]> git.saurik.com Git - bison.git/blob - src/LR0.c
* data/lalr1.cc: Reinstall the former ctor, for sake of
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004 Free
4 Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
26
27 #include "system.h"
28
29 #include <bitset.h>
30 #include <quotearg.h>
31
32 #include "LR0.h"
33 #include "closure.h"
34 #include "complain.h"
35 #include "getargs.h"
36 #include "gram.h"
37 #include "gram.h"
38 #include "lalr.h"
39 #include "reader.h"
40 #include "reduce.h"
41 #include "state.h"
42 #include "symtab.h"
43
44 typedef struct state_list
45 {
46 struct state_list *next;
47 state *state;
48 } state_list;
49
50 static state_list *first_state = NULL;
51 static state_list *last_state = NULL;
52
53
54 /*------------------------------------------------------------------.
55 | A state was just discovered from another state. Queue it for |
56 | later examination, in order to find its transitions. Return it. |
57 `------------------------------------------------------------------*/
58
59 static state *
60 state_list_append (symbol_number sym, size_t core_size, item_number *core)
61 {
62 state_list *node = MALLOC (node, 1);
63 state *s = state_new (sym, core_size, core);
64
65 if (trace_flag & trace_automaton)
66 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
67 nstates, sym, symbols[sym]->tag);
68
69 /* If this is the endtoken, and this is not the initial state, then
70 this is the final state. */
71 if (sym == 0 && first_state)
72 final_state = s;
73
74 node->next = NULL;
75 node->state = s;
76
77 if (!first_state)
78 first_state = node;
79 if (last_state)
80 last_state->next = node;
81 last_state = node;
82
83 return s;
84 }
85
86 static int nshifts;
87 static symbol_number *shift_symbol = NULL;
88
89 static rule **redset = NULL;
90 static state **shiftset = NULL;
91
92 static item_number **kernel_base = NULL;
93 static int *kernel_size = NULL;
94 static item_number *kernel_items = NULL;
95
96 \f
97 static void
98 allocate_itemsets (void)
99 {
100 symbol_number i;
101 rule_number r;
102 item_number *rhsp;
103
104 /* Count the number of occurrences of all the symbols in RITEMS.
105 Note that useless productions (hence useless nonterminals) are
106 browsed too, hence we need to allocate room for _all_ the
107 symbols. */
108 int count = 0;
109 short int *symbol_count = CALLOC (symbol_count,
110 nsyms + nuseless_nonterminals);
111
112 for (r = 0; r < nrules; ++r)
113 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
114 {
115 count++;
116 symbol_count[*rhsp]++;
117 }
118
119 /* See comments before new_itemsets. All the vectors of items
120 live inside KERNEL_ITEMS. The number of active items after
121 some symbol S cannot be more than the number of times that S
122 appears as an item, which is SYMBOL_COUNT[S].
123 We allocate that much space for each symbol. */
124
125 CALLOC (kernel_base, nsyms);
126 if (count)
127 CALLOC (kernel_items, count);
128
129 count = 0;
130 for (i = 0; i < nsyms; i++)
131 {
132 kernel_base[i] = kernel_items + count;
133 count += symbol_count[i];
134 }
135
136 free (symbol_count);
137 CALLOC (kernel_size, nsyms);
138 }
139
140
141 static void
142 allocate_storage (void)
143 {
144 allocate_itemsets ();
145
146 CALLOC (shiftset, nsyms);
147 CALLOC (redset, nrules);
148 state_hash_new ();
149 CALLOC (shift_symbol, nsyms);
150 }
151
152
153 static void
154 free_storage (void)
155 {
156 free (shift_symbol);
157 free (redset);
158 free (shiftset);
159 free (kernel_base);
160 free (kernel_size);
161 XFREE (kernel_items);
162 state_hash_free ();
163 }
164
165
166
167
168 /*---------------------------------------------------------------.
169 | Find which symbols can be shifted in S, and for each one |
170 | record which items would be active after that shift. Uses the |
171 | contents of itemset. |
172 | |
173 | shift_symbol is set to a vector of the symbols that can be |
174 | shifted. For each symbol in the grammar, kernel_base[symbol] |
175 | points to a vector of item numbers activated if that symbol is |
176 | shifted, and kernel_size[symbol] is their numbers. |
177 `---------------------------------------------------------------*/
178
179 static void
180 new_itemsets (state *s)
181 {
182 int i;
183
184 if (trace_flag & trace_automaton)
185 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
186
187 for (i = 0; i < nsyms; i++)
188 kernel_size[i] = 0;
189
190 nshifts = 0;
191
192 for (i = 0; i < nritemset; ++i)
193 if (ritem[itemset[i]] >= 0)
194 {
195 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
196 if (!kernel_size[sym])
197 {
198 shift_symbol[nshifts] = sym;
199 nshifts++;
200 }
201
202 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
203 kernel_size[sym]++;
204 }
205 }
206
207
208
209 /*--------------------------------------------------------------.
