]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/bison.simple (YYLSP_NEEDED): New definition.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "xalloc.h"
27 #include "gram.h"
28 #include "state.h"
29 #include "complain.h"
30 #include "closure.h"
31 #include "LR0.h"
32
33
34 int nstates;
35 int final_state;
36 core *first_state;
37 shifts *first_shift;
38 reductions *first_reduction;
39
40 static core *this_state;
41 static core *last_state;
42 static shifts *last_shift;
43 static reductions *last_reduction;
44
45 static int nshifts;
46 static short *shift_symbol;
47
48 static short *redset;
49 static short *shiftset;
50
51 static short **kernel_base;
52 static short **kernel_end;
53 static short *kernel_items;
54
55 /* hash table for states, to recognize equivalent ones. */
56
57 #define STATE_TABLE_SIZE 1009
58 static core **state_table;
59
60 \f
61 static void
62 allocate_itemsets (void)
63 {
64 short *itemp;
65 int symbol;
66 int i;
67 int count;
68 short *symbol_count;
69
70 count = 0;
71 symbol_count = XCALLOC (short, nsyms);
72
73 itemp = ritem;
74 symbol = *itemp++;
75 while (symbol)
76 {
77 if (symbol > 0)
78 {
79 count++;
80 symbol_count[symbol]++;
81 }
82 symbol = *itemp++;
83 }
84
85 /* See comments before new_itemsets. All the vectors of items
86 live inside KERNEL_ITEMS. The number of active items after
87 some symbol cannot be more than the number of times that symbol
88 appears as an item, which is symbol_count[symbol].
89 We allocate that much space for each symbol. */
90
91 kernel_base = XCALLOC (short *, nsyms);
92 kernel_items = XCALLOC (short, count);
93
94 count = 0;
95 for (i = 0; i < nsyms; i++)
96 {
97 kernel_base[i] = kernel_items + count;
98 count += symbol_count[i];
99 }
100
101 shift_symbol = symbol_count;
102 kernel_end = XCALLOC (short *, nsyms);
103 }
104
105
106 static void
107 allocate_storage (void)
108 {
109 allocate_itemsets ();
110
111 shiftset = XCALLOC (short, nsyms);
112 redset = XCALLOC (short, nrules + 1);
113 state_table = XCALLOC (core *, STATE_TABLE_SIZE);
114 }
115
116
117 static void
118 free_storage (void)
119 {
120 XFREE (shift_symbol);
121 XFREE (redset);
122 XFREE (shiftset);
123 XFREE (kernel_base);
124 XFREE (kernel_end);
125 XFREE (kernel_items);
126 XFREE (state_table);
127 }
128
129
130
131
132 /*----------------------------------------------------------------.
133 | Find which symbols can be shifted in the current state, and for |
134 | each one record which items would be active after that shift. |
135 | Uses the contents of itemset. |
136 | |
137 | shift_symbol is set to a vector of the symbols that can be |
138 | shifted. For each symbol in the grammar, kernel_base[symbol] |
139 | points to a vector of item numbers activated if that symbol is |
140 | shifted, and kernel_end[symbol] points after the end of that |
141 | vector. |
142 `----------------------------------------------------------------*/
143
144 static void
145 new_itemsets (void)
146 {
147 int i;
148 int shiftcount;
149 short *isp;
150 short *ksp;
151 int symbol;
152
153 #if TRACE
154 fprintf (stderr, "Entering new_itemsets\n");
155 #endif
156
157 for (i = 0; i < nsyms; i++)
158 kernel_end[i] = NULL;
159
160 shiftcount = 0;
161
162 isp = itemset;
163
164 while (isp < itemsetend)
165 {
166 i = *isp++;
167 symbol = ritem[i];
168 if (symbol > 0)
169 {
170 ksp = kernel_end[symbol];
171
172 if (!ksp)
173 {
174 shift_symbol[shiftcount++] = symbol;
175 ksp = kernel_base[symbol];
176 }
177
178 *ksp++ = i + 1;
179 kernel_end[symbol] = ksp;
180 }
181 }
182
183 nshifts = shiftcount;
184 }
185
186
187
188 /*-----------------------------------------------------------------.
