]> git.saurik.com Git - bison.git/blob - src/tables.c
build: be sure to include config.h first in the generated parser
[bison.git] / src / tables.c
1 /* Output the generated parsing program for Bison.
2
3 Copyright (C) 1984, 1986, 1989, 1992, 2000-2006, 2009-2013 Free
4 Software Foundation, Inc.
5
6 This file is part of Bison, the GNU Compiler Compiler.
7
8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include "system.h"
23
24 #include <bitsetv.h>
25
26 #include "complain.h"
27 #include "conflicts.h"
28 #include "files.h"
29 #include "getargs.h"
30 #include "gram.h"
31 #include "lalr.h"
32 #include "muscle-tab.h"
33 #include "reader.h"
34 #include "symtab.h"
35 #include "tables.h"
36
37 /* Several tables are indexed both by state and nonterminal numbers.
38 We call such an index a 'vector'; i.e., a vector is either a state
39 or a nonterminal number.
40
41 Of course vector_number_t ought to be wide enough to contain
42 state_number and symbol_number. */
43 typedef int vector_number;
44
45 #if 0 /* Not currently used. */
46 static inline vector_number
47 state_number_to_vector_number (state_number s)
48 {
49 return s;
50 }
51 #endif
52
53 static inline vector_number
54 symbol_number_to_vector_number (symbol_number sym)
55 {
56 return state_number_as_int (nstates) + sym - ntokens;
57 }
58
59 int nvectors;
60
61
62 /* FROMS and TOS are indexed by vector_number.
63
64 If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
65 array of state numbers of the non defaulted GOTO on VECTOR.
66
67 If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
68 the (array of) symbols FROMS[VECTOR].
69
70 In both cases, TALLY[VECTOR] is the size of the arrays
71 FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
72 (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
73 TALLY[VECTOR].
74
75 FROMS therefore contains symbol_number and action_number,
76 TOS state_number and action_number,
77 TALLY sizes,
78 WIDTH differences of FROMS.
79
80 Let base_number be the type of FROMS, TOS, and WIDTH. */
81 #define BASE_MAXIMUM INT_MAX
82 #define BASE_MINIMUM INT_MIN
83
84 static base_number **froms;
85 static base_number **tos;
86 static unsigned int **conflict_tos;
87 static size_t *tally;
88 static base_number *width;
89
90
91 /* For a given state, N = ACTROW[SYMBOL]:
92
93 If N = 0, stands for 'run the default action'.
94 If N = MIN, stands for 'raise a syntax error'.
95 If N > 0, stands for 'shift SYMBOL and go to n'.
96 If N < 0, stands for 'reduce -N'. */
97 typedef int action_number;
98 #define ACTION_NUMBER_MINIMUM INT_MIN
99
100 static action_number *actrow;
101
102 /* FROMS and TOS are reordered to be compressed. ORDER[VECTOR] is the
103 new vector number of VECTOR. We skip 'empty' vectors (i.e.,
104 TALLY[VECTOR] = 0), and call these 'entries'. */
105 static vector_number *order;
106 static int nentries;
107
108 base_number *base = NULL;
109 /* A distinguished value of BASE, negative infinite. During the
110 computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
111 keep parser tables small. */
112 base_number base_ninf = 0;
113 static base_number *pos = NULL;
114
115 static unsigned int *conflrow;
116 unsigned int *conflict_table;
117 unsigned int *conflict_list;
118 int conflict_list_cnt;
119 static int conflict_list_free;
120
121 /* TABLE_SIZE is the allocated size of both TABLE and CHECK. We start
122 with more or less the original hard-coded value (which was
123 SHRT_MAX). */
124 static int table_size = 32768;
125 base_number *table;
126 base_number *check;
127 /* The value used in TABLE to denote explicit syntax errors
128 (%nonassoc), a negative infinite. First defaults to ACTION_NUMBER_MINIMUM,
129 but in order to keep small tables, renumbered as TABLE_ERROR, which
130 is the smallest (non error) value minus 1. */
131 base_number table_ninf = 0;
132 static int lowzero;
133 int high;
134
135 state_number *yydefgoto;
136 rule_number *yydefact;
137
138 /*-------------------------------------------------------------------.
