]> git.saurik.com Git - bison.git/blob - src/reduce.c
* Makefile.maint, GNUmakefile: New, from Autoconf 2.52.
[bison.git] / src / reduce.c
1 /* Grammar reduction for Bison.
2 Copyright 1988, 1989, 2000 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Reduce the grammar: Find and eliminate unreachable terminals,
23 nonterminals, and productions. David S. Bakin. */
24
25 /* Don't eliminate unreachable terminals: They may be used by the
26 user's parser. */
27
28 #include "system.h"
29 #include "getargs.h"
30 #include "files.h"
31 #include "gram.h"
32 #include "xalloc.h"
33 #include "complain.h"
34 #include "reduce.h"
35 #include "reader.h"
36 #include "getargs.h"
37
38 typedef unsigned *BSet;
39 typedef short *rule;
40
41
42 /* N is set of all nonterminals which are not useless. P is set of
43 all rules which have no useless nonterminals in their RHS. V is
44 the set of all accessible symbols. */
45
46 static BSet N, P, V, V1;
47
48 static int nuseful_productions;
49 static int nuseless_productions;
50 static int nuseful_nonterminals;
51 static int nuseless_nonterminals;
52 \f
53 static bool
54 bits_equal (BSet L, BSet R, int n)
55 {
56 int i;
57
58 for (i = n - 1; i >= 0; i--)
59 if (L[i] != R[i])
60 return FALSE;
61 return TRUE;
62 }
63
64
65 static int
66 nbits (unsigned i)
67 {
68 int count = 0;
69
70 while (i != 0)
71 {
72 i ^= (i & ((unsigned) (-(int) i)));
73 ++count;
74 }
75 return count;
76 }
77
78
79 static int
80 bits_size (BSet S, int n)
81 {
82 int i, count = 0;
83
84 for (i = n - 1; i >= 0; i--)
85 count += nbits (S[i]);
86 return count;
87 }
88 \f
89 /*-------------------------------------------------------------------.
90 | Another way to do this would be with a set for each production and |
91 | then do subset tests against N0, but even for the C grammar the |
92 | whole reducing process takes only 2 seconds on my 8Mhz AT. |
93 `-------------------------------------------------------------------*/
94
95 static bool
96 useful_production (int i, BSet N0)
97 {
98 rule r;
99 short n;
100
101 /* A production is useful if all of the nonterminals in its appear
102 in the set of useful nonterminals. */
103
104 for (r = &ritem[rrhs[i]]; *r > 0; r++)
105 if (ISVAR (n = *r))
106 if (!BITISSET (N0, n - ntokens))
107 return FALSE;
108 return TRUE;
109 }
110
111
112 /*---------------------------------------------------------.
113 | Remember that rules are 1-origin, symbols are 0-origin. |
114 `---------------------------------------------------------*/
115
116 static void
117 useless_nonterminals (void)
118 {
119 BSet Np, Ns;
120 int i, n;
121
122 /* N is set as built. Np is set being built this iteration. P is
123 set of all productions which have a RHS all in N. */
124
125 Np = XCALLOC (unsigned, WORDSIZE (nvars));
126
127 /* The set being computed is a set of nonterminals which can derive
128 the empty string or strings consisting of all terminals. At each
129 iteration a nonterminal is added to the set if there is a
130 production with that nonterminal as its LHS for which all the
131 nonterminals in its RHS are already in the set. Iterate until
132 the set being computed remains unchanged. Any nonterminals not
133 in the set at that point are useless in that they will never be
134 used in deriving a sentence of the language.
135
136 This iteration doesn't use any special traversal over the
137 productions. A set is kept of all productions for which all the
138 nonterminals in the RHS are in useful. Only productions not in
139 this set are scanned on each iteration. At the end, this set is
140 saved to be used when finding useful productions: only
141 productions in this set will appear in the final grammar. */
142
143 n = 0;
144 while (1)
145 {
146 for (i = WORDSIZE (nvars) - 1; i >= 0; i--)
147 Np[i] = N[i];
148 for (i = 1; i <= nrules; i++)
149 {
150 if (!BITISSET (P, i))
151 {
152 if (useful_production (i, N))
153 {
154 SETBIT (Np, rlhs[i] - ntokens);
155 SETBIT (P, i);
156 }
157 }
158 }
159 if (bits_equal (N, Np, WORDSIZE (nvars)))
160 break;
161 Ns = Np;
162 Np = N;
163 N = Ns;
164 }
165 XFREE (N);
166 N = Np;
167 }
168
169
170 static void
171 inaccessable_symbols (void)
172 {
173 BSet Vp, Vs, Pp;
174 int i, n;
175 short t;
176 rule r;
177
178 /* Find out which productions are reachable and which symbols are
179 used. Starting with an empty set of productions and a set of
180 symbols which only has the start symbol in it, iterate over all
181 productions until the set of productions remains unchanged for an
182 iteration. For each production which has a LHS in the set of
183 reachable symbols, add the production to the set of reachable
184 productions, and add all of the nonterminals in the RHS of the
185 production to the set of reachable symbols.
