]> git.saurik.com Git - bison.git/blob - src/LR0.c
* src/bison.simple (YYSIZE_T, YYSTACK_ALLOC, YYSTACK_FREE):
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for bison,
2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of Bison, the GNU Compiler Compiler.
5
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
25 #include "system.h"
26 #include "getargs.h"
27 #include "reader.h"
28 #include "gram.h"
29 #include "state.h"
30 #include "complain.h"
31 #include "closure.h"
32 #include "LR0.h"
33 #include "lalr.h"
34 #include "reduce.h"
35
36 int nstates;
37 int final_state;
38 static state_t *first_state = NULL;
39
40 static state_t *this_state = NULL;
41 static state_t *last_state = NULL;
42
43 static int nshifts;
44 static short *shift_symbol = NULL;
45
46 static short *redset = NULL;
47 static short *shiftset = NULL;
48
49 static short **kernel_base = NULL;
50 static int *kernel_size = NULL;
51 static short *kernel_items = NULL;
52
53 /* hash table for states, to recognize equivalent ones. */
54
55 #define STATE_HASH_SIZE 1009
56 static state_t **state_hash = NULL;
57
58 \f
59 static void
60 allocate_itemsets (void)
61 {
62 int i;
63
64 /* Count the number of occurrences of all the symbols in RITEMS.
65 Note that useless productions (hence useless nonterminals) are
66 browsed too, hence we need to allocate room for _all_ the
67 symbols. */
68 int count = 0;
69 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
70
71 for (i = 0; ritem[i]; ++i)
72 if (ritem[i] > 0)
73 {
74 count++;
75 symbol_count[ritem[i]]++;
76 }
77
78 /* See comments before new_itemsets. All the vectors of items
79 live inside KERNEL_ITEMS. The number of active items after
80 some symbol cannot be more than the number of times that symbol
81 appears as an item, which is symbol_count[symbol].
82 We allocate that much space for each symbol. */
83
84 kernel_base = XCALLOC (short *, nsyms);
85 if (count)
86 kernel_items = XCALLOC (short, count);
87
88 count = 0;
89 for (i = 0; i < nsyms; i++)
90 {
91 kernel_base[i] = kernel_items + count;
92 count += symbol_count[i];
93 }
94
95 free (symbol_count);
96 kernel_size = XCALLOC (int, nsyms);
97 }
98
99
100 static void
101 allocate_storage (void)
102 {
103 allocate_itemsets ();
104
105 shiftset = XCALLOC (short, nsyms);
106 redset = XCALLOC (short, nrules + 1);
107 state_hash = XCALLOC (state_t *, STATE_HASH_SIZE);
108 }
109
110
111 static void
112 free_storage (void)
113 {
114 free (shift_symbol);
115 free (redset);
116 free (shiftset);
117 free (kernel_base);
118 free (kernel_size);
119 XFREE (kernel_items);
120 free (state_hash);
121 }
122
123
124
125
126 /*----------------------------------------------------------------.
127 | Find which symbols can be shifted in the current state, and for |
128 | each one record which items would be active after that shift. |
129 | Uses the contents of itemset. |
130 | |
131 | shift_symbol is set to a vector of the symbols that can be |
132 | shifted. For each symbol in the grammar, kernel_base[symbol] |
133 | points to a vector of item numbers activated if that symbol is |
134 | shifted, and kernel_size[symbol] is their numbers. |
135 `----------------------------------------------------------------*/
136
137 static void
138 new_itemsets (void)
139 {
140 int i;
141
142 if (trace_flag)
143 fprintf (stderr, "Entering new_itemsets, state = %d\n",
144 this_state->number);
145
146 for (i = 0; i < nsyms; i++)
147 kernel_size[i] = 0;
148
149 shift_symbol = XCALLOC (short, nsyms);
150 nshifts = 0;
151
152 for (i = 0; i < nitemset; ++i)
153 {
154 int symbol = ritem[itemset[i]];
155 if (symbol > 0)
156 {
157 if (!kernel_size[symbol])
158 {
159 shift_symbol[nshifts] = symbol;
160 nshifts++;
161 }
162
163 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
164 kernel_size[symbol]++;
165 }
166 }
167 }
168
169
170
171 /*-----------------------------------------------------------------.