139 | If TABLE, CONFLICT_TABLE, and CHECK are too small to be addressed |
140 | at DESIRED, grow them. TABLE[DESIRED] can be used, so the desired |
141 | size is at least DESIRED + 1. |
142 `-------------------------------------------------------------------*/
143
144 static void
145 table_grow (int desired)
146 {
147 int old_size = table_size;
148
149 while (table_size <= desired)
150 table_size *= 2;
151
152 if (trace_flag & trace_resource)
153 fprintf (stderr, "growing table and check from: %d to %d\n",
154 old_size, table_size);
155
156 table = xnrealloc (table, table_size, sizeof *table);
157 conflict_table = xnrealloc (conflict_table, table_size,
158 sizeof *conflict_table);
159 check = xnrealloc (check, table_size, sizeof *check);
160
161 for (/* Nothing. */; old_size < table_size; ++old_size)
162 {
163 table[old_size] = 0;
164 conflict_table[old_size] = 0;
165 check[old_size] = -1;
166 }
167 }
168
169
170
171
172 /*-------------------------------------------------------------------.
173 | For GLR parsers, for each conflicted token in S, as indicated |
174 | by non-zero entries in CONFLROW, create a list of possible |
175 | reductions that are alternatives to the shift or reduction |
176 | currently recorded for that token in S. Store the alternative |
177 | reductions followed by a 0 in CONFLICT_LIST, updating |
178 | CONFLICT_LIST_CNT, and storing an index to the start of the list |
179 | back into CONFLROW. |
180 `-------------------------------------------------------------------*/
181
182 static void
183 conflict_row (state *s)
184 {
185 int i, j;
186 reductions *reds = s->reductions;
187
188 if (!nondeterministic_parser)
189 return;
190
191 for (j = 0; j < ntokens; j += 1)
192 if (conflrow[j])
193 {
194 conflrow[j] = conflict_list_cnt;
195
196 /* Find all reductions for token J, and record all that do not
197 match ACTROW[J]. */
198 for (i = 0; i < reds->num; i += 1)
199 if (bitset_test (reds->lookahead_tokens[i], j)
200 && (actrow[j]
201 != rule_number_as_item_number (reds->rules[i]->number)))
202 {
203 aver (0 < conflict_list_free);
204 conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
205 conflict_list_cnt += 1;
206 conflict_list_free -= 1;
207 }
208
209 /* Leave a 0 at the end. */
210 aver (0 < conflict_list_free);
211 conflict_list[conflict_list_cnt] = 0;
212 conflict_list_cnt += 1;
213 conflict_list_free -= 1;
214 }
215 }
216
217
218 /*------------------------------------------------------------------.
219 | Decide what to do for each type of token if seen as the |
220 | lookahead in specified state. The value returned is used as the |
221 | default action (yydefact) for the state. In addition, ACTROW is |
222 | filled with what to do for each kind of token, index by symbol |
223 | number, with zero meaning do the default action. The value |
224 | ACTION_NUMBER_MINIMUM, a very negative number, means this |
225 | situation is an error. The parser recognizes this value |
226 | specially. |
227 | |
228 | This is where conflicts are resolved. The loop over lookahead |
229 | rules considered lower-numbered rules last, and the last rule |
230 | considered that likes a token gets to handle it. |
231 | |
232 | For GLR parsers, also sets CONFLROW[SYM] to an index into |
233 | CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r) |
234 | with symbol SYM. The default reduction is not used for a symbol |
235 | that has any such conflicts. |
236 `------------------------------------------------------------------*/
237
238 static rule *
239 action_row (state *s)
240 {
241 int i;
242 rule *default_reduction = NULL;
243 reductions *reds = s->reductions;
244 transitions *trans = s->transitions;
245 errs *errp = s->errs;
246 /* Set to nonzero to inhibit having any default reduction. */
247 bool nodefault = false;
248 bool conflicted = false;
249
250 for (i = 0; i < ntokens; i++)
251 actrow[i] = conflrow[i] = 0;
252
253 if (reds->lookahead_tokens)
254 {
255 int j;
256 bitset_iterator biter;
257 /* loop over all the rules available here which require
258 lookahead (in reverse order to give precedence to the first
259 rule) */