186
187 Consider only the (partially) reduced grammar which has only
188 nonterminals in N and productions in P.
189
190 The result is the set P of productions in the reduced grammar,
191 and the set V of symbols in the reduced grammar.
192
193 Although this algorithm also computes the set of terminals which
194 are reachable, no terminal will be deleted from the grammar. Some
195 terminals might not be in the grammar but might be generated by
196 semantic routines, and so the user might want them available with
197 specified numbers. (Is this true?) However, the nonreachable
198 terminals are printed (if running in verbose mode) so that the
199 user can know. */
200
201 Vp = XCALLOC (unsigned, WORDSIZE (nsyms));
202 Pp = XCALLOC (unsigned, WORDSIZE (nrules + 1));
203
204 /* If the start symbol isn't useful, then nothing will be useful. */
205 if (!BITISSET (N, start_symbol - ntokens))
206 goto end_iteration;
207
208 SETBIT (V, start_symbol);
209
210 n = 0;
211 while (1)
212 {
213 for (i = WORDSIZE (nsyms) - 1; i >= 0; i--)
214 Vp[i] = V[i];
215 for (i = 1; i <= nrules; i++)
216 {
217 if (!BITISSET (Pp, i) && BITISSET (P, i) && BITISSET (V, rlhs[i]))
218 {
219 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
220 {
221 if (ISTOKEN (t = *r) || BITISSET (N, t - ntokens))
222 {
223 SETBIT (Vp, t);
224 }
225 }
226 SETBIT (Pp, i);
227 }
228 }
229 if (bits_equal (V, Vp, WORDSIZE (nsyms)))
230 {
231 break;
232 }
233 Vs = Vp;
234 Vp = V;
235 V = Vs;
236 }
237 end_iteration:
238
239 XFREE (V);
240 V = Vp;
241
242 /* Tokens 0, 1, and 2 are internal to Bison. Consider them useful. */
243 SETBIT (V, 0); /* end-of-input token */
244 SETBIT (V, 1); /* error token */
245 SETBIT (V, 2); /* some undefined token */
246
247 XFREE (P);
248 P = Pp;
249
250 nuseful_productions = bits_size (P, WORDSIZE (nrules + 1));
251 nuseless_productions = nrules - nuseful_productions;
252
253 nuseful_nonterminals = 0;
254 for (i = ntokens; i < nsyms; i++)
255 if (BITISSET (V, i))
256 nuseful_nonterminals++;
257 nuseless_nonterminals = nvars - nuseful_nonterminals;
258
259 /* A token that was used in %prec should not be warned about. */
260 for (i = 1; i < nrules; i++)
261 if (rprecsym[i] != 0)
262 SETBIT (V1, rprecsym[i]);
263 }
264
265 static void
266 reduce_grammar_tables (void)
267 {
268 /* This is turned off because we would need to change the numbers
269 in the case statements in the actions file. */
270 #if 0
271 /* remove useless productions */
272 if (nuseless_productions > 0)
273 {
274 short np, pn, ni, pi;
275
276 np = 0;
277 ni = 0;
278 for (pn = 1; pn <= nrules; pn++)
279 {
280 if (BITISSET (P, pn))
281 {
282 np++;
283 if (pn != np)
284 {
285 rlhs[np] = rlhs[pn];
286 rline[np] = rline[pn];
287 rprec[np] = rprec[pn];
288 rassoc[np] = rassoc[pn];
289 rrhs[np] = rrhs[pn];
290 if (rrhs[np] != ni)
291 {
292 pi = rrhs[np];
293 rrhs[np] = ni;
294 while (ritem[pi] >= 0)
295 ritem[ni++] = ritem[pi++];
296 ritem[ni++] = -np;
297 }
298 }
299 else
300 {
301 while (ritem[ni++] >= 0);
302 }
303 }
304 }
305 ritem[ni] = 0;
306 nrules -= nuseless_productions;
307 nitems = ni;
308
309 /* Is it worth it to reduce the amount of memory for the
310 grammar? Probably not. */
311
312 }
313 #endif /* 0 */
314 /* Disable useless productions,