172 | Subroutine of get_state. Create a new state for those items, if |
173 | necessary. |
174 `-----------------------------------------------------------------*/
175
176 static state_t *
177 new_state (int symbol)
178 {
179 state_t *p;
180
181 if (trace_flag)
182 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
183 this_state->number, symbol, tags[symbol]);
184
185 if (nstates >= MAXSHORT)
186 fatal (_("too many states (max %d)"), MAXSHORT);
187
188 p = STATE_ALLOC (kernel_size[symbol]);
189 p->accessing_symbol = symbol;
190 p->number = nstates;
191 p->nitems = kernel_size[symbol];
192
193 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
194
195 last_state->next = p;
196 last_state = p;
197 nstates++;
198
199 return p;
200 }
201
202
203 /*--------------------------------------------------------------.
204 | Find the state number for the state we would get to (from the |
205 | current state) by shifting symbol. Create a new state if no |
206 | equivalent one exists already. Used by append_states. |
207 `--------------------------------------------------------------*/
208
209 static int
210 get_state (int symbol)
211 {
212 int key;
213 int i;
214 state_t *sp;
215
216 if (trace_flag)
217 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
218 this_state->number, symbol, tags[symbol]);
219
220 /* Add up the target state's active item numbers to get a hash key.
221 */
222 key = 0;
223 for (i = 0; i < kernel_size[symbol]; ++i)
224 key += kernel_base[symbol][i];
225 key = key % STATE_HASH_SIZE;
226 sp = state_hash[key];
227
228 if (sp)
229 {
230 int found = 0;
231 while (!found)
232 {
233 if (sp->nitems == kernel_size[symbol])
234 {
235 found = 1;
236 for (i = 0; i < kernel_size[symbol]; ++i)
237 if (kernel_base[symbol][i] != sp->items[i])
238 found = 0;
239 }
240
241 if (!found)
242 {
243 if (sp->link)
244 {
245 sp = sp->link;
246 }
247 else /* bucket exhausted and no match */
248 {
249 sp = sp->link = new_state (symbol);
250 found = 1;
251 }
252 }
253 }
254 }
255 else /* bucket is empty */
256 {
257 state_hash[key] = sp = new_state (symbol);
258 }
259
260 if (trace_flag)
261 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
262
263 return sp->number;
264 }
265
266 /*------------------------------------------------------------------.
267 | Use the information computed by new_itemsets to find the state |
268 | numbers reached by each shift transition from the current state. |
269 | |
270 | shiftset is set up as a vector of state numbers of those states. |
271 `------------------------------------------------------------------*/
272
273 static void
274 append_states (void)
275 {
276 int i;
277 int j;
278 int symbol;
279
280 if (trace_flag)
281 fprintf (stderr, "Entering append_states, state = %d\n",
282 this_state->number);
283
284 /* first sort shift_symbol into increasing order */
285
286 for (i = 1; i < nshifts; i++)
287 {
288 symbol = shift_symbol[i];
289 j = i;
290 while (j > 0 && shift_symbol[j - 1] > symbol)
291 {
292 shift_symbol[j] = shift_symbol[j - 1];
293 j--;
294 }
295 shift_symbol[j] = symbol;
296 }
297
298 for (i = 0; i < nshifts; i++)
299 shiftset[i] = get_state (shift_symbol[i]);
300 }
301
302
303 static void
304 new_states (void)
305 {
306 first_state = last_state = this_state = STATE_ALLOC (0);
307 nstates = 1;
308 }
309
310
311 /*------------------------------------------------------------.
312 | Save the NSHIFTS of SHIFTSET into the current linked list. |
313 `------------------------------------------------------------*/
314
315 static void
316 save_shifts (void)
317 {
318 shifts *p = shifts_new (nshifts);
319 shortcpy (p->shifts, shiftset, nshifts);
320 this_state->shifts = p;
321 }
322
323
324 /*------------------------------------------------------------------.