260 for (i = reds->num - 1; i >= 0; --i)
261 /* and find each token which the rule finds acceptable
262 to come next */
263 BITSET_FOR_EACH (biter, reds->lookahead_tokens[i], j, 0)
264 {
265 /* and record this rule as the rule to use if that
266 token follows. */
267 if (actrow[j] != 0)
268 {
269 conflicted = true;
270 conflrow[j] = 1;
271 }
272 actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
273 }
274 }
275
276 /* Now see which tokens are allowed for shifts in this state. For
277 them, record the shift as the thing to do. So shift is preferred
278 to reduce. */
279 FOR_EACH_SHIFT (trans, i)
280 {
281 symbol_number sym = TRANSITION_SYMBOL (trans, i);
282 state *shift_state = trans->states[i];
283
284 if (actrow[sym] != 0)
285 {
286 conflicted = true;
287 conflrow[sym] = 1;
288 }
289 actrow[sym] = state_number_as_int (shift_state->number);
290
291 /* Do not use any default reduction if there is a shift for
292 error */
293 if (sym == errtoken->number)
294 nodefault = true;
295 }
296
297 /* See which tokens are an explicit error in this state (due to
298 %nonassoc). For them, record ACTION_NUMBER_MINIMUM as the
299 action. */
300 for (i = 0; i < errp->num; i++)
301 {
302 symbol *sym = errp->symbols[i];
303 actrow[sym->number] = ACTION_NUMBER_MINIMUM;
304 }
305
306 /* Turn off default reductions where requested by the user. See
307 state_lookahead_tokens_count in lalr.c to understand when states are
308 labeled as consistent. */
309 {
310 char *default_reductions =
311 muscle_percent_define_get ("lr.default-reduction");
312 if (STRNEQ (default_reductions, "most") && !s->consistent)
313 nodefault = true;
314 free (default_reductions);
315 }
316
317 /* Now find the most common reduction and make it the default action
318 for this state. */
319
320 if (reds->num >= 1 && !nodefault)
321 {
322 if (s->consistent)
323 default_reduction = reds->rules[0];
324 else
325 {
326 int max = 0;
327 for (i = 0; i < reds->num; i++)
328 {
329 int count = 0;
330 rule *r = reds->rules[i];
331 symbol_number j;
332
333 for (j = 0; j < ntokens; j++)
334 if (actrow[j] == rule_number_as_item_number (r->number))
335 count++;
336
337 if (count > max)
338 {
339 max = count;
340 default_reduction = r;
341 }
342 }
343
344 /* GLR parsers need space for conflict lists, so we can't
345 default conflicted entries. For non-conflicted entries
346 or as long as we are not building a GLR parser,
347 actions that match the default are replaced with zero,
348 which means "use the default". */
349
350 if (max > 0)
351 {
352 int j;
353 for (j = 0; j < ntokens; j++)
354 if (actrow[j]
355 == rule_number_as_item_number (default_reduction->number)
356 && ! (nondeterministic_parser && conflrow[j]))
357 actrow[j] = 0;
358 }
359 }
360 }
361
362 /* If have no default reduction, the default is an error.
363 So replace any action which says "error" with "use default". */
364
365 if (!default_reduction)
366 for (i = 0; i < ntokens; i++)
367 if (actrow[i] == ACTION_NUMBER_MINIMUM)
368 actrow[i] = 0;
369
370 if (conflicted)
371 conflict_row (s);
372
373 return default_reduction;
374 }
375
376
377 /*----------------------------------------.
378 | Set FROMS, TOS, TALLY and WIDTH for S. |
379 `----------------------------------------*/
380
381 static void
382 save_row (state_number s)
383 {
384 symbol_number i;
385
386 /* Number of non default actions in S. */
387 size_t count = 0;
388 for (i = 0; i < ntokens; i++)
389 if (actrow[i] != 0)
390 count++;
391
392 if (count)
393 {
394 /* Allocate non defaulted actions. */
395 base_number *sp1 = froms[s] = xnmalloc (count, sizeof *sp1);
396 base_number *sp2 = tos[s] = xnmalloc (count, sizeof *sp2);
397 unsigned int *sp3 = conflict_tos[s] =
398 nondeterministic_parser ? xnmalloc (count, sizeof *sp3) : NULL;
399
400 /* Store non defaulted actions. */
401 for (i = 0; i < ntokens; i++)
402 if (actrow[i] != 0)
403 {
404 *sp1++ = i;
405 *sp2++ = actrow[i];
406 if (nondeterministic_parser)
407 *sp3++ = conflrow[i];
408 }
409
410 tally[s] = count;
411 width[s] = sp1[-1] - froms[s][0] + 1;
412 }
413 }
414
415
416 /*------------------------------------------------------------------.