315 since they may contain useless nonterms
316 that would get mapped below to -1 and confuse everyone. */
317 if (nuseless_productions > 0)
318 {
319 int pn;
320
321 for (pn = 1; pn <= nrules; pn++)
322 {
323 if (!BITISSET (P, pn))
324 {
325 rlhs[pn] = -1;
326 }
327 }
328 }
329
330 /* remove useless symbols */
331 if (nuseless_nonterminals > 0)
332 {
333
334 int i, n;
335 /* short j; JF unused */
336 short *nontermmap;
337 rule r;
338
339 /* Create a map of nonterminal number to new nonterminal
340 number. -1 in the map means it was useless and is being
341 eliminated. */
342
343 nontermmap = XCALLOC (short, nvars) - ntokens;
344 for (i = ntokens; i < nsyms; i++)
345 nontermmap[i] = -1;
346
347 n = ntokens;
348 for (i = ntokens; i < nsyms; i++)
349 if (BITISSET (V, i))
350 nontermmap[i] = n++;
351
352 /* Shuffle elements of tables indexed by symbol number. */
353
354 for (i = ntokens; i < nsyms; i++)
355 {
356 n = nontermmap[i];
357 if (n >= 0)
358 {
359 sassoc[n] = sassoc[i];
360 sprec[n] = sprec[i];
361 tags[n] = tags[i];
362 }
363 else
364 {
365 free (tags[i]);
366 }
367 }
368
369 /* Replace all symbol numbers in valid data structures. */
370
371 for (i = 1; i <= nrules; i++)
372 {
373 /* Ignore the rules disabled above. */
374 if (rlhs[i] >= 0)
375 rlhs[i] = nontermmap[rlhs[i]];
376 if (ISVAR (rprecsym[i]))
377 /* Can this happen? */
378 rprecsym[i] = nontermmap[rprecsym[i]];
379 }
380
381 for (r = ritem; *r; r++)
382 if (ISVAR (*r))
383 *r = nontermmap[*r];
384
385 start_symbol = nontermmap[start_symbol];
386
387 nsyms -= nuseless_nonterminals;
388 nvars -= nuseless_nonterminals;
389
390 free (&nontermmap[ntokens]);
391 }
392 }
393
394 static void
395 print_results (void)
396 {
397 int i;
398 /* short j; JF unused */
399 rule r;
400 bool b;
401
402 if (nuseless_nonterminals > 0)
403 {
404 obstack_sgrow (&output_obstack, _("Useless nonterminals:"));
405 obstack_sgrow (&output_obstack, "\n\n");
406 for (i = ntokens; i < nsyms; i++)
407 if (!BITISSET (V, i))
408 obstack_fgrow1 (&output_obstack, " %s\n", tags[i]);
409 }
410 b = FALSE;
411 for (i = 0; i < ntokens; i++)
412 {
413 if (!BITISSET (V, i) && !BITISSET (V1, i))
414 {
415 if (!b)
416 {
417 obstack_sgrow (&output_obstack, "\n\n");
418 obstack_sgrow (&output_obstack,
419 _("Terminals which are not used:"));
420 obstack_sgrow (&output_obstack, "\n\n");
421 b = TRUE;
422 }
423 obstack_fgrow1 (&output_obstack, " %s\n", tags[i]);
424 }
425 }
426
427 if (nuseless_productions > 0)
428 {
429 obstack_sgrow (&output_obstack, "\n\n");
430 obstack_sgrow (&output_obstack, _("Useless rules:"));
431 obstack_sgrow (&output_obstack, "\n\n");
432 for (i = 1; i <= nrules; i++)
433 {
434 if (!BITISSET (P, i))
435 {
436 obstack_fgrow1 (&output_obstack, "#%-4d ", i);
437 obstack_fgrow1 (&output_obstack, "%s :\t", tags[rlhs[i]]);
438 for (r = &ritem[rrhs[i]]; *r >= 0; r++)
439 obstack_fgrow1 (&output_obstack, " %s", tags[*r]);
440 obstack_sgrow (&output_obstack, ";\n");
441 }
442 }
443 }
444 if (nuseless_nonterminals > 0 || nuseless_productions > 0 || b)
445 obstack_sgrow (&output_obstack, "\n\n");
446 }
447 \f
448 #if 0 /* XXX currently unused. */
449 static void
450 dump_grammar (void)
451 {
452 int i;
453 rule r;
454
455 obstack_fgrow5 (&output_obstack,