325 | Subroutine of augment_automaton. Create the next-to-final state, |
326 | to which a shift has already been made in the initial state. |
327 | |
328 | The task of this state consists in shifting (actually, it's a |
329 | goto, but shifts and gotos are both stored in SHIFTS) the start |
330 | symbols, hence the name. |
331 `------------------------------------------------------------------*/
332
333 static void
334 insert_start_shifting_state (void)
335 {
336 state_t *statep;
337 shifts *sp;
338
339 statep = STATE_ALLOC (0);
340 statep->number = nstates++;
341
342 /* The distinctive feature of this state from the
343 eof_shifting_state, is that it is labeled as post-start-symbol
344 shifting. I fail to understand why this state, and the
345 post-start-start can't be merged into one. But it does fail if
346 you try. --akim */
347 statep->accessing_symbol = start_symbol;
348
349 last_state->next = statep;
350 last_state = statep;
351
352 /* Make a shift from this state to (what will be) the final state. */
353 sp = shifts_new (1);
354 statep->shifts = sp;
355 sp->shifts[0] = nstates;
356 }
357
358
359 /*-----------------------------------------------------------------.
360 | Subroutine of augment_automaton. Create the final state, which |
361 | shifts `0', the end of file. The initial state shifts the start |
362 | symbol, and goes to here. |
363 `-----------------------------------------------------------------*/
364
365 static void
366 insert_eof_shifting_state (void)
367 {
368 state_t *statep;
369 shifts *sp;
370
371 /* Make the final state--the one that follows a shift from the
372 next-to-final state.
373 The symbol for that shift is 0 (end-of-file). */
374 statep = STATE_ALLOC (0);
375 statep->number = nstates++;
376
377 last_state->next = statep;
378 last_state = statep;
379
380 /* Make the shift from the final state to the termination state. */
381 sp = shifts_new (1);
382 statep->shifts = sp;
383 sp->shifts[0] = nstates;
384 }
385
386
387 /*---------------------------------------------------------------.
388 | Subroutine of augment_automaton. Create the accepting state. |
389 `---------------------------------------------------------------*/
390
391 static void
392 insert_accepting_state (void)
393 {
394 state_t *statep;
395
396 /* Note that the variable `final_state' refers to what we sometimes
397 call the termination state. */
398 final_state = nstates;
399
400 /* Make the termination state. */
401 statep = STATE_ALLOC (0);
402 statep->number = nstates++;
403 last_state->next = statep;
404 last_state = statep;
405 }
406
407
408
409
410
411 /*------------------------------------------------------------------.
412 | Make sure that the initial state has a shift that accepts the |
413 | grammar's start symbol and goes to the next-to-final state, which |
414 | has a shift going to the final state, which has a shift to the |
415 | termination state. Create such states and shifts if they don't |
416 | happen to exist already. |
417 `------------------------------------------------------------------*/
418
419 static void
420 augment_automaton (void)
421 {
422 if (!first_state->shifts->nshifts)
423 {
424 /* The first state has no shifts. Make one shift, from the
425 initial state to the next-to-final state. */
426
427 shifts *sp = shifts_new (1);
428 first_state->shifts = sp;
429 sp->shifts[0] = nstates;
430
431 /* Create the next-to-final state, with shift to
432 what will be the final state. */
433 insert_start_shifting_state ();
434 }
435 else
436 {
437 state_t *statep = first_state->next;
438 /* The states reached by shifts from FIRST_STATE are numbered
439 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL.
