]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/state.h (state_t): Replace the `lookaheadsp' member, a
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "bitset.h"
27 #include "quotearg.h"
28 #include "symtab.h"
29 #include "gram.h"
30 #include "getargs.h"
31 #include "reader.h"
32 #include "gram.h"
33 #include "state.h"
34 #include "complain.h"
35 #include "closure.h"
36 #include "LR0.h"
37 #include "lalr.h"
38 #include "reduce.h"
39
40 unsigned int nstates = 0;
41 /* Initialize the final state to -1, otherwise, it might be set to 0
42 by default, and since we don't compute the reductions of the final
43 state, we end up not computing the reductions of the initial state,
44 which is of course needed.
45
46 FINAL_STATE is properly set by new_state when it recognizes the
47 accessing symbol: EOF. */
48 int final_state = -1;
49 static state_t *first_state = NULL;
50
51 static state_t *this_state = NULL;
52 static state_t *last_state = NULL;
53
54 static int nshifts;
55 static symbol_number_t *shift_symbol = NULL;
56
57 static short *redset = NULL;
58 static short *shiftset = NULL;
59
60 static item_number_t **kernel_base = NULL;
61 static int *kernel_size = NULL;
62 static item_number_t *kernel_items = NULL;
63
64 /* hash table for states, to recognize equivalent ones. */
65
66 #define STATE_HASH_SIZE 1009
67 static state_t **state_hash = NULL;
68
69 \f
70 static void
71 allocate_itemsets (void)
72 {
73 int i, r;
74 item_number_t *rhsp;
75
76 /* Count the number of occurrences of all the symbols in RITEMS.
77 Note that useless productions (hence useless nonterminals) are
78 browsed too, hence we need to allocate room for _all_ the
79 symbols. */
80 int count = 0;
81 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
82
83 for (r = 1; r < nrules + 1; ++r)
84 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
85 {
86 count++;
87 symbol_count[*rhsp]++;
88 }
89
90 /* See comments before new_itemsets. All the vectors of items
91 live inside KERNEL_ITEMS. The number of active items after
92 some symbol cannot be more than the number of times that symbol
93 appears as an item, which is symbol_count[symbol].
94 We allocate that much space for each symbol. */
95
96 kernel_base = XCALLOC (item_number_t *, nsyms);
97 if (count)
98 kernel_items = XCALLOC (item_number_t, count);
99
100 count = 0;
101 for (i = 0; i < nsyms; i++)
102 {
103 kernel_base[i] = kernel_items + count;
104 count += symbol_count[i];
105 }
106
107 free (symbol_count);
108 kernel_size = XCALLOC (int, nsyms);
109 }
110
111
112 static void
113 allocate_storage (void)
114 {
115 allocate_itemsets ();
116
117 shiftset = XCALLOC (short, nsyms);
118 redset = XCALLOC (short, nrules + 1);
119 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
120 shift_symbol = XCALLOC (symbol_number_t, nsyms);
121 }
122
123
124 static void
125 free_storage (void)
126 {
127 free (shift_symbol);
128 free (redset);
129 free (shiftset);
130 free (kernel_base);
131 free (kernel_size);
132 XFREE (kernel_items);
133 free (state_hash);
134 }
135
136
137
138
139 /*----------------------------------------------------------------.
140 | Find which symbols can be shifted in the current state, and for |
141 | each one record which items would be active after that shift. |
142 | Uses the contents of itemset. |
143 | |
144 | shift_symbol is set to a vector of the symbols that can be |
145 | shifted. For each symbol in the grammar, kernel_base[symbol] |
146 | points to a vector of item numbers activated if that symbol is |
147 | shifted, and kernel_size[symbol] is their numbers. |
148 `----------------------------------------------------------------*/
149
150 static void
151 new_itemsets (void)
152 {
153 int i;
154
155 if (trace_flag)
156 fprintf (stderr, "Entering new_itemsets, state = %d\n",
157 this_state->number);
158
159 for (i = 0; i < nsyms; i++)
160 kernel_size[i] = 0;
161
162 nshifts = 0;
163
164 for (i = 0; i < nritemset; ++i)
165 if (ritem[itemset[i]] >= 0)
166 {
167 symbol_number_t symbol
168 = item_number_as_symbol_number (ritem[itemset[i]]);
169 if (!kernel_size[symbol])
170 {
171 shift_symbol[nshifts] = symbol;
172 nshifts++;
173 }
174
175 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
176 kernel_size[symbol]++;
177 }
178 }
179
180
181
182 /*-----------------------------------------------------------------.
