol is set to a vector of the symbols that can be |
145 | shifted. For each symbol in the grammar, kernel_base[symbol] |
146 | points to a vector of item numbers activated if that symbol is |
147 | shifted, and kernel_size[symbol] is their numbers. |
148 `----------------------------------------------------------------*/
156 fprintf (stderr
, "Entering new_itemsets, state = %d\n",
159 for (i
= 0; i
< nsyms
; i
++)
164 for (i
= 0; i
< nritemset
; ++i
)
165 if (ritem
[itemset
[i
]] >= 0)
167 symbol_number_t symbol
168 = item_number_as_symbol_number (ritem
[itemset
[i
]]);
169 if (!kernel_size
[symbol
])
171 shift_symbol
[nshifts
] = symbol
;
175 kernel_base
[symbol
][kernel_size
[symbol
]] = itemset
[i
] + 1;
176 kernel_size
[symbol
]++;
182 /*-----------------------------------------------------------------.
183 | Subroutine of get_state. Create a new state for those items, if |
185 `-----------------------------------------------------------------*/
188 new_state (symbol_number_t symbol
, size_t core_size
, item_number_t
*core
)
193 fprintf (stderr
, "Entering new_state, state = %d, symbol = %d (%s)\n",
194 nstates
, symbol
, quotearg_style (escape_quoting_style
,
195 symbols
[symbol
]->tag
));
197 if (nstates
>= SHRT_MAX
)
198 fatal (_("too many states (max %d)"), SHRT_MAX
);
200 p
= STATE_ALLOC (core_size
);
201 p
->accessing_symbol
= symbol
;
203 p
->solved_conflicts
= NULL
;
205 p
->nitems
= core_size
;
206 memcpy (p
->items
, core
, core_size
* sizeof (core
[0]));
208 /* If this is the eoftoken, and this is not the initial state, then
209 this is the final state. */
210 if (symbol
== 0 && first_state
)
211 final_state
= p
->number
;
216 last_state
->next
= p
;
225 /*--------------------------------------------------------------.
226 | Find the state number for the state we would get to (from the |
227 | current state) by shifting symbol. Create a new state if no |
228 | equivalent one exists already. Used by append_states. |
229 `--------------------------------------------------------------*/
232 get_state (symbol_number_t symbol
, size_t core_size
, item_number_t
*core
)
239 fprintf (stderr
, "Entering get_state, state = %d, symbol = %d (%s)\n",
240 this_state
->number
, symbol
, quotearg_style (escape_quoting_style
,
241 symbols
[symbol
]->tag
));
243 /* Add up the target state's active item numbers to get a hash key.
246 for (i
= 0; i
< core_size
; ++i
)
248 key
= key
% STATE_HASH_SIZE
;
249 sp
= state_hash
[key
];
256 if (sp
->nitems
== core_size
)
259 for (i
= 0; i
< core_size
; ++i
)
260 if (core
[i
] != sp
->items
[i
])
270 else /* bucket exhausted and no match */
272 sp
= sp
->link
= new_state (symbol
, core_size
, core
);
278 else /* bucket is empty */
280 state_hash
[key
] = sp
= new_state (symbol
, core_size
, core
);
284 fprintf (stderr
, "Exiting get_state => %d\n", sp
->number
);
289 /*------------------------------------------------------------------.
290 | Use the information computed by new_itemsets to find the state |
291 | numbers reached by each shift transition from the current state. |
293 | shiftset is set up as a vector of state numbers of those states. |
294 `------------------------------------------------------------------*/
301 symbol_number_t symbol
;
304 fprintf (stderr
, "Entering append_states, state = %d\n",
307 /* first sort shift_symbol into increasing order */
309 for (i
= 1; i
< nshifts
; i
++)
311 symbol
= shift_symbol
[i
];
313 while (j
> 0 && shift_symbol
[j
- 1] > symbol
)
315 shift_symbol
[j
] = shift_symbol
[j
- 1];
318 shift_symbol
[j
] = symbol
;
321 for (i
= 0; i
< nshifts
; i
++)
323 symbol
= shift_symbol
[i
];
324 shiftset
[i
] = get_state (symbol
,
325 kernel_size
[symbol
], kernel_base
[symbol
]);
333 /* The 0 at the lhs is the index of the item of this initial rule. */
334 kernel_base
[0][0] = 0;
336 this_state
= new_state (0, kernel_size
[0], kernel_base
[0]);
340 /*------------------------------------------------------------.
341 | Save the NSHIFTS of SHIFTSET into the current linked list. |
342 `------------------------------------------------------------*/
347 shifts
*p
= shifts_new (nshifts
);
348 memcpy (p
->shifts
, shiftset
, nshifts
* sizeof (shiftset
[0]));
349 this_state
->shifts
= p
;
353 /*----------------------------------------------------------------.
354 | Find which rules can be used for reduction transitions from the |
355 | current state and make a reductions structure for the state to |
356 | record their rule numbers. |
357 `----------------------------------------------------------------*/
360 save_reductions (void)
365 /* If this is the final state, we want it to have no reductions at
366 all, although it has one for `START_SYMBOL EOF .'. */
367 if (this_state
->number
== final_state
)
370 /* Find and count the active items that represent ends of rules. */
371 for (i
= 0; i
< nritemset
; ++i
)
373 int item
= ritem
[itemset
[i
]];
375 redset
[count
++] = -item
;
378 /* Make a reductions structure and copy the data into it. */
379 this_state
->reductions
= reductions_new (count
);
380 memcpy (this_state
->reductions
->rules
, redset
, count
* sizeof (redset
[0]));
392 states
= XCALLOC (state_t
*, nstates
);
394 for (sp
= first_state
; sp
; sp
= sp
->next
)
396 /* Pessimization, but simplification of the code: make sure all
397 the states have a shifts, errs, and reductions, even if
400 sp
->shifts
= shifts_new (0);
402 sp
->errs
= errs_new (0);
404 sp
->reductions
= reductions_new (0);
406 states
[sp
->number
] = sp
;
410 /*-------------------------------------------------------------------.
411 | Compute the nondeterministic finite state machine (see state.h for |
412 | details) from the grammar. |
413 `-------------------------------------------------------------------*/
416 generate_states (void)
419 new_closure (nritems
);
425 fprintf (stderr
, "Processing state %d (reached by %s)\n",
427 quotearg_style (escape_quoting_style
,
428 symbols
[this_state
->accessing_symbol
]->tag
));
429 /* Set up ruleset and itemset for the transitions out of this
430 state. ruleset gets a 1 bit for each rule that could reduce
431 now. itemset gets a vector of all the items that could be
433 closure (this_state
->items
, this_state
->nitems
);
434 /* record the reductions allowed out of this state */
436 /* find the itemsets of the states that shifts can reach */
438 /* find or create the core structures for those states */
441 /* create the shifts structures for the shifts to those states,
442 now that the state numbers transitioning to are known */
445 /* states are queued when they are created; process them all */
446 this_state
= this_state
->next
;
449 /* discard various storage */