]>
git.saurik.com Git - bison.git/blob - src/LR0.c
   1 /* Generate the nondeterministic finite state machine for Bison. 
   3    Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005, 2006, 
   4    2007, 2008-2009 Free Software Foundation, Inc. 
   6    This file is part of Bison, the GNU Compiler Compiler. 
   8    This program is free software: you can redistribute it and/or modify 
   9    it under the terms of the GNU General Public License as published by 
  10    the Free Software Foundation, either version 3 of the License, or 
  11    (at your option) any later version. 
  13    This program is distributed in the hope that it will be useful, 
  14    but WITHOUT ANY WARRANTY; without even the implied warranty of 
  15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  16    GNU General Public License for more details. 
  18    You should have received a copy of the GNU General Public License 
  19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ 
  22 /* See comments in state.h for the data structures that represent it. 
  23    The entry point is generate_states.  */ 
  42 typedef struct state_list
 
  44   struct state_list 
*next
; 
  48 static state_list 
*first_state 
= NULL
; 
  49 static state_list 
*last_state 
= NULL
; 
  52 /*------------------------------------------------------------------. 
  53 | A state was just discovered from another state.  Queue it for     | 
  54 | later examination, in order to find its transitions.  Return it.  | 
  55 `------------------------------------------------------------------*/ 
  58 state_list_append (symbol_number sym
, size_t core_size
, item_number 
*core
) 
  60   state_list 
*node 
= xmalloc (sizeof *node
); 
  61   state 
*s 
= state_new (sym
, core_size
, core
); 
  63   if (trace_flag 
& trace_automaton
) 
  64     fprintf (stderr
, "state_list_append (state = %d, symbol = %d (%s))\n", 
  65              nstates
, sym
, symbols
[sym
]->tag
); 
  73     last_state
->next 
= node
; 
  80 static symbol_number 
*shift_symbol
; 
  83 static state 
**shiftset
; 
  85 static item_number 
**kernel_base
; 
  86 static int *kernel_size
; 
  87 static item_number 
*kernel_items
; 
  91 allocate_itemsets (void) 
  97   /* Count the number of occurrences of all the symbols in RITEMS. 
  98      Note that useless productions (hence useless nonterminals) are 
  99      browsed too, hence we need to allocate room for _all_ the 
 102   size_t *symbol_count 
= xcalloc (nsyms 
+ nuseless_nonterminals
, 
 103                                   sizeof *symbol_count
); 
 105   for (r 
= 0; r 
< nrules
; ++r
) 
 106     for (rhsp 
= rules
[r
].rhs
; *rhsp 
>= 0; ++rhsp
) 
 109         symbol_count
[*rhsp
]++; 
 112   /* See comments before new_itemsets.  All the vectors of items 
 113      live inside KERNEL_ITEMS.  The number of active items after 
 114      some symbol S cannot be more than the number of times that S 
 115      appears as an item, which is SYMBOL_COUNT[S]. 
 116      We allocate that much space for each symbol.  */ 
 118   kernel_base 
= xnmalloc (nsyms
, sizeof *kernel_base
); 
 119   kernel_items 
= xnmalloc (count
, sizeof *kernel_items
); 
 122   for (i 
= 0; i 
< nsyms
; i
++) 
 124       kernel_base
[i
] = kernel_items 
+ count
; 
 125       count 
+= symbol_count
[i
]; 
 129   kernel_size 
= xnmalloc (nsyms
, sizeof *kernel_size
); 
 134 allocate_storage (void) 
 136   allocate_itemsets (); 
 138   shiftset 
= xnmalloc (nsyms
, sizeof *shiftset
); 
 139   redset 
= xnmalloc (nrules
, sizeof *redset
); 
 141   shift_symbol 
= xnmalloc (nsyms
, sizeof *shift_symbol
); 
 160 /*---------------------------------------------------------------. 
 161 | Find which symbols can be shifted in S, and for each one       | 
 162 | record which items would be active after that shift.  Uses the | 
 163 | contents of itemset.                                           | 
 165 | shift_symbol is set to a vector of the symbols that can be     | 
 166 | shifted.  For each symbol in the grammar, kernel_base[symbol]  | 
 167 | points to a vector of item numbers activated if that symbol is | 
 168 | shifted, and kernel_size[symbol] is their numbers.             | 
 170 | itemset is sorted on item index in ritem, which is sorted on   | 
 171 | rule number.  Compute each kernel_base[symbol] with the same   | 
 173 `---------------------------------------------------------------*/ 
 176 new_itemsets (state 
*s
) 
 180   if (trace_flag 
& trace_automaton
) 
 181     fprintf (stderr
, "Entering new_itemsets, state = %d\n", s
->number
); 
 183   memset (kernel_size
, 0, nsyms 
* sizeof *kernel_size
); 
 187   for (i 
= 0; i 
< nitemset
; ++i
) 
 188     if (item_number_is_symbol_number (ritem
[itemset
[i
]])) 
 190         symbol_number sym 
= item_number_as_symbol_number (ritem
[itemset
[i
]]); 
 191         if (!kernel_size
[sym
]) 
 193             shift_symbol
[nshifts
] = sym
; 
 197         kernel_base
[sym
][kernel_size
[sym
]] = itemset
[i
] + 1; 
 204 /*--------------------------------------------------------------. 