440 This is typical of `start: start ... ;': there is a state
441 with the item `start: start . ...'. We want to add a `shift
442 on EOF to eof-shifting state here. */
443 while (statep->accessing_symbol != start_symbol
444 && statep->number < first_state->shifts->nshifts)
445 statep = statep->next;
446
447 if (statep->accessing_symbol == start_symbol)
448 {
449 /* We already have STATEP, a next-to-final state for `start:
450 start . ...'. Make sure it has a shift to what will be
451 the final state. */
452 int i;
453
454 /* Find the shift of the inital state that leads to STATEP. */
455 shifts *sp = statep->shifts;
456
457 shifts *sp1 = shifts_new (sp->nshifts + 1);
458 statep->shifts = sp1;
459 sp1->shifts[0] = nstates;
460 for (i = sp->nshifts; i > 0; i--)
461 sp1->shifts[i] = sp->shifts[i - 1];
462
463 XFREE (sp);
464
465 insert_eof_shifting_state ();
466 }
467 else
468 {
469 /* There is no state for `start: start . ...'. */
470 int i, k;
471 shifts *sp = first_state->shifts;
472 shifts *sp1 = NULL;
473
474 /* Add one more shift to the initial state, going to the
475 next-to-final state (yet to be made). */
476 sp1 = shifts_new (sp->nshifts + 1);
477 first_state->shifts = sp1;
478 /* Stick this shift into the vector at the proper place. */
479 statep = first_state->next;
480 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
481 {
482 if (statep->accessing_symbol > start_symbol && i == k)
483 sp1->shifts[k++] = nstates;
484 sp1->shifts[k] = sp->shifts[i];
485 statep = statep->next;
486 }
487 if (i == k)
488 sp1->shifts[k++] = nstates;
489
490 XFREE (sp);
491
492 /* Create the next-to-final state, with shift to what will
493 be the final state. Corresponds to `start: start . ...'. */
494 insert_start_shifting_state ();
495 }
496 }
497
498 insert_accepting_state ();
499 }
500
501
502 /*----------------------------------------------------------------.
503 | Find which rules can be used for reduction transitions from the |
504 | current state and make a reductions structure for the state to |
505 | record their rule numbers. |
506 `----------------------------------------------------------------*/
507
508 static void
509 save_reductions (void)
510 {
511 int count;
512 int i;
513
514 /* Find and count the active items that represent ends of rules. */
515
516 count = 0;
517 for (i = 0; i < nitemset; ++i)
518 {
519 int item = ritem[itemset[i]];
520 if (item < 0)
521 redset[count++] = -item;
522 }
523
524 /* Make a reductions structure and copy the data into it. */
525
526 if (count)
527 {
528 reductions *p = REDUCTIONS_ALLOC (count);
529 p->nreds = count;
530 shortcpy (p->rules, redset, count);
531
532 this_state->reductions = p;
533 }
534 }
535
536 \f
537 /*--------------------.
538 | Build STATE_TABLE. |
539 `--------------------*/
540
541 static void
542 set_state_table (void)
543 {
544 /* NSTATES + 1 because lookahead for the pseudo state number NSTATES
545 might be used (see conflicts.c). It is too opaque for me to
546 provide a probably less hacky implementation. --akim */
547 state_table = XCALLOC (state_t *, nstates + 1);
548
549 {
550 state_t *sp;
551 for (sp = first_state; sp; sp = sp->next)
552 state_table[sp->number] = sp;
553 }
554
555 /* Pessimization, but simplification of the code: make sure all the
556 states have a shifts, even if reduced to 0 shifts. */
557 {
558 int i;
559 for (i = 0; i < nstates; i++)
560 if (!state_table[i]->shifts)
561 state_table[i]->shifts = shifts_new (0);
562 }
563 }
564
565 /*-------------------------------------------------------------------.
566 | Compute the nondeterministic finite state machine (see state.h for |
567 | details) from the grammar. |
568 `-------------------------------------------------------------------*/
569
570 void
571 generate_states (void)
572 {
573 allocate_storage ();
574 new_closure (nitems);
575 new_states ();
576
577 while (this_state)
578 {
579 if (trace_flag)
580 fprintf (stderr, "Processing state %d (reached by %s)\n",
581 this_state->number, tags[this_state->accessing_symbol]);
582 /* Set up ruleset and itemset for the transitions out of this
583 state. ruleset gets a 1 bit for each rule that could reduce
584 now. itemset gets a vector of all the items that could be
585 accepted next. */
586 closure (this_state->items, this_state->nitems);
587 /* record the reductions allowed out of this state */
588 save_reductions ();
589 /* find the itemsets of the states that shifts can reach */
590 new_itemsets ();
591 /* find or create the core structures for those states */
592 append_states ();
593
594 /* create the shifts structures for the shifts to those states,
595 now that the state numbers transitioning to are known */
596 save_shifts ();
597
598 /* states are queued when they are created; process them all */
599 this_state = this_state->next;
600 }
601
602 /* discard various storage */
603 free_closure ();
604 free_storage ();
605
606 /* set up initial and final states as parser wants them */
607 augment_automaton ();
608
609 /* Set up STATE_TABLE. */
610 set_state_table ();
611 }