456 "ntokens = %d, nvars = %d, nsyms = %d, nrules = %d, nitems = %d\n\n",
457 ntokens, nvars, nsyms, nrules, nitems);
458 obstack_sgrow (&output_obstack,
459 _("Variables\n---------\n\n"));
460 obstack_sgrow (&output_obstack,
461 _("Value Sprec Sassoc Tag\n"));
462 for (i = ntokens; i < nsyms; i++)
463 obstack_fgrow4 (&output_obstack,
464 "%5d %5d %5d %s\n", i, sprec[i], sassoc[i], tags[i]);
465 obstack_sgrow (&output_obstack, "\n\n");
466 obstack_sgrow (&output_obstack, _("Rules\n-----\n\n"));
467 for (i = 1; i <= nrules; i++)
468 {
469 obstack_fgrow5 (&output_obstack, "%-5d(%5d%5d)%5d : (@%-5d)",
470 i, rprec[i], rassoc[i], rlhs[i], rrhs[i]);
471 for (r = &ritem[rrhs[i]]; *r > 0; r++)
472 obstack_fgrow1 (&output_obstack, "%5d", *r);
473 obstack_fgrow1 (&output_obstack, " [%d]\n", -(*r));
474 }
475 obstack_sgrow (&output_obstack, "\n\n");
476 obstack_sgrow (&output_obstack,
477 _("Rules interpreted\n-----------------\n\n"));
478 for (i = 1; i <= nrules; i++)
479 {
480 obstack_fgrow2 (&output_obstack, "%-5d %s :", i, tags[rlhs[i]]);
481 for (r = &ritem[rrhs[i]]; *r > 0; r++)
482 obstack_fgrow1 (&output_obstack, " %s", tags[*r]);
483 obstack_grow1 (&output_obstack, '\n');
484 }
485 obstack_sgrow (&output_obstack, "\n\n");
486 }
487 #endif
488
489
490 static void
491 print_notices (void)
492 {
493 if (yacc_flag && nuseless_productions)
494 fprintf (stderr, _("%d rules never reduced\n"), nuseless_productions);
495
496 fprintf (stderr, _("%s contains "), infile);
497
498 if (nuseless_nonterminals > 0)
499 {
500 fprintf (stderr, _("%d useless nonterminal%s"),
501 nuseless_nonterminals,
502 (nuseless_nonterminals == 1 ? "" : "s"));
503 }
504 if (nuseless_nonterminals > 0 && nuseless_productions > 0)
505 fprintf (stderr, _(" and "));
506
507 if (nuseless_productions > 0)
508 {
509 fprintf (stderr, _("%d useless rule%s"),
510 nuseless_productions, (nuseless_productions == 1 ? "" : "s"));
511 }
512 fprintf (stderr, "\n");
513 fflush (stderr);
514 }
515 \f
516 void
517 reduce_grammar (void)
518 {
519 bool reduced;
520
521 /* Allocate the global sets used to compute the reduced grammar */
522
523 N = XCALLOC (unsigned, WORDSIZE (nvars));
524 P = XCALLOC (unsigned, WORDSIZE (nrules + 1));
525 V = XCALLOC (unsigned, WORDSIZE (nsyms));
526 V1 = XCALLOC (unsigned, WORDSIZE (nsyms));
527
528 useless_nonterminals ();
529 inaccessable_symbols ();
530
531 reduced = (bool) (nuseless_nonterminals + nuseless_productions > 0);
532
533 if (verbose_flag)
534 print_results ();
535
536 if (reduced == FALSE)
537 goto done_reducing;
538
539 print_notices ();
540
541 if (!BITISSET (N, start_symbol - ntokens))
542 fatal (_("Start symbol %s does not derive any sentence"),
543 tags[start_symbol]);
544
545 reduce_grammar_tables ();
546 #if 0
547 if (verbose_flag)
548 {
549 obstack_fgrow1 (&output_obstack, "REDUCED GRAMMAR\n\n");
550 dump_grammar ();
551 }
552 #endif
553
554 if (statistics_flag)
555 fprintf (stderr, _("reduced %s defines %d terminal%s, %d nonterminal%s\
556 , and %d production%s.\n"),
557 infile,
558 ntokens,
559 (ntokens == 1 ? "" : "s"),
560 nvars,
561 (nvars == 1 ? "" : "s"),
562 nrules,
563 (nrules == 1 ? "" : "s"));
564
565 done_reducing:
566 /* Free the global sets used to compute the reduced grammar */
567
568 XFREE (N);
569 XFREE (V);
570 XFREE (P);
571 }