417 | Figure out the actions for the specified state, indexed by |
418 | lookahead token type. |
419 | |
420 | The YYDEFACT table is output now. The detailed info is saved for |
421 | putting into YYTABLE later. |
422 `------------------------------------------------------------------*/
423
424 static void
425 token_actions (void)
426 {
427 int nconflict = nondeterministic_parser ? conflicts_total_count () : 0;
428
429 yydefact = xnmalloc (nstates, sizeof *yydefact);
430
431 actrow = xnmalloc (ntokens, sizeof *actrow);
432 conflrow = xnmalloc (ntokens, sizeof *conflrow);
433
434 conflict_list = xnmalloc (1 + 2 * nconflict, sizeof *conflict_list);
435 conflict_list_free = 2 * nconflict;
436 conflict_list_cnt = 1;
437
438 /* Find the rules which are reduced. */
439 if (!nondeterministic_parser)
440 {
441 rule_number r;
442 for (r = 0; r < nrules; ++r)
443 rules[r].useful = false;
444 }
445
446 {
447 state_number i;
448 for (i = 0; i < nstates; ++i)
449 {
450 rule *default_reduction = action_row (states[i]);
451 yydefact[i] = default_reduction ? default_reduction->number + 1 : 0;
452 save_row (i);
453
454 /* Now that the parser was computed, we can find which rules are
455 really reduced, and which are not because of SR or RR
456 conflicts. */
457 if (!nondeterministic_parser)
458 {
459 symbol_number j;
460 for (j = 0; j < ntokens; ++j)
461 if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
462 rules[item_number_as_rule_number (actrow[j])].useful = true;
463 if (yydefact[i])
464 rules[yydefact[i] - 1].useful = true;
465 }
466 }
467 }
468 free (actrow);
469 free (conflrow);
470 }
471
472
473 /*------------------------------------------------------------------.
474 | Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
475 | i.e., the information related to non defaulted GOTO on the nterm |
476 | SYM. |
477 | |
478 | DEFAULT_STATE is the principal destination on SYM, i.e., the |
479 | default GOTO destination on SYM. |
480 `------------------------------------------------------------------*/
481
482 static void
483 save_column (symbol_number sym, state_number default_state)
484 {
485 goto_number i;
486 goto_number begin = goto_map[sym - ntokens];
487 goto_number end = goto_map[sym - ntokens + 1];
488
489 /* Number of non default GOTO. */
490 size_t count = 0;
491 for (i = begin; i < end; i++)
492 if (to_state[i] != default_state)
493 count++;
494
495 if (count)
496 {
497 /* Allocate room for non defaulted gotos. */
498 vector_number symno = symbol_number_to_vector_number (sym);
499 base_number *sp1 = froms[symno] = xnmalloc (count, sizeof *sp1);
500 base_number *sp2 = tos[symno] = xnmalloc (count, sizeof *sp2);
501
502 /* Store the state numbers of the non defaulted gotos. */
503 for (i = begin; i < end; i++)
504 if (to_state[i] != default_state)
505 {
506 *sp1++ = from_state[i];
507 *sp2++ = to_state[i];
508 }
509
510 tally[symno] = count;
511 width[symno] = sp1[-1] - froms[symno][0] + 1;
512 }
513 }
514
515
516 /*----------------------------------------------------------------.
517 | The default state for SYM: the state which is 'the' most common |
518 | GOTO destination on SYM (an nterm). |
519 `----------------------------------------------------------------*/
520
521 static state_number
522 default_goto (symbol_number sym, size_t state_count[])
523 {
524 goto_number begin = goto_map[sym - ntokens];
525 goto_number end = goto_map[sym - ntokens + 1];
526 state_number res = -1;
527
528 if (begin != end)
529 {
530 size_t max = 0;
531 goto_number i;
532 state_number s;
533
534 for (s = 0; s < nstates; s++)
535 state_count[s] = 0;
536
537 for (i = begin; i < end; i++)
538 state_count[to_state[i]]++;
539
540 for (s = 0; s < nstates; s++)
541 if (max < state_count[s])
542 {
543 max = state_count[s];
544 res = s;
545 }
546 }
547 return res;
548 }
549
550
551 /*-------------------------------------------------------------------.