 205 | Find the state we would get to (from the current state) by    | 
 206 | shifting SYM.  Create a new state if no equivalent one exists | 
 207 | already.  Used by append_states.                              | 
 208 `--------------------------------------------------------------*/ 
 211 get_state (symbol_number sym
, size_t core_size
, item_number 
*core
) 
 215   if (trace_flag 
& trace_automaton
) 
 216     fprintf (stderr
, "Entering get_state, symbol = %d (%s)\n", 
 217              sym
, symbols
[sym
]->tag
); 
 219   s 
= state_hash_lookup (core_size
, core
); 
 221     s 
= state_list_append (sym
, core_size
, core
); 
 223   if (trace_flag 
& trace_automaton
) 
 224     fprintf (stderr
, "Exiting get_state => %d\n", s
->number
); 
 229 /*---------------------------------------------------------------. 
 230 | Use the information computed by new_itemsets to find the state | 
 231 | numbers reached by each shift transition from S.               | 
 233 | SHIFTSET is set up as a vector of those states.                | 
 234 `---------------------------------------------------------------*/ 
 237 append_states (state 
*s
) 
 241   if (trace_flag 
& trace_automaton
) 
 242     fprintf (stderr
, "Entering append_states, state = %d\n", s
->number
); 
 244   /* First sort shift_symbol into increasing order.  */ 
 246   for (i 
= 1; i 
< nshifts
; i
++) 
 248       symbol_number sym 
= shift_symbol
[i
]; 
 250       for (j 
= i
; 0 < j 
&& sym 
< shift_symbol
[j 
- 1]; j
--) 
 251         shift_symbol
[j
] = shift_symbol
[j 
- 1]; 
 252       shift_symbol
[j
] = sym
; 
 255   for (i 
= 0; i 
< nshifts
; i
++) 
 257       symbol_number sym 
= shift_symbol
[i
]; 
 258       shiftset
[i
] = get_state (sym
, kernel_size
[sym
], kernel_base
[sym
]); 
 263 /*----------------------------------------------------------------. 
 264 | Find which rules can be used for reduction transitions from the | 
 265 | current state and make a reductions structure for the state to  | 
 266 | record their rule numbers.                                      | 
 267 `----------------------------------------------------------------*/ 
 270 save_reductions (state 
*s
) 
 275   /* Find and count the active items that represent ends of rules. */ 
 276   for (i 
= 0; i 
< nitemset
; ++i
) 
 278       item_number item 
= ritem
[itemset
[i
]]; 
 279       if (item_number_is_rule_number (item
)) 
 281           rule_number r 
= item_number_as_rule_number (item
); 
 282           redset
[count
++] = &rules
[r
]; 
 285               /* This is "reduce 0", i.e., accept. */ 
 292   /* Make a reductions structure and copy the data into it.  */ 
 293   state_reductions_set (s
, count
, redset
); 
 304   states 
= xcalloc (nstates
, sizeof *states
); 
 308       state_list 
*this = first_state
; 
 310       /* Pessimization, but simplification of the code: make sure all 
 311          the states have valid transitions and reductions members, 
 312          even if reduced to 0.  It is too soon for errs, which are 
 313          computed later, but set_conflicts.  */ 
 314       state 
*s 
= this->state
; 
 316         state_transitions_set (s
, 0, 0); 
 318         state_reductions_set (s
, 0, 0); 
 320       states
[s
->number
] = s
; 
 322       first_state 
= this->next
; 
 330 /*-------------------------------------------------------------------. 
 331 | Compute the nondeterministic finite state machine (see state.h for | 
 332 | details) from the grammar.                                         | 
 333 `-------------------------------------------------------------------*/ 
 336 generate_states (void) 
 338   item_number initial_core 
= 0; 
 339   state_list 
*list 
= NULL
; 
 341   new_closure (nritems
); 
 343   /* Create the initial state.  The 0 at the lhs is the index of the 
 344      item of this initial rule.  */ 
 345   state_list_append (0, 1, &initial_core
); 
 347   /* States are queued when they are created; process them all.  */ 
 348   for (list 
= first_state
; list
; list 
= list
->next
) 
 350       state 
*s 
= list
->state
; 
 351       if (trace_flag 
& trace_automaton
) 
 352         fprintf (stderr
, "Processing state %d (reached by %s)\n", 
 354                  symbols
[s
->accessing_symbol
]->tag
); 
 355       /* Set up itemset for the transitions out of this state.  itemset gets a 
 356          vector of all the items that could be accepted next.  */ 
 357       closure (s
->items
, s
->nitems
); 
 358       /* Record the reductions allowed out of this state.  */ 
 360       /* Find the itemsets of the states that shifts can reach.  */ 
 362       /* Find or create the core structures for those states.  */ 
 365       /* Create the shifts structures for the shifts to those states, 
 366          now that the state numbers transitioning to are known.  */ 
 367       state_transitions_set (s
, nshifts
, shiftset
); 
 370   /* discard various storage */