]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/symtab.h (struct symbol): Declare the printer and destructor
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004 Free
4 Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
26
27 #include "system.h"
28
29 #include <bitset.h>
30 #include <quotearg.h>
31
32 #include "LR0.h"
33 #include "closure.h"
34 #include "complain.h"
35 #include "getargs.h"
36 #include "gram.h"
37 #include "gram.h"
38 #include "lalr.h"
39 #include "reader.h"
40 #include "reduce.h"
41 #include "state.h"
42 #include "symtab.h"
43
44 typedef struct state_list
45 {
46 struct state_list *next;
47 state *state;
48 } state_list;
49
50 static state_list *first_state = NULL;
51 static state_list *last_state = NULL;
52
53
54 /*------------------------------------------------------------------.
55 | A state was just discovered from another state. Queue it for |
56 | later examination, in order to find its transitions. Return it. |
57 `------------------------------------------------------------------*/
58
59 static state *
60 state_list_append (symbol_number sym, size_t core_size, item_number *core)
61 {
62 state_list *node = xmalloc (sizeof *node);
63 state *s = state_new (sym, core_size, core);
64
65 if (trace_flag & trace_automaton)
66 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
67 nstates, sym, symbols[sym]->tag);
68
69 /* If this is the endtoken, and this is not the initial state, then
70 this is the final state. */
71 if (sym == 0 && first_state)
72 final_state = s;
73
74 node->next = NULL;
75 node->state = s;
76
77 if (!first_state)
78 first_state = node;
79 if (last_state)
80 last_state->next = node;
81 last_state = node;
82
83 return s;
84 }
85
86 static int nshifts;
87 static symbol_number *shift_symbol;
88
89 static rule **redset;
90 static state **shiftset;
91
92 static item_number **kernel_base;
93 static int *kernel_size;
94 static item_number *kernel_items;
95
96 \f
97 static void
98 allocate_itemsets (void)
99 {
100 symbol_number i;
101 rule_number r;
102 item_number *rhsp;
103
104 /* Count the number of occurrences of all the symbols in RITEMS.
105 Note that useless productions (hence useless nonterminals) are
106 browsed too, hence we need to allocate room for _all_ the
107 symbols. */
108 size_t count = 0;
109 size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
110 sizeof *symbol_count);
111
112 for (r = 0; r < nrules; ++r)
113 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
114 {
115 count++;
116 symbol_count[*rhsp]++;
117 }
118
119 /* See comments before new_itemsets. All the vectors of items
120 live inside KERNEL_ITEMS. The number of active items after
121 some symbol S cannot be more than the number of times that S
122 appears as an item, which is SYMBOL_COUNT[S].
123 We allocate that much space for each symbol. */
124
125 kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
126 kernel_items = xnmalloc (count, sizeof *kernel_items);
127
128 count = 0;
129 for (i = 0; i < nsyms; i++)
130 {
131 kernel_base[i] = kernel_items + count;
132 count += symbol_count[i];
133 }
134
135 free (symbol_count);
136 kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
137 }
138
139
140 static void
141 allocate_storage (void)
142 {
143 allocate_itemsets ();
144
145 shiftset = xnmalloc (nsyms, sizeof *shiftset);
146 redset = xnmalloc (nrules, sizeof *redset);
147 state_hash_new ();
148 shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
149 }
150
151
152 static void
153 free_storage (void)
154 {
155 free (shift_symbol);
156 free (redset);
157 free (shiftset);
158 free (kernel_base);
159 free (kernel_size);
160 free (kernel_items);
161 state_hash_free ();
162 }
163
164
165
166
167 /*---------------------------------------------------------------.
168 | Find which symbols can be shifted in S, and for each one |
169 | record which items would be active after that shift. Uses the |
170 | contents of itemset. |
171 | |
172 | shift_symbol is set to a vector of the symbols that can be |
173 | shifted. For each symbol in the grammar, kernel_base[symbol] |
174 | points to a vector of item numbers activated if that symbol is |
175 | shifted, and kernel_size[symbol] is their numbers. |
176 `---------------------------------------------------------------*/
177
178 static void
179 new_itemsets (state *s)
180 {
181 size_t i;
182
183 if (trace_flag & trace_automaton)
184 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
185
186 memset (kernel_size, 0, nsyms * sizeof *kernel_size);
187
188 nshifts = 0;
189
190 for (i = 0; i < nritemset; ++i)
191 if (ritem[itemset[i]] >= 0)
192 {
193 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
194 if (!kernel_size[sym])
195 {
196 shift_symbol[nshifts] = sym;
197 nshifts++;
198 }
199
200 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
201 kernel_size[sym]++;
202 }
203 }
204
205
206
207 /*--------------------------------------------------------------.