552 | Figure out what to do after reducing with each rule, depending on |
553 | the saved state from before the beginning of parsing the data that |
554 | matched this rule. |
555 | |
556 | The YYDEFGOTO table is output now. The detailed info is saved for |
557 | putting into YYTABLE later. |
558 `-------------------------------------------------------------------*/
559
560 static void
561 goto_actions (void)
562 {
563 symbol_number i;
564 size_t *state_count = xnmalloc (nstates, sizeof *state_count);
565 yydefgoto = xnmalloc (nvars, sizeof *yydefgoto);
566
567 /* For a given nterm I, STATE_COUNT[S] is the number of times there
568 is a GOTO to S on I. */
569 for (i = ntokens; i < nsyms; ++i)
570 {
571 state_number default_state = default_goto (i, state_count);
572 save_column (i, default_state);
573 yydefgoto[i - ntokens] = default_state;
574 }
575 free (state_count);
576 }
577
578
579 /*------------------------------------------------------------------.
580 | Compute ORDER, a reordering of vectors, in order to decide how to |
581 | pack the actions and gotos information into yytable. |
582 `------------------------------------------------------------------*/
583
584 static void
585 sort_actions (void)
586 {
587 int i;
588
589 nentries = 0;
590
591 for (i = 0; i < nvectors; i++)
592 if (0 < tally[i])
593 {
594 int k;
595 size_t t = tally[i];
596 int w = width[i];
597 int j = nentries - 1;
598
599 while (0 <= j && width[order[j]] < w)
600 j--;
601
602 while (0 <= j && width[order[j]] == w && tally[order[j]] < t)
603 j--;
604
605 for (k = nentries - 1; k > j; k--)
606 order[k + 1] = order[k];
607
608 order[j + 1] = i;
609 nentries++;
610 }
611 }
612
613
614 /* If VECTOR is a state whose actions (reflected by FROMS, TOS, TALLY
615 and WIDTH of VECTOR) are common to a previous state, return this
616 state number.
617
618 In any other case, return -1. */
619
620 static state_number
621 matching_state (vector_number vector)
622 {
623 vector_number i = order[vector];
624 /* If VECTOR is a nterm, return -1. */
625 if (i < nstates)
626 {
627 size_t t = tally[i];
628 int w = width[i];
629 int prev;
630
631 /* If VECTOR has GLR conflicts, return -1 */
632 if (conflict_tos[i] != NULL)
633 {
634 int j;
635 for (j = 0; j < t; j += 1)
636 if (conflict_tos[i][j] != 0)
637 return -1;
638 }
639
640 for (prev = vector - 1; 0 <= prev; prev--)
641 {
642 vector_number j = order[prev];
643 /* Given how ORDER was computed, if the WIDTH or TALLY is
644 different, there cannot be a matching state. */
645 if (width[j] != w || tally[j] != t)
646 return -1;
647 else
648 {
649 bool match = true;
650 int k;
651 for (k = 0; match && k < t; k++)
652 if (tos[j][k] != tos[i][k]
653 || froms[j][k] != froms[i][k]
654 || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
655 match = false;
656 if (match)
657 return j;
658 }
659 }
660 }
661 return -1;
662 }
663
664
665 static base_number
666 pack_vector (vector_number vector)
667 {
668 base_number res;
669 vector_number i = order[vector];
670 size_t t = tally[i];
671 base_number *from = froms[i];
672 base_number *to = tos[i];
673 unsigned int *conflict_to = conflict_tos[i];
674
675 aver (t != 0);
676
677 for (res = lowzero - from[0]; ; res++)
678 {
679 bool ok = true;
680 aver (res < table_size);
681 {
682 int k;
683 for (k = 0; ok && k < t; k++)
684 {
685 int loc = res + state_number_as_int (from[k]);
686 if (table_size <= loc)
687 table_grow (loc);
688
689 if (table[loc] != 0)
690 ok = false;
691 }
692
693 if (ok)
694 for (k = 0; k < vector; k++)
695 if (pos[k] == res)
696 ok = false;
697 }
698
699 if (ok)
700 {
701 int loc;
702 int k;
703 for (k = 0; k < t; k++)
704 {
705 loc = res + state_number_as_int (from[k]);
706 table[loc] = to[k];
707 if (nondeterministic_parser && conflict_to != NULL)
708 conflict_table[loc] = conflict_to[k];
709 check[loc] = from[k];
710 }
711
712 while (table[lowzero] != 0)
713 lowzero++;
714
715 if (high < loc)
716 high = loc;
717
718 aver (BASE_MINIMUM <= res && res <= BASE_MAXIMUM);
719 return res;
720 }
721 }
722 }
723
724
725 /*-------------------------------------------------------------.
