]> git.saurik.com Git - bison.git/blob - src/LR0.c
(AM_CFLAGS): Renamed from CFLAGS.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
26
27 #include "system.h"
28 #include "bitset.h"
29 #include "quotearg.h"
30 #include "symtab.h"
31 #include "gram.h"
32 #include "getargs.h"
33 #include "reader.h"
34 #include "gram.h"
35 #include "state.h"
36 #include "complain.h"
37 #include "closure.h"
38 #include "LR0.h"
39 #include "lalr.h"
40 #include "reduce.h"
41
42 typedef struct state_list_s
43 {
44 struct state_list_s *next;
45 state_t *state;
46 } state_list_t;
47
48 static state_list_t *first_state = NULL;
49 static state_list_t *last_state = NULL;
50
51
52 /*------------------------------------------------------------------.
53 | A state was just discovered from another state. Queue it for |
54 | later examination, in order to find its transitions. Return it. |
55 `------------------------------------------------------------------*/
56
57 static state_t *
58 state_list_append (symbol_number_t symbol,
59 size_t core_size, item_number_t *core)
60 {
61 state_list_t *node = XMALLOC (state_list_t, 1);
62 state_t *state = state_new (symbol, core_size, core);
63
64 if (trace_flag & trace_automaton)
65 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
66 nstates, symbol, symbols[symbol]->tag);
67
68 /* If this is the endtoken, and this is not the initial state, then
69 this is the final state. */
70 if (symbol == 0 && first_state)
71 final_state = state;
72
73 node->next = NULL;
74 node->state = state;
75
76 if (!first_state)
77 first_state = node;
78 if (last_state)
79 last_state->next = node;
80 last_state = node;
81
82 return state;
83 }
84
85 static int nshifts;
86 static symbol_number_t *shift_symbol = NULL;
87
88 static rule_t **redset = NULL;
89 static state_t **shiftset = NULL;
90
91 static item_number_t **kernel_base = NULL;
92 static int *kernel_size = NULL;
93 static item_number_t *kernel_items = NULL;
94
95 \f
96 static void
97 allocate_itemsets (void)
98 {
99 symbol_number_t i;
100 rule_number_t r;
101 item_number_t *rhsp;
102
103 /* Count the number of occurrences of all the symbols in RITEMS.
104 Note that useless productions (hence useless nonterminals) are
105 browsed too, hence we need to allocate room for _all_ the
106 symbols. */
107 int count = 0;
108 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
109
110 for (r = 0; r < nrules; ++r)
111 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
112 {
113 count++;
114 symbol_count[*rhsp]++;
115 }
116
117 /* See comments before new_itemsets. All the vectors of items
118 live inside KERNEL_ITEMS. The number of active items after
119 some symbol cannot be more than the number of times that symbol
120 appears as an item, which is SYMBOL_COUNT[SYMBOL].
121 We allocate that much space for each symbol. */
122
123 kernel_base = XCALLOC (item_number_t *, nsyms);
124 if (count)
125 kernel_items = XCALLOC (item_number_t, count);
126
127 count = 0;
128 for (i = 0; i < nsyms; i++)
129 {
130 kernel_base[i] = kernel_items + count;
131 count += symbol_count[i];
132 }
133
134 free (symbol_count);
135 kernel_size = XCALLOC (int, nsyms);
136 }
137
138
139 static void
140 allocate_storage (void)
141 {
142 allocate_itemsets ();
143
144 shiftset = XCALLOC (state_t *, nsyms);
145 redset = XCALLOC (rule_t *, nrules);
146 state_hash_new ();
147 shift_symbol = XCALLOC (symbol_number_t, nsyms);
148 }
149
150
151 static void
152 free_storage (void)
153 {
154 free (shift_symbol);
155 free (redset);
156 free (shiftset);
157 free (kernel_base);
158 free (kernel_size);
159 XFREE (kernel_items);
160 state_hash_free ();
161 }
162
163
164
165
166 /*---------------------------------------------------------------.
167 | Find which symbols can be shifted in STATE, and for each one |
168 | record which items would be active after that shift. Uses the |
169 | contents of itemset. |
170 | |
171 | shift_symbol is set to a vector of the symbols that can be |
172 | shifted. For each symbol in the grammar, kernel_base[symbol] |
173 | points to a vector of item numbers activated if that symbol is |
174 | shifted, and kernel_size[symbol] is their numbers. |
175 `---------------------------------------------------------------*/
176
177 static void
178 new_itemsets (state_t *state)
179 {
180 int i;
181
182 if (trace_flag & trace_automaton)
183 fprintf (stderr, "Entering new_itemsets, state = %d\n",
184 state->number);
185
186 for (i = 0; i < nsyms; i++)
187 kernel_size[i] = 0;
188
189 nshifts = 0;
190
191 for (i = 0; i < nritemset; ++i)
192 if (ritem[itemset[i]] >= 0)
193 {
194 symbol_number_t symbol
195 = item_number_as_symbol_number (ritem[itemset[i]]);
196 if (!kernel_size[symbol])
197 {
198 shift_symbol[nshifts] = symbol;
199 nshifts++;
200 }
201
202 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
203 kernel_size[symbol]++;
204 }
205 }
206
207
208
209 /*-----------------------------------------------------------------.