183 | Subroutine of get_state. Create a new state for those items, if |
184 | necessary. |
185 `-----------------------------------------------------------------*/
186
187 static state_t *
188 new_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
189 {
190 state_t *p;
191
192 if (trace_flag)
193 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
194 nstates, symbol, symbol_tag_get (symbols[symbol]));
195
196 if (nstates >= SHRT_MAX)
197 fatal (_("too many states (max %d)"), SHRT_MAX);
198
199 p = STATE_ALLOC (core_size);
200 p->accessing_symbol = symbol;
201 p->number = nstates;
202 p->solved_conflicts = NULL;
203
204 p->nitems = core_size;
205 memcpy (p->items, core, core_size * sizeof (core[0]));
206
207 /* If this is the eoftoken, and this is not the initial state, then
208 this is the final state. */
209 if (symbol == 0 && first_state)
210 final_state = p->number;
211
212 if (!first_state)
213 first_state = p;
214 if (last_state)
215 last_state->next = p;
216 last_state = p;
217
218 nstates++;
219
220 return p;
221 }
222
223
224 /*--------------------------------------------------------------.
225 | Find the state number for the state we would get to (from the |
226 | current state) by shifting symbol. Create a new state if no |
227 | equivalent one exists already. Used by append_states. |
228 `--------------------------------------------------------------*/
229
230 static int
231 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
232 {
233 int key;
234 size_t i;
235 state_t *sp;
236
237 if (trace_flag)
238 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
239 this_state->number, symbol,
240 symbol_tag_get (symbols[symbol]));
241
242 /* Add up the target state's active item numbers to get a hash key.
243 */
244 key = 0;
245 for (i = 0; i < core_size; ++i)
246 key += core[i];
247 key = key % STATE_HASH_SIZE;
248 sp = state_hash[key];
249
250 if (sp)
251 {
252 int found = 0;
253 while (!found)
254 {
255 if (sp->nitems == core_size)
256 {
257 found = 1;
258 for (i = 0; i < core_size; ++i)
259 if (core[i] != sp->items[i])
260 found = 0;
261 }
262
263 if (!found)
264 {
265 if (sp->link)
266 {
267 sp = sp->link;
268 }
269 else /* bucket exhausted and no match */
270 {
271 sp = sp->link = new_state (symbol, core_size, core);
272 found = 1;
273 }
274 }
275 }
276 }
277 else /* bucket is empty */
278 {
279 state_hash[key] = sp = new_state (symbol, core_size, core);
280 }
281
282 if (trace_flag)
283 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
284
285 return sp->number;
286 }
287
288 /*------------------------------------------------------------------.
289 | Use the information computed by new_itemsets to find the state |
290 | numbers reached by each shift transition from the current state. |
291 | |
292 | shiftset is set up as a vector of state numbers of those states. |
293 `------------------------------------------------------------------*/
294
295 static void
296 append_states (void)
297 {
298 int i;
299 int j;
300 symbol_number_t symbol;
301
302 if (trace_flag)
303 fprintf (stderr, "Entering append_states, state = %d\n",
304 this_state->number);
305
306 /* first sort shift_symbol into increasing order */
307
308 for (i = 1; i < nshifts; i++)
309 {
310 symbol = shift_symbol[i];
311 j = i;
312 while (j > 0 && shift_symbol[j - 1] > symbol)
313 {
314 shift_symbol[j] = shift_symbol[j - 1];
315 j--;
316 }
317 shift_symbol[j] = symbol;
318 }
319
320 for (i = 0; i < nshifts; i++)
321 {
322 symbol = shift_symbol[i];
323 shiftset[i] = get_state (symbol,
324 kernel_size[symbol], kernel_base[symbol]);
325 }
326 }
327
328
329 static void
330 new_states (void)
331 {
332 /* The 0 at the lhs is the index of the item of this initial rule. */
333 kernel_base[0][0] = 0;
334 kernel_size[0] = 1;
335 this_state = new_state (0, kernel_size[0], kernel_base[0]);
336 }
337
338
339 /*------------------------------------------------------------.