210 | Find the state we would get to (from the current state) by |
211 | shifting SYM. Create a new state if no equivalent one exists |
212 | already. Used by append_states. |
213 `--------------------------------------------------------------*/
214
215 static state *
216 get_state (symbol_number sym, size_t core_size, item_number *core)
217 {
218 state *sp;
219
220 if (trace_flag & trace_automaton)
221 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
222 sym, symbols[sym]->tag);
223
224 sp = state_hash_lookup (core_size, core);
225 if (!sp)
226 sp = state_list_append (sym, core_size, core);
227
228 if (trace_flag & trace_automaton)
229 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
230
231 return sp;
232 }
233
234 /*---------------------------------------------------------------.
235 | Use the information computed by new_itemsets to find the state |
236 | numbers reached by each shift transition from S. |
237 | |
238 | SHIFTSET is set up as a vector of those states. |
239 `---------------------------------------------------------------*/
240
241 static void
242 append_states (state *s)
243 {
244 int i;
245
246 if (trace_flag & trace_automaton)
247 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
248
249 /* First sort shift_symbol into increasing order. */
250
251 for (i = 1; i < nshifts; i++)
252 {
253 symbol_number sym = shift_symbol[i];
254 int j;
255 for (j = i; 0 < j && sym < shift_symbol [j - 1]; j--)
256 shift_symbol[j] = shift_symbol[j - 1];
257 shift_symbol[j] = sym;
258 }
259
260 for (i = 0; i < nshifts; i++)
261 {
262 symbol_number sym = shift_symbol[i];
263 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
264 }
265 }
266
267
268 /*----------------------------------------------------------------.
269 | Find which rules can be used for reduction transitions from the |
270 | current state and make a reductions structure for the state to |
271 | record their rule numbers. |
272 `----------------------------------------------------------------*/
273
274 static void
275 save_reductions (state *s)
276 {
277 int count = 0;
278 int i;
279
280 /* Find and count the active items that represent ends of rules. */
281 for (i = 0; i < nritemset; ++i)
282 {
283 int item = ritem[itemset[i]];
284 if (item < 0)
285 redset[count++] = &rules[item_number_as_rule_number (item)];
286 }
287
288 /* Make a reductions structure and copy the data into it. */
289 state_reductions_set (s, count, redset);
290 }
291
292 \f
293 /*---------------.
294 | Build STATES. |
295 `---------------*/
296
297 static void
298 set_states (void)
299 {
300 CALLOC (states, nstates);
301
302 while (first_state)
303 {
304 state_list *this = first_state;
305
306 /* Pessimization, but simplification of the code: make sure all
307 the states have valid transitions and reductions members,
308 even if reduced to 0. It is too soon for errs, which are
309 computed later, but set_conflicts. */
310 state *s = this->state;
311 if (!s->transitions)
312 state_transitions_set (s, 0, 0);
313 if (!s->reductions)
314 state_reductions_set (s, 0, 0);
315
316 states[s->number] = s;
317
318 first_state = this->next;
319 free (this);
320 }
321 first_state = NULL;
322 last_state = NULL;
323 }
324
325
326 /*-------------------------------------------------------------------.
327 | Compute the nondeterministic finite state machine (see state.h for |
328 | details) from the grammar. |
329 `-------------------------------------------------------------------*/
330
331 void
332 generate_states (void)
333 {
334 state_list *list = NULL;
335 allocate_storage ();
336 new_closure (nritems);
337
338 /* Create the initial state. The 0 at the lhs is the index of the
339 item of this initial rule. */
340 kernel_base[0][0] = 0;
341 kernel_size[0] = 1;
342 state_list_append (0, kernel_size[0], kernel_base[0]);
343
344 list = first_state;
345
346 while (list)
347 {
348 state *s = list->state;
349 if (trace_flag & trace_automaton)
350 fprintf (stderr, "Processing state %d (reached by %s)\n",
351 s->number,
352 symbols[s->accessing_symbol]->tag);
353 /* Set up ruleset and itemset for the transitions out of this
354 state. ruleset gets a 1 bit for each rule that could reduce
355 now. itemset gets a vector of all the items that could be
356 accepted next. */
357 closure (s->items, s->nitems);
358 /* Record the reductions allowed out of this state. */
359 save_reductions (s);
360 /* Find the itemsets of the states that shifts can reach. */
361 new_itemsets (s);
362 /* Find or create the core structures for those states. */
363 append_states (s);
364
365 /* Create the shifts structures for the shifts to those states,
366 now that the state numbers transitioning to are known. */
367 state_transitions_set (s, nshifts, shiftset);
368
369 /* states are queued when they are created; process them all.
370 */
371 list = list->next;
372 }
373
374 /* discard various storage */
375 free_closure ();
376 free_storage ();
377
378 /* Set up STATES. */
379 set_states ();
380 }