189 | Subroutine of get_state. Create a new state for those items, if |
190 | necessary. |
191 `-----------------------------------------------------------------*/
192
193 static core *
194 new_state (int symbol)
195 {
196 int n;
197 core *p;
198 short *isp1;
199 short *isp2;
200 short *iend;
201
202 #if TRACE
203 fprintf (stderr, "Entering new_state, symbol = %d\n", symbol);
204 #endif
205
206 if (nstates >= MAXSHORT)
207 fatal (_("too many states (max %d)"), MAXSHORT);
208
209 isp1 = kernel_base[symbol];
210 iend = kernel_end[symbol];
211 n = iend - isp1;
212
213 p =
214 (core *) xcalloc ((unsigned) (sizeof (core) + (n - 1) * sizeof (short)), 1);
215 p->accessing_symbol = symbol;
216 p->number = nstates;
217 p->nitems = n;
218
219 isp2 = p->items;
220 while (isp1 < iend)
221 *isp2++ = *isp1++;
222
223 last_state->next = p;
224 last_state = p;
225
226 nstates++;
227
228 return p;
229 }
230
231
232 /*--------------------------------------------------------------.
233 | Find the state number for the state we would get to (from the |
234 | current state) by shifting symbol. Create a new state if no |
235 | equivalent one exists already. Used by append_states. |
236 `--------------------------------------------------------------*/
237
238 static int
239 get_state (int symbol)
240 {
241 int key;
242 short *isp1;
243 short *isp2;
244 short *iend;
245 core *sp;
246 int found;
247
248 int n;
249
250 #if TRACE
251 fprintf (stderr, "Entering get_state, symbol = %d\n", symbol);
252 #endif
253
254 isp1 = kernel_base[symbol];
255 iend = kernel_end[symbol];
256 n = iend - isp1;
257
258 /* add up the target state's active item numbers to get a hash key */
259 key = 0;
260 while (isp1 < iend)
261 key += *isp1++;
262
263 key = key % STATE_TABLE_SIZE;
264
265 sp = state_table[key];
266
267 if (sp)
268 {
269 found = 0;
270 while (!found)
271 {
272 if (sp->nitems == n)
273 {
274 found = 1;
275 isp1 = kernel_base[symbol];
276 isp2 = sp->items;
277
278 while (found && isp1 < iend)
279 {
280 if (*isp1++ != *isp2++)
281 found = 0;
282 }
283 }
284
285 if (!found)
286 {
287 if (sp->link)
288 {
289 sp = sp->link;
290 }
291 else /* bucket exhausted and no match */
292 {
293 sp = sp->link = new_state (symbol);
294 found = 1;
295 }
296 }
297 }
298 }
299 else /* bucket is empty */
300 {
301 state_table[key] = sp = new_state (symbol);
302 }
303
304 return sp->number;
305 }
306
307 /*------------------------------------------------------------------.
308 | Use the information computed by new_itemsets to find the state |
309 | numbers reached by each shift transition from the current state. |
310 | |
311 | shiftset is set up as a vector of state numbers of those states. |
312 `------------------------------------------------------------------*/
313
314 static void
315 append_states (void)
316 {
317 int i;
318 int j;
319 int symbol;
320
321 #if TRACE
322 fprintf (stderr, "Entering append_states\n");
323 #endif
324
325 /* first sort shift_symbol into increasing order */
326
327 for (i = 1; i < nshifts; i++)
328 {
329 symbol = shift_symbol[i];
330 j = i;
331 while (j > 0 && shift_symbol[j - 1] > symbol)
332 {
333 shift_symbol[j] = shift_symbol[j - 1];
334 j--;
335 }
336 shift_symbol[j] = symbol;
337 }
338
339 for (i = 0; i < nshifts; i++)
340 {
341 symbol = shift_symbol[i];
342 shiftset[i] = get_state (symbol);
343 }
344 }
345
346
347 static void
348 new_states (void)
349 {
350 core *p;
351
352 p = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1);
353 first_state = last_state = this_state = p;
354 nstates = 1;
355 }
356
357
358 static void
359 save_shifts (void)
360 {
361 shifts *p;
362 short *sp1;
363 short *sp2;
364 short *send;
365
366 p = (shifts *) xcalloc ((unsigned) (sizeof (shifts) +
367 (nshifts - 1) * sizeof (short)), 1);
368
369 p->number = this_state->number;
370 p->nshifts = nshifts;
371
372 sp1 = shiftset;
373 sp2 = p->shifts;
374 send = shiftset + nshifts;
375
376 while (sp1 < send)
377 *sp2++ = *sp1++;
378
379 if (last_shift)
380 {
381 last_shift->next = p;
382 last_shift = p;
383 }
384 else
385 {
386 first_shift = p;
387 last_shift = p;
388 }
389 }
390
391
392 /*------------------------------------------------------------------.
