]> git.saurik.com Git - bison.git/blob - src/LR0.c
* data/lalr1.cc (Parser::reduce_print_): Remove unused yyi.
[bison.git] / src / LR0.c
1 /* Generate the nondeterministic finite state machine for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 Bison is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 Bison is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with Bison; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* See comments in state.h for the data structures that represent it.
25 The entry point is generate_states. */
26
27 #include "system.h"
28
29 #include <bitset.h>
30 #include <quotearg.h>
31
32 #include "LR0.h"
33 #include "closure.h"
34 #include "complain.h"
35 #include "getargs.h"
36 #include "gram.h"
37 #include "gram.h"
38 #include "lalr.h"
39 #include "reader.h"
40 #include "reduce.h"
41 #include "state.h"
42 #include "symtab.h"
43
44 typedef struct state_list
45 {
46 struct state_list *next;
47 state *state;
48 } state_list;
49
50 static state_list *first_state = NULL;
51 static state_list *last_state = NULL;
52
53
54 /*------------------------------------------------------------------.
55 | A state was just discovered from another state. Queue it for |
56 | later examination, in order to find its transitions. Return it. |
57 `------------------------------------------------------------------*/
58
59 static state *
60 state_list_append (symbol_number sym, size_t core_size, item_number *core)
61 {
62 state_list *node = MALLOC (node, 1);
63 state *s = state_new (sym, core_size, core);
64
65 if (trace_flag & trace_automaton)
66 fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
67 nstates, sym, symbols[sym]->tag);
68
69 /* If this is the endtoken, and this is not the initial state, then
70 this is the final state. */
71 if (sym == 0 && first_state)
72 final_state = s;
73
74 node->next = NULL;
75 node->state = s;
76
77 if (!first_state)
78 first_state = node;
79 if (last_state)
80 last_state->next = node;
81 last_state = node;
82
83 return s;
84 }
85
86 static int nshifts;
87 static symbol_number *shift_symbol = NULL;
88
89 static rule **redset = NULL;
90 static state **shiftset = NULL;
91
92 static item_number **kernel_base = NULL;
93 static int *kernel_size = NULL;
94 static item_number *kernel_items = NULL;
95
96 \f
97 static void
98 allocate_itemsets (void)
99 {
100 symbol_number i;
101 rule_number r;
102 item_number *rhsp;
103
104 /* Count the number of occurrences of all the symbols in RITEMS.
105 Note that useless productions (hence useless nonterminals) are
106 browsed too, hence we need to allocate room for _all_ the
107 symbols. */
108 int count = 0;
109 short *symbol_count = CALLOC (symbol_count, nsyms + nuseless_nonterminals);
110
111 for (r = 0; r < nrules; ++r)
112 for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
113 {
114 count++;
115 symbol_count[*rhsp]++;
116 }
117
118 /* See comments before new_itemsets. All the vectors of items
119 live inside KERNEL_ITEMS. The number of active items after
120 some symbol S cannot be more than the number of times that S
121 appears as an item, which is SYMBOL_COUNT[S].
122 We allocate that much space for each symbol. */
123
124 CALLOC (kernel_base, nsyms);
125 if (count)
126 CALLOC (kernel_items, count);
127
128 count = 0;
129 for (i = 0; i < nsyms; i++)
130 {
131 kernel_base[i] = kernel_items + count;
132 count += symbol_count[i];
133 }
134
135 free (symbol_count);
136 CALLOC (kernel_size, nsyms);
137 }
138
139
140 static void
141 allocate_storage (void)
142 {
143 allocate_itemsets ();
144
145 CALLOC (shiftset, nsyms);
146 CALLOC (redset, nrules);
147 state_hash_new ();
148 CALLOC (shift_symbol, nsyms);
149 }
150
151
152 static void
153 free_storage (void)
154 {
155 free (shift_symbol);
156 free (redset);
157 free (shiftset);
158 free (kernel_base);
159 free (kernel_size);
160 XFREE (kernel_items);
161 state_hash_free ();
162 }
163
164
165
166
167 /*---------------------------------------------------------------.
168 | Find which symbols can be shifted in S, and for each one |
169 | record which items would be active after that shift. Uses the |
170 | contents of itemset. |
171 | |
172 | shift_symbol is set to a vector of the symbols that can be |
173 | shifted. For each symbol in the grammar, kernel_base[symbol] |
174 | points to a vector of item numbers activated if that symbol is |
175 | shifted, and kernel_size[symbol] is their numbers. |
176 `---------------------------------------------------------------*/
177
178 static void
179 new_itemsets (state *s)
180 {
181 int i;
182
183 if (trace_flag & trace_automaton)
184 fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
185
186 for (i = 0; i < nsyms; i++)
187 kernel_size[i] = 0;
188
189 nshifts = 0;
190
191 for (i = 0; i < nritemset; ++i)
192 if (ritem[itemset[i]] >= 0)
193 {
194 symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
195 if (!kernel_size[sym])
196 {
197 shift_symbol[nshifts] = sym;
198 nshifts++;
199 }
200
201 kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
202 kernel_size[sym]++;
203 }
204 }
205
206
207
208 /*--------------------------------------------------------------.