726 | Remap the negative infinite in TAB from NINF to the greatest |
727 | possible smallest value. Return it. |
728 | |
729 | In most case this allows us to use shorts instead of ints in |
730 | parsers. |
731 `-------------------------------------------------------------*/
732
733 static base_number
734 table_ninf_remap (base_number tab[], int size, base_number ninf)
735 {
736 base_number res = 0;
737 int i;
738
739 for (i = 0; i < size; i++)
740 if (tab[i] < res && tab[i] != ninf)
741 res = tab[i];
742
743 --res;
744
745 for (i = 0; i < size; i++)
746 if (tab[i] == ninf)
747 tab[i] = res;
748
749 return res;
750 }
751
752 static void
753 pack_table (void)
754 {
755 int i;
756
757 base = xnmalloc (nvectors, sizeof *base);
758 pos = xnmalloc (nentries, sizeof *pos);
759 table = xcalloc (table_size, sizeof *table);
760 conflict_table = xcalloc (table_size, sizeof *conflict_table);
761 check = xnmalloc (table_size, sizeof *check);
762
763 lowzero = 0;
764 high = 0;
765
766 for (i = 0; i < nvectors; i++)
767 base[i] = BASE_MINIMUM;
768
769 for (i = 0; i < table_size; i++)
770 check[i] = -1;
771
772 for (i = 0; i < nentries; i++)
773 {
774 state_number s = matching_state (i);
775 base_number place;
776
777 if (s < 0)
778 /* A new set of state actions, or a nonterminal. */
779 place = pack_vector (i);
780 else
781 /* Action of I were already coded for S. */
782 place = base[s];
783
784 pos[i] = place;
785 base[order[i]] = place;
786 }
787
788 /* Use the greatest possible negative infinites. */
789 base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
790 table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);
791
792 free (pos);
793 }
794
795 \f
796
797 /*-----------------------------------------------------------------.
798 | Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
799 | and yycheck. |
800 `-----------------------------------------------------------------*/
801
802 void
803 tables_generate (void)
804 {
805 int i;
806
807 /* This is a poor way to make sure the sizes are properly
808 correlated. In particular the signedness is not taken into
809 account. But it's not useless. */
810 verify (sizeof nstates <= sizeof nvectors
811 && sizeof nvars <= sizeof nvectors);
812
813 nvectors = state_number_as_int (nstates) + nvars;
814
815 froms = xcalloc (nvectors, sizeof *froms);
816 tos = xcalloc (nvectors, sizeof *tos);
817 conflict_tos = xcalloc (nvectors, sizeof *conflict_tos);
818 tally = xcalloc (nvectors, sizeof *tally);
819 width = xnmalloc (nvectors, sizeof *width);
820
821 token_actions ();
822
823 goto_actions ();
824 free (goto_map);
825 free (from_state);
826 free (to_state);
827
828 order = xcalloc (nvectors, sizeof *order);
829 sort_actions ();
830 pack_table ();
831 free (order);
832
833 free (tally);
834 free (width);
835
836 for (i = 0; i < nvectors; i++)
837 {
838 free (froms[i]);
839 free (tos[i]);
840 free (conflict_tos[i]);
841 }
842
843 free (froms);
844 free (tos);
845 free (conflict_tos);
846 }
847
848
849 /*-------------------------.
850 | Free the parser tables. |
851 `-------------------------*/
852
853 void
854 tables_free (void)
855 {
856 free (base);
857 free (conflict_table);
858 free (conflict_list);
859 free (table);
860 free (check);
861 free (yydefgoto);
862 free (yydefact);
863 }