393 | Subroutine of augment_automaton. Create the next-to-final state, |
394 | to which a shift has already been made in the initial state. |
395 `------------------------------------------------------------------*/
396
397 static void
398 insert_start_shift (void)
399 {
400 core *statep;
401 shifts *sp;
402
403 statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1);
404 statep->number = nstates;
405 statep->accessing_symbol = start_symbol;
406
407 last_state->next = statep;
408 last_state = statep;
409
410 /* Make a shift from this state to (what will be) the final state. */
411 sp = XCALLOC (shifts, 1);
412 sp->number = nstates++;
413 sp->nshifts = 1;
414 sp->shifts[0] = nstates;
415
416 last_shift->next = sp;
417 last_shift = sp;
418 }
419
420
421 /*------------------------------------------------------------------.
422 | Make sure that the initial state has a shift that accepts the |
423 | grammar's start symbol and goes to the next-to-final state, which |
424 | has a shift going to the final state, which has a shift to the |
425 | termination state. Create such states and shifts if they don't |
426 | happen to exist already. |
427 `------------------------------------------------------------------*/
428
429 static void
430 augment_automaton (void)
431 {
432 int i;
433 int k;
434 core *statep;
435 shifts *sp;
436 shifts *sp2;
437 shifts *sp1 = NULL;
438
439 sp = first_shift;
440
441 if (sp)
442 {
443 if (sp->number == 0)
444 {
445 k = sp->nshifts;
446 statep = first_state->next;
447
448 /* The states reached by shifts from first_state are numbered 1...K.
449 Look for one reached by start_symbol. */
450 while (statep->accessing_symbol < start_symbol
451 && statep->number < k)
452 statep = statep->next;
453
454 if (statep->accessing_symbol == start_symbol)
455 {
456 /* We already have a next-to-final state.
457 Make sure it has a shift to what will be the final state. */
458 k = statep->number;
459
460 while (sp && sp->number < k)
461 {
462 sp1 = sp;
463 sp = sp->next;
464 }
465
466 if (sp && sp->number == k)
467 {
468 sp2 = (shifts *) xcalloc ((unsigned) (sizeof (shifts)
469 +
470 sp->nshifts *
471 sizeof (short)), 1);
472 sp2->number = k;
473 sp2->nshifts = sp->nshifts + 1;
474 sp2->shifts[0] = nstates;
475 for (i = sp->nshifts; i > 0; i--)
476 sp2->shifts[i] = sp->shifts[i - 1];
477
478 /* Patch sp2 into the chain of shifts in place of sp,
479 following sp1. */
480 sp2->next = sp->next;
481 sp1->next = sp2;
482 if (sp == last_shift)
483 last_shift = sp2;
484 XFREE (sp);
485 }
486 else
487 {
488 sp2 = XCALLOC (shifts, 1);
489 sp2->number = k;
490 sp2->nshifts = 1;
491 sp2->shifts[0] = nstates;
492
493 /* Patch sp2 into the chain of shifts between sp1 and sp. */
494 sp2->next = sp;
495 sp1->next = sp2;
496 if (sp == 0)
497 last_shift = sp2;
498 }
499 }
500 else
501 {
502 /* There is no next-to-final state as yet. */
503 /* Add one more shift in first_shift,
504 going to the next-to-final state (yet to be made). */
505 sp = first_shift;
506
507 sp2 = (shifts *) xcalloc (sizeof (shifts)
508 + sp->nshifts * sizeof (short), 1);
509 sp2->nshifts = sp->nshifts + 1;
510
511 /* Stick this shift into the vector at the proper place. */
512 statep = first_state->next;
513 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
514 {
515 if (statep->accessing_symbol > start_symbol && i == k)
516 sp2->shifts[k++] = nstates;
517 sp2->shifts[k] = sp->shifts[i];
518 statep = statep->next;
519 }
520 if (i == k)
521 sp2->shifts[k++] = nstates;
522
523 /* Patch sp2 into the chain of shifts
524 in place of sp, at the beginning. */
525 sp2->next = sp->next;
526 first_shift = sp2;
527 if (last_shift == sp)
528 last_shift = sp2;
529
530 XFREE (sp);
531
532 /* Create the next-to-final state, with shift to
533 what will be the final state. */
534 insert_start_shift ();
535 }
536 }
537 else
538 {
539 /* The initial state didn't even have any shifts.