210 | Find the state we would get to (from the current state) by |
211 | shifting SYMBOL. Create a new state if no equivalent one exists |
212 | already. Used by append_states. |
213 `-----------------------------------------------------------------*/
214
215 static state_t *
216 get_state (symbol_number_t symbol, size_t core_size, item_number_t *core)
217 {
218 state_t *sp;
219
220 if (trace_flag & trace_automaton)
221 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
222 symbol, symbols[symbol]->tag);
223
224 sp = state_hash_lookup (core_size, core);
225 if (!sp)
226 sp = state_list_append (symbol, core_size, core);
227
228 if (trace_flag & trace_automaton)
229 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
230
231 return sp;
232 }
233
234 /*---------------------------------------------------------------.
235 | Use the information computed by new_itemsets to find the state |
236 | numbers reached by each shift transition from STATE. |
237 | |
238 | SHIFTSET is set up as a vector of those states. |
239 `---------------------------------------------------------------*/
240
241 static void
242 append_states (state_t *state)
243 {
244 int i;
245 int j;
246 symbol_number_t symbol;
247
248 if (trace_flag & trace_automaton)
249 fprintf (stderr, "Entering append_states, state = %d\n",
250 state->number);
251
252 /* first sort shift_symbol into increasing order */
253
254 for (i = 1; i < nshifts; i++)
255 {
256 symbol = shift_symbol[i];
257 j = i;
258 while (j > 0 && shift_symbol[j - 1] > symbol)
259 {
260 shift_symbol[j] = shift_symbol[j - 1];
261 j--;
262 }
263 shift_symbol[j] = symbol;
264 }
265
266 for (i = 0; i < nshifts; i++)
267 {
268 symbol = shift_symbol[i];
269 shiftset[i] = get_state (symbol,
270 kernel_size[symbol], kernel_base[symbol]);
271 }
272 }
273
274
275 /*----------------------------------------------------------------.
276 | Find which rules can be used for reduction transitions from the |
277 | current state and make a reductions structure for the state to |
278 | record their rule numbers. |
279 `----------------------------------------------------------------*/
280
281 static void
282 save_reductions (state_t *state)
283 {
284 int count = 0;
285 int i;
286
287 /* Find and count the active items that represent ends of rules. */
288 for (i = 0; i < nritemset; ++i)
289 {
290 int item = ritem[itemset[i]];
291 if (item < 0)
292 redset[count++] = &rules[item_number_as_rule_number (item)];
293 }
294
295 /* Make a reductions structure and copy the data into it. */
296 state_reductions_set (state, count, redset);
297 }
298
299 \f
300 /*---------------.
301 | Build STATES. |
302 `---------------*/
303
304 static void
305 set_states (void)
306 {
307 states = XCALLOC (state_t *, nstates);
308
309 while (first_state)
310 {
311 state_list_t *this = first_state;
312
313 /* Pessimization, but simplification of the code: make sure all
314 the states have valid transitions and reductions members,
315 even if reduced to 0. It is too soon for errs, which are
316 computed later, but set_conflicts. */
317 state_t *state = this->state;
318 if (!state->transitions)
319 state_transitions_set (state, 0, 0);
320 if (!state->reductions)
321 state_reductions_set (state, 0, 0);
322
323 states[state->number] = state;
324
325 first_state = this->next;
326 free (this);
327 }
328 first_state = NULL;
329 last_state = NULL;
330 }
331
332
333 /*-------------------------------------------------------------------.
334 | Compute the nondeterministic finite state machine (see state.h for |
335 | details) from the grammar. |
336 `-------------------------------------------------------------------*/
337
338 void
339 generate_states (void)
340 {
341 state_list_t *list = NULL;
342 allocate_storage ();
343 new_closure (nritems);
344
345 /* Create the initial state. The 0 at the lhs is the index of the
346 item of this initial rule. */
347 kernel_base[0][0] = 0;
348 kernel_size[0] = 1;
349 state_list_append (0, kernel_size[0], kernel_base[0]);
350
351 list = first_state;
352
353 while (list)
354 {
355 state_t *state = list->state;
356 if (trace_flag & trace_automaton)
357 fprintf (stderr, "Processing state %d (reached by %s)\n",
358 state->number,
359 symbols[state->accessing_symbol]->tag);
360 /* Set up ruleset and itemset for the transitions out of this
361 state. ruleset gets a 1 bit for each rule that could reduce
362 now. itemset gets a vector of all the items that could be
363 accepted next. */
364 closure (state->items, state->nitems);
365 /* Record the reductions allowed out of this state. */
366 save_reductions (state);
367 /* Find the itemsets of the states that shifts can reach. */
368 new_itemsets (state);
369 /* Find or create the core structures for those states. */
370 append_states (state);
371
372 /* Create the shifts structures for the shifts to those states,
373 now that the state numbers transitioning to are known. */
374 state_transitions_set (state, nshifts, shiftset);
375
376 /* States are queued when they are created; process them all.
377 */
378 list = list->next;
379 }
380
381 /* discard various storage */
382 free_closure ();
383 free_storage ();
384
385 /* Set up STATES. */
386 set_states ();
387 }