208 | Find the state we would get to (from the current state) by |
209 | shifting SYM. Create a new state if no equivalent one exists |
210 | already. Used by append_states. |
211 `--------------------------------------------------------------*/
212
213 static state *
214 get_state (symbol_number sym, size_t core_size, item_number *core)
215 {
216 state *sp;
217
218 if (trace_flag & trace_automaton)
219 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
220 sym, symbols[sym]->tag);
221
222 sp = state_hash_lookup (core_size, core);
223 if (!sp)
224 sp = state_list_append (sym, core_size, core);
225
226 if (trace_flag & trace_automaton)
227 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
228
229 return sp;
230 }
231
232 /*---------------------------------------------------------------.
233 | Use the information computed by new_itemsets to find the state |
234 | numbers reached by each shift transition from S. |
235 | |
236 | SHIFTSET is set up as a vector of those states. |
237 `---------------------------------------------------------------*/
238
239 static void
240 append_states (state *s)
241 {
242 int i;
243
244 if (trace_flag & trace_automaton)
245 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
246
247 /* First sort shift_symbol into increasing order. */
248
249 for (i = 1; i < nshifts; i++)
250 {
251 symbol_number sym = shift_symbol[i];
252 int j;
253 for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
254 shift_symbol[j] = shift_symbol[j - 1];
255 shift_symbol[j] = sym;
256 }
257
258 for (i = 0; i < nshifts; i++)
259 {
260 symbol_number sym = shift_symbol[i];
261 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
262 }
263 }
264
265
266 /*----------------------------------------------------------------.
267 | Find which rules can be used for reduction transitions from the |
268 | current state and make a reductions structure for the state to |
269 | record their rule numbers. |
270 `----------------------------------------------------------------*/
271
272 static void
273 save_reductions (state *s)
274 {
275 int count = 0;
276 size_t i;
277
278 /* Find and count the active items that represent ends of rules. */
279 for (i = 0; i < nritemset; ++i)
280 {
281 int item = ritem[itemset[i]];
282 if (item < 0)
283 redset[count++] = &rules[item_number_as_rule_number (item)];
284 }
285
286 /* Make a reductions structure and copy the data into it. */
287 state_reductions_set (s, count, redset);
288 }
289
290 \f
291 /*---------------.
292 | Build STATES. |
293 `---------------*/
294
295 static void
296 set_states (void)
297 {
298 states = xcalloc (nstates, sizeof *states);
299
300 while (first_state)
301 {
302 state_list *this = first_state;
303
304 /* Pessimization, but simplification of the code: make sure all
305 the states have valid transitions and reductions members,
306 even if reduced to 0. It is too soon for errs, which are
307 computed later, but set_conflicts. */
308 state *s = this->state;
309 if (!s->transitions)
310 state_transitions_set (s, 0, 0);
311 if (!s->reductions)
312 state_reductions_set (s, 0, 0);
313
314 states[s->number] = s;
315
316 first_state = this->next;
317 free (this);
318 }
319 first_state = NULL;
320 last_state = NULL;
321 }
322
323
324 /*-------------------------------------------------------------------.
325 | Compute the nondeterministic finite state machine (see state.h for |
326 | details) from the grammar. |
327 `-------------------------------------------------------------------*/
328
329 void
330 generate_states (void)
331 {
332 item_number initial_core = 0;
333 state_list *list = NULL;
334 allocate_storage ();
335 new_closure (nritems);
336
337 /* Create the initial state. The 0 at the lhs is the index of the
338 item of this initial rule. */
339 state_list_append (0, 1, &initial_core);
340
341 list = first_state;
342
343 while (list)
344 {
345 state *s = list->state;
346 if (trace_flag & trace_automaton)
347 fprintf (stderr, "Processing state %d (reached by %s)\n",
348 s->number,
349 symbols[s->accessing_symbol]->tag);
350 /* Set up ruleset and itemset for the transitions out of this
351 state. ruleset gets a 1 bit for each rule that could reduce
352 now. itemset gets a vector of all the items that could be
353 accepted next. */
354 closure (s->items, s->nitems);
355 /* Record the reductions allowed out of this state. */
356 save_reductions (s);
357 /* Find the itemsets of the states that shifts can reach. */
358 new_itemsets (s);
359 /* Find or create the core structures for those states. */
360 append_states (s);
361
362 /* Create the shifts structures for the shifts to those states,
363 now that the state numbers transitioning to are known. */
364 state_transitions_set (s, nshifts, shiftset);
365
366 /* states are queued when they are created; process them all.
367 */
368 list = list->next;
369 }
370
371 /* discard various storage */
372 free_closure ();
373 free_storage ();
374
375 /* Set up STATES. */
376 set_states ();
377 }