540 Give it one shift, to the next-to-final state. */
541 sp = XCALLOC (shifts, 1);
542 sp->nshifts = 1;
543 sp->shifts[0] = nstates;
544
545 /* Patch sp into the chain of shifts at the beginning. */
546 sp->next = first_shift;
547 first_shift = sp;
548
549 /* Create the next-to-final state, with shift to
550 what will be the final state. */
551 insert_start_shift ();
552 }
553 }
554 else
555 {
556 /* There are no shifts for any state.
557 Make one shift, from the initial state to the next-to-final state. */
558
559 sp = XCALLOC (shifts, 1);
560 sp->nshifts = 1;
561 sp->shifts[0] = nstates;
562
563 /* Initialize the chain of shifts with sp. */
564 first_shift = sp;
565 last_shift = sp;
566
567 /* Create the next-to-final state, with shift to
568 what will be the final state. */
569 insert_start_shift ();
570 }
571
572 /* Make the final state--the one that follows a shift from the
573 next-to-final state.
574 The symbol for that shift is 0 (end-of-file). */
575 statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1);
576 statep->number = nstates;
577 last_state->next = statep;
578 last_state = statep;
579
580 /* Make the shift from the final state to the termination state. */
581 sp = XCALLOC (shifts, 1);
582 sp->number = nstates++;
583 sp->nshifts = 1;
584 sp->shifts[0] = nstates;
585 last_shift->next = sp;
586 last_shift = sp;
587
588 /* Note that the variable `final_state' refers to what we sometimes call
589 the termination state. */
590 final_state = nstates;
591
592 /* Make the termination state. */
593 statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1);
594 statep->number = nstates++;
595 last_state->next = statep;
596 last_state = statep;
597 }
598
599
600 /*----------------------------------------------------------------.
601 | Find which rules can be used for reduction transitions from the |
602 | current state and make a reductions structure for the state to |
603 | record their rule numbers. |
604 `----------------------------------------------------------------*/
605
606 static void
607 save_reductions (void)
608 {
609 short *isp;
610 short *rp1;
611 short *rp2;
612 int item;
613 int count;
614 reductions *p;
615
616 short *rend;
617
618 /* Find and count the active items that represent ends of rules. */
619
620 count = 0;
621 for (isp = itemset; isp < itemsetend; isp++)
622 {
623 item = ritem[*isp];
624 if (item < 0)
625 redset[count++] = -item;
626 }
627
628 /* Make a reductions structure and copy the data into it. */
629
630 if (count)
631 {
632 p = (reductions *) xcalloc ((unsigned) (sizeof (reductions) +
633 (count - 1) * sizeof (short)), 1);
634
635 p->number = this_state->number;
636 p->nreds = count;
637
638 rp1 = redset;
639 rp2 = p->rules;
640 rend = rp1 + count;
641
642 for (/* nothing */; rp1 < rend; ++rp1, ++rp2)
643 *rp2 = *rp1;
644
645 if (last_reduction)
646 {
647 last_reduction->next = p;
648 last_reduction = p;
649 }
650 else
651 {
652 first_reduction = p;
653 last_reduction = p;
654 }
655 }
656 }
657
658 \f
659 /*-------------------------------------------------------------------.
660 | Compute the nondeterministic finite state machine (see state.h for |
661 | details) from the grammar. |
662 `-------------------------------------------------------------------*/
663
664 void
665 generate_states (void)
666 {
667 allocate_storage ();
668 new_closure (nitems);
669 new_states ();
670
671 while (this_state)
672 {
673 /* Set up ruleset and itemset for the transitions out of this
674 state. ruleset gets a 1 bit for each rule that could reduce
675 now. itemset gets a vector of all the items that could be
676 accepted next. */
677 closure (this_state->items, this_state->nitems);
678 /* record the reductions allowed out of this state */
679 save_reductions ();
680 /* find the itemsets of the states that shifts can reach */
681 new_itemsets ();
682 /* find or create the core structures for those states */
683 append_states ();
684
685 /* create the shifts structures for the shifts to those states,
686 now that the state numbers transitioning to are known */
687 if (nshifts > 0)
688 save_shifts ();
689
690 /* states are queued when they are created; process them all */
691 this_state = this_state->next;
692 }
693
694 /* discard various storage */
695 free_closure ();
696 free_storage ();
697
698 /* set up initial and final states as parser wants them */
699 augment_automaton ();
700 }