340 | Save the NSHIFTS of SHIFTSET into the current linked list. |
341 `------------------------------------------------------------*/
342
343 static void
344 save_shifts (void)
345 {
346 shifts *p = shifts_new (nshifts);
347 memcpy (p->shifts, shiftset, nshifts * sizeof (shiftset[0]));
348 this_state->shifts = p;
349 }
350
351
352 /*----------------------------------------------------------------.
353 | Find which rules can be used for reduction transitions from the |
354 | current state and make a reductions structure for the state to |
355 | record their rule numbers. |
356 `----------------------------------------------------------------*/
357
358 static void
359 save_reductions (void)
360 {
361 int count = 0;
362 int i;
363
364 /* If this is the final state, we want it to have no reductions at
365 all, although it has one for `START_SYMBOL EOF .'. */
366 if (this_state->number == final_state)
367 return;
368
369 /* Find and count the active items that represent ends of rules. */
370 for (i = 0; i < nritemset; ++i)
371 {
372 int item = ritem[itemset[i]];
373 if (item < 0)
374 redset[count++] = -item;
375 }
376
377 /* Make a reductions structure and copy the data into it. */
378 this_state->reductions = reductions_new (count);
379 memcpy (this_state->reductions->rules, redset, count * sizeof (redset[0]));
380 }
381
382 \f
383 /*---------------.
384 | Build STATES. |
385 `---------------*/
386
387 static void
388 set_states (void)
389 {
390 state_t *sp;
391 states = XCALLOC (state_t *, nstates);
392
393 for (sp = first_state; sp; sp = sp->next)
394 {
395 /* Pessimization, but simplification of the code: make sure all
396 the states have a shifts, errs, and reductions, even if
397 reduced to 0. */
398 if (!sp->shifts)
399 sp->shifts = shifts_new (0);
400 if (!sp->errs)
401 sp->errs = errs_new (0);
402 if (!sp->reductions)
403 sp->reductions = reductions_new (0);
404
405 states[sp->number] = sp;
406 }
407 }
408
409 /*-------------------------------------------------------------------.
410 | Compute the nondeterministic finite state machine (see state.h for |
411 | details) from the grammar. |
412 `-------------------------------------------------------------------*/
413
414 void
415 generate_states (void)
416 {
417 allocate_storage ();
418 new_closure (nritems);
419 new_states ();
420
421 while (this_state)
422 {
423 if (trace_flag)
424 fprintf (stderr, "Processing state %d (reached by %s)\n",
425 this_state->number,
426 symbol_tag_get (symbols[this_state->accessing_symbol]));
427 /* Set up ruleset and itemset for the transitions out of this
428 state. ruleset gets a 1 bit for each rule that could reduce
429 now. itemset gets a vector of all the items that could be
430 accepted next. */
431 closure (this_state->items, this_state->nitems);
432 /* record the reductions allowed out of this state */
433 save_reductions ();
434 /* find the itemsets of the states that shifts can reach */
435 new_itemsets ();
436 /* find or create the core structures for those states */
437 append_states ();
438
439 /* create the shifts structures for the shifts to those states,
440 now that the state numbers transitioning to are known */
441 save_shifts ();
442
443 /* states are queued when they are created; process them all */
444 this_state = this_state->next;
445 }
446
447 /* discard various storage */
448 free_closure ();
449 free_storage ();
450
451 /* Set up STATES. */
452 set_states ();
453 }