209 | Find the state we would get to (from the current state) by |
210 | shifting SYM. Create a new state if no equivalent one exists |
211 | already. Used by append_states. |
212 `--------------------------------------------------------------*/
213
214 static state *
215 get_state (symbol_number sym, size_t core_size, item_number *core)
216 {
217 state *sp;
218
219 if (trace_flag & trace_automaton)
220 fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
221 sym, symbols[sym]->tag);
222
223 sp = state_hash_lookup (core_size, core);
224 if (!sp)
225 sp = state_list_append (sym, core_size, core);
226
227 if (trace_flag & trace_automaton)
228 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
229
230 return sp;
231 }
232
233 /*---------------------------------------------------------------.
234 | Use the information computed by new_itemsets to find the state |
235 | numbers reached by each shift transition from S. |
236 | |
237 | SHIFTSET is set up as a vector of those states. |
238 `---------------------------------------------------------------*/
239
240 static void
241 append_states (state *s)
242 {
243 int i;
244
245 if (trace_flag & trace_automaton)
246 fprintf (stderr, "Entering append_states, state = %d\n", s->number);
247
248 /* First sort shift_symbol into increasing order. */
249
250 for (i = 1; i < nshifts; i++)
251 {
252 symbol_number sym = shift_symbol[i];
253 int j;
254 for (j = i; 0 < j && sym < shift_symbol [j - 1]; j--)
255 shift_symbol[j] = shift_symbol[j - 1];
256 shift_symbol[j] = sym;
257 }
258
259 for (i = 0; i < nshifts; i++)
260 {
261 symbol_number sym = shift_symbol[i];
262 shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
263 }
264 }
265
266
267 /*----------------------------------------------------------------.
268 | Find which rules can be used for reduction transitions from the |
269 | current state and make a reductions structure for the state to |
270 | record their rule numbers. |
271 `----------------------------------------------------------------*/
272
273 static void
274 save_reductions (state *s)
275 {
276 int count = 0;
277 int i;
278
279 /* Find and count the active items that represent ends of rules. */
280 for (i = 0; i < nritemset; ++i)
281 {
282 int item = ritem[itemset[i]];
283 if (item < 0)
284 redset[count++] = &rules[item_number_as_rule_number (item)];
285 }
286
287 /* Make a reductions structure and copy the data into it. */
288 state_reductions_set (s, count, redset);
289 }
290
291 \f
292 /*---------------.
293 | Build STATES. |
294 `---------------*/
295
296 static void
297 set_states (void)
298 {
299 CALLOC (states, nstates);
300
301 while (first_state)
302 {
303 state_list *this = first_state;
304
305 /* Pessimization, but simplification of the code: make sure all
306 the states have valid transitions and reductions members,
307 even if reduced to 0. It is too soon for errs, which are
308 computed later, but set_conflicts. */
309 state *s = this->state;
310 if (!s->transitions)
311 state_transitions_set (s, 0, 0);
312 if (!s->reductions)
313 state_reductions_set (s, 0, 0);
314
315 states[s->number] = s;
316
317 first_state = this->next;
318 free (this);
319 }
320 first_state = NULL;
321 last_state = NULL;
322 }
323
324
325 /*-------------------------------------------------------------------.
326 | Compute the nondeterministic finite state machine (see state.h for |
327 | details) from the grammar. |
328 `-------------------------------------------------------------------*/
329
330 void
331 generate_states (void)
332 {
333 state_list *list = NULL;
334 allocate_storage ();
335 new_closure (nritems);
336
337 /* Create the initial state. The 0 at the lhs is the index of the
338 item of this initial rule. */
339 kernel_base[0][0] = 0;
340 kernel_size[0] = 1;
341 state_list_append (0, kernel_size[0], kernel_base[0]);
342
343 list = first_state;
344
345 while (list)
346 {
347 state *s = list->state;
348 if (trace_flag & trace_automaton)
349 fprintf (stderr, "Processing state %d (reached by %s)\n",
350 s->number,
351 symbols[s->accessing_symbol]->tag);
352 /* Set up ruleset and itemset for the transitions out of this
353 state. ruleset gets a 1 bit for each rule that could reduce
354 now. itemset gets a vector of all the items that could be
355 accepted next. */
356 closure (s->items, s->nitems);
357 /* Record the reductions allowed out of this state. */
358 save_reductions (s);
359 /* Find the itemsets of the states that shifts can reach. */
360 new_itemsets (s);
361 /* Find or create the core structures for those states. */
362 append_states (s);
363
364 /* Create the shifts structures for the shifts to those states,
365 now that the state numbers transitioning to are known. */
366 state_transitions_set (s, nshifts, shiftset);
367
368 /* states are queued when they are created; process them all.
369 */
370 list = list->next;
371 }
372
373 /* discard various storage */
374 free_closure ();
375 free_storage ();
376
377 /* Set up STATES. */
378 set